Logik und Beweisbarkeit
|
|
|
- Joachim Otto
- vor 8 Jahren
- Abrufe
Transkript
1 Logik und Beweisbarkeit Einleitung Martin Mundhenk Univ. Jena, Institut für Informatik. Februar 0
2 Einleitung: U ber Sinn und Form Symbolisches Addieren Al-Chwarizmi (etwa 8 80) Problem: Was ist MMMDCCCXCIX plus CMLIV?? 0.0.
3 Einleitung: U ber Sinn und Form Symbolisches Addieren Al-Chwarizmi (etwa 8 80) Problem: Was ist MMMDCCCXCIX plus CMLIV?? Abhilfe: Dezimaldarstellung = eine Sprache fu r Zahlen erlaubt symbolisches Addieren
4 Additionen kann man puzzeln Grundwahrheiten (Axiome)... sind wie Puzzlestücke Regeln... korrektes Zusammenlegen zu einer schönen Form... Beispiel: + Jede korrekte Addition lässt sich puzzeln! 0.0.
5 Additionen kann man puzzeln Grundwahrheiten (Axiome)... sind wie Puzzlestücke Regeln... korrektes Zusammenlegen zu einer schönen Form... Beispiel: + Jede korrekte Addition lässt sich puzzeln! 0.0.
6 Additionen kann man puzzeln Grundwahrheiten (Axiome)... sind wie Puzzlestücke Regeln... korrektes Zusammenlegen zu einer schönen Form... Beispiel: + Jede korrekte Addition lässt sich puzzeln! 0.0.
7 Additionen kann man puzzeln Grundwahrheiten (Axiome)... sind wie Puzzlestücke Regeln... korrektes Zusammenlegen zu einer schönen Form... Beispiel: + Jede korrekte Addition lässt sich puzzeln! 0.0.
8 Additionen kann man puzzeln Grundwahrheiten (Axiome)... sind wie Puzzlestücke Regeln... korrektes Zusammenlegen zu einer schönen Form... Beispiel: + Jede korrekte Addition lässt sich puzzeln! 0.0.
9 Additionen kann man puzzeln Grundwahrheiten (Axiome)... sind wie Puzzlestücke Regeln... korrektes Zusammenlegen zu einer schönen Form... Beispiel: 0 + Jede korrekte Addition lässt sich puzzeln! 0.0.
10 Additionen kann man puzzeln Grundwahrheiten (Axiome)... sind wie Puzzlestücke Regeln... korrektes Zusammenlegen zu einer schönen Form... Beispiel: 0 + Jede korrekte Addition lässt sich puzzeln! 0.0.
11 Additionen kann man puzzeln Grundwahrheiten (Axiome)... sind wie Puzzlestücke Regeln... korrektes Zusammenlegen zu einer schönen Form... Beispiel: 0 + Jede korrekte Addition lässt sich puzzeln! 0.0.
12 Symbolische Logik und Mathematik Frege (88-) [Grundgesetze der Arithmetik (8, 0)] Satz: Es gibt unendlich viele Primzahlen. x y(x < y a, b(a b = y (a = b = ))) Beweis: Seien p,..., p n alle Primzahlen x. Dann besitzt q = p p... p n + kein p i als Primfaktor. Da jede nat. Zahl Produkt von Primfaktoren ist, gibt es also eine Primzahl y, die nicht zu p,..., p n gehört. Folglich gibt es unendlich viele Primzahlen. Freges These: Es gibt Axiome und Regeln, mit denen man jeden Satz der Arithmetik formal beweisen kann. Mathematik kann man puzzeln! 0.0.
13 Symbolische Logik und Mathematik Frege (88-) [Grundgesetze der Arithmetik (8, 0)] Satz: Es gibt unendlich viele Primzahlen. x y(x < y a, b(a b = y (a = b = ))) Beweis: Seien p,..., p n alle Primzahlen x. Dann besitzt q = p p... p n + kein p i als Primfaktor. Da jede nat. Zahl Produkt von Primfaktoren ist, gibt es also eine Primzahl y, die nicht zu p,..., p n gehört. Folglich gibt es unendlich viele Primzahlen. Freges These: Es gibt Axiome und Regeln, mit denen man jeden Satz der Arithmetik formal beweisen kann. Mathematik kann man puzzeln! 0.0.
14 0.0. Symbolische Logik und Mathematik Frege (88-), Russell (8-0), Whitehead (8-) [Principia Mathematica (0-... )]
15 Symbolische Logik und Mathematik Frege (88-), Russell (8-0), Whitehead (8-) [Principia Mathematica (0-... )]
16 Hilberts Programm (0) Hilbert (8-) Aufgabe : finde einen streng formalisierten Kalkül mit einfachen unmittelbar einleuchtenden Axiomen, der die Mathematik und Logik auf eine gemeinsame, nachweisbar konsistente Basis stellt d.h. finde die Puzzlestücke für das Mathe-Puzzle und beweise, dass das stimmt.
17 Gödels Unvollständigkeitssatz () Gödel (0-8) Hilberts Aufgabe hat keine Lösung! (Es gibt kein Mathe-Puzzle... )
18 Hilberts Programm (0) Hilbert (8-) Aufgabe : finde einen streng formalisierten Kalkül (Axiome & Regeln) mit einfachen unmittelbar einleuchtenden Axiomen, mit dem man jede wahre mathematische Aussage beweisen kann.
19 Hilberts Programm (0) Hilbert (8-) Aufgabe : finde ein Verfahren, mit dem man jede wahre mathematische Aussage beweisen kann.
20 Hilberts Entscheidungsproblem () Hilbert (8-) Aufgabe : finde ein Verfahren, mit dem man logische Formel für jede wahre mathematische Aussage beweisen kann, ob sie wahr oder falsch ist.
21 0.0.8 Hilberts Entscheidungsproblem () Hilbert (8-) Aufgabe : finde ein Verfahren, mit dem man logische Formel für jede wahre mathematische Aussage beweisen kann, ob sie wahr oder falsch ist.. Finde Puzzlestücke, aus denen man alle wahren logischen Formeln puzzeln kann.. Finde Puzzlestücke, aus denen man alle falschen logischen Formeln puzzeln kann.
22 0.0.8 Gödels Vollständigkeitssatz () Gödel (0-8) Aufgabe : finde ein Verfahren, mit dem man logische Formel für jede wahre mathematische Aussage beweisen kann, ob sie wahr oder falsch ist.. Finde Puzzlestücke, aus denen man alle wahren logischen Formeln puzzeln kann. (Vollständigkeitssatz, Gödel ). Finde Puzzlestücke, aus denen man alle falschen logischen Formeln puzzeln kann.
23 Turings Unvollständigkeitssatz () Turing (-) Hilberts Aufgabe. hat keine Lösung! (Es gibt kein Puzzle für die falschen logischen Formeln.)
24 On computable numbers... () Turing (-) computing machines (Turing-Maschinen) was geht: berechenbare Zahlen TMen sind programmierbar was geht nicht: das Halteproblem lösen wie man Unlösbarkeit zeigen kann: Reduktion vom Halteproblem zum Entscheidungsproblem wie s auch geht: äquivalente Maschinerie Sprache für Algorithmen Theorie der Berechenbarkeit
25 Inhalt der Vorlesung. Vollständigkeitssatz für einen Teil der Arithmetik Aussagenlogik (- Wochen) Natürliches Schließen & dessen Vollständigkeit (Σ -)Arithmetik ( Wochen) Natürliches Schließen & dessen (Un-)Vollständigkeit. Unvollständigkeitssatz der Arithmetik Berechenbarkeit, (Semi-)Entscheidbarkeit ( Wochen) Unvollständigkeit der Peano-Arithmetik ( Wochen) Umfassende Frage: was kann man mit welcher Sprache ausdrücken? Literatur: van Dalen: Logic and Structure (Springer Verlag, 008) Cutland: Computability (Cambridge University Press, ) Smith: An introduction to Gödel s theorems (Cambridge University Press, 0)
26 Inhalt der Vorlesung. Vollständigkeitssatz für einen Teil der Arithmetik Aussagenlogik (- Wochen) Natürliches Schließen & dessen Vollständigkeit (Σ -)Arithmetik ( Wochen) Natürliches Schließen & dessen (Un-)Vollständigkeit. Unvollständigkeitssatz der Arithmetik Berechenbarkeit, (Semi-)Entscheidbarkeit ( Wochen) Unvollständigkeit der Peano-Arithmetik ( Wochen) Umfassende Frage: was kann man mit welcher Sprache ausdrücken? Literatur: van Dalen: Logic and Structure (Springer Verlag, 008) Cutland: Computability (Cambridge University Press, ) Smith: An introduction to Gödel s theorems (Cambridge University Press, 0) 0.0.
27 Inhalt der Vorlesung. Vollständigkeitssatz für einen Teil der Arithmetik Aussagenlogik (- Wochen) Natürliches Schließen & dessen Vollständigkeit (Σ -)Arithmetik ( Wochen) Natürliches Schließen & dessen (Un-)Vollständigkeit. Unvollständigkeitssatz der Arithmetik Berechenbarkeit, (Semi-)Entscheidbarkeit ( Wochen) Unvollständigkeit der Peano-Arithmetik ( Wochen) Umfassende Frage: was kann man mit welcher Sprache ausdrücken? Literatur: van Dalen: Logic and Structure (Springer Verlag, 008) Cutland: Computability (Cambridge University Press, ) Smith: An introduction to Gödel s theorems (Cambridge University Press, 0) 0.0.
28 Formalien zur Vorlesung/Übung Vorlesung/Übung dienstags 8 Uhr, donnerstags Uhr Sprechstunde freitags 0 Uhr und nach Vereinbarung Zulassungsvoraussetzung zur Prüfung: erfolgreiche Bearbeitung der wöchentlichen Übungsaufgabe mündliche Prüfung in der vorlesungsfreien Zeit (Termin wird noch bekanntgegeben)
Rhetorik und Argumentationstheorie.
Rhetorik und Argumentationstheorie 2 [[email protected]] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom
Sudoku. Warum 6? Warum 6?
. / Sudoku Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem x Kästchen alle Zahlen von bis stehen.. / Warum?. / Warum?. / Geschichte der Logik Syllogismen (I) Beginn
Berechenbarkeit und Komplexität
Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter
Wie viel Mathematik kann ein Computer?
Wie viel Mathematik kann ein Computer? Die Grenzen der Berechenbarkeit Dr. Daniel Borchmann 2015-02-05 Wie viel Mathematik kann ein Computer? 2015-02-05 1 / 1 Mathematik und Computer Computer sind schon
Weitere Beweistechniken und aussagenlogische Modellierung
Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume
Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1
Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter
Prolog basiert auf Prädikatenlogik
Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:
Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung. Elementare Logik. Diskrete Strukturen. Uta Priss ZeLL, Ostfalia
Elementare Logik Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Elementare Logik Slide 1/26 Agenda Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung
Logik: aussagenlogische Formeln und Wahrheitstafeln
FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe
Logic in a Nutshell. Christian Liguda
Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe
ALP I Rekursive Funktionen
ALP I Rekursive Funktionen SS 2011 Äquivalenz vieler Berechnungsmodelle Effektiv Berechenbare Funktionen Mathematische Modelle Maschinelle Modelle Text λ-kalkül Kombinatorische Logik Allgemein rekursive
Formale Sprachen und Automaten
Formale Sprachen und Automaten Kapitel 5: Typ 1 und Typ 0 Vorlesung an der DHBW Karlsruhe Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2012 Kapitel 5 Typ 1
SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER
SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER FORMALE SPRACHEN Wie jede natürliche Sprache, hat auch auch jede formale Sprache Syntax/Grammatik Semantik GRAMMATIK / SYNTAX Die Grammatik / Syntax einer formalen
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen Wintersemester 2012/13 Organisatorisches Vorlesung: Übungsbetreuung: Übungen: Programmierübungen: Alexander Wolff (E29) Jan Haunert (E27) Markus Ankenbrand Titus Dose Alexej
Hilbert-Kalkül (Einführung)
Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle
Prüfungsprotokoll Kurs 1825 Logik für Informatiker. Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015
Prüfungsprotokoll Kurs 1825 Logik für Informatiker Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015 1. Aussagenlogik Alphabet und AS gegeben, wie sind die Aussagenlogischen
Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre
Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes
Axiomatische Beschreibung der ganzen Zahlen
Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz [email protected] 0055282 Claudia Hemmelmeir JKU Linz [email protected] 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen
Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010
Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4
Program = Logic + Control
Program = Logic + Control Prozedurale/imperative Sprachen: Abläufe formulieren Computer führt aus von-neumann-maschine Idee von deklarativen/logischen/funktionalen Programmiersprachen: Zusammenhänge formulieren
Kapitel 3. Natürliche Zahlen und vollständige Induktion
Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine
Probeklausur zur Vorlesung Berechenbarkeit und Komplexität
RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Probeklausur 25.01.2013 Probeklausur zur Vorlesung Berechenbarkeit und Komplexität Aufgabe 1 (1+2+6+3 Punkte)
ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER
ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER FORMALE SPRACHEN Bevor wir anfangen, uns mit formaler Logik zu beschäftigen, müssen wir uns mit formalen Sprachen beschäftigen Wie jede natürliche Sprache,
Einführung in die Mathematik (Vorkurs 1 )
Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise
Der Zwei-Quadrate-Satz von Fermat
Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat
Handout zu Beweistechniken
Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1
Logik, Mengen und Abbildungen
Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen
Ausgewählte unentscheidbare Sprachen
Proseminar Theoretische Informatik 15.12.15 Ausgewählte unentscheidbare Sprachen Marian Sigler, Jakob Köhler Wolfgang Mulzer 1 Entscheidbarkeit und Semi-Entscheidbarkeit Definition 1: L ist entscheidbar
11.1 Kontextsensitive und allgemeine Grammatiken
Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert
Einführung in die Analysis
Ergänzungen zur Vorlesung Einführung in die Analysis Christian Schmeiser 1 Vorwort In dieser Vorlesung werden Grundbegriffe der Analysis wie Folgen und Reihen, Konvergenz und Vollständigkeit am Beispiel
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
Mathematischer Vorbereitungskurs für das MINT-Studium
Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet [email protected] WS 2016/2017 Vorlesung 2 MINT Mathekurs WS 2016/2017 1 / 20 Studienlexikon: Zeitangabe an der Universität
Mathematik für Informatiker/Informatikerinnen 2
Mathematik für Informatiker/Informatikerinnen 2 Koordinaten: Peter Buchholz Informatik IV Praktische Informatik Modellierung und Simulation Tel: 755 4746 Email: [email protected] OH 16, R 216 Sprechstunde
Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen
Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen Dozentin: Wiebke Petersen 1. Foliensatz Wiebke Petersen math. Grundlagen 6 Frage Was ist eine Menge? 1 Minute zum Nachdenken
Vorkurs Mathematik 1
Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler
Informationsblatt Induktionsbeweis
Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln
Einführung in Berechenbarkeit, Komplexität und formale Sprachen
Johannes Blömer Skript zur Vorlesung Einführung in Berechenbarkeit, Komplexität und formale Sprachen Universität Paderborn Wintersemester 2011/12 Inhaltsverzeichnis 1 Einleitung 2 1.1 Ziele der Vorlesung...................................
Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.
Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet
Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches
Berechenbarkeit und Komplexität: Motivation, Übersicht und Organisatorisches Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Berechenbarkeit die absoluten Grenzen
Normalformen boolescher Funktionen
Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion
Vorlesung: Nicht-kooperative Spieltheorie. Teil 1: Organisatorisches, Inhalte der Vorlesung und Nutzentheorie
Vorlesung: Nicht-kooperative Spieltheorie Teil 1: Organisatorisches, Inhalte der Vorlesung Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 / 15 Organisatorisches
TU8 Beweismethoden. Daniela Andrade
TU8 Beweismethoden Daniela Andrade [email protected] 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2
Die Folgerungsbeziehung
Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation
Lösungsvorschläge Blatt 4
Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit
5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56
5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten
Unendlich ist nicht gleich unendlich
Unendlich ist nicht gleich unendlich Prof. Dr. Wolfram Koepf Fachbereich Mathematik Universität Kassel [email protected] http://www.mathematik.uni-kassel.de/ koepf Schülerseminar Zahlen 14.
1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:
Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:
Automaten, Spiele, und Logik
Automaten, Spiele, und Logik Woche 2 25. April 2014 Inhalt der heutigen Vorlesung 1. Reguläre Ausdrücke 2. der Satz von Kleene 3. Brzozowski Methode 4. grep und perl Reguläre Ausdrücke Rekursive Definition,
Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik
Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR
Klausurplan Mathematik
Klausurplan Mathematik SS 16 Stand: 4. Juli 2016 Zuordnung: Studenten Montag, der 18. Juli 2016 9:30 10:30 Schadenversicherungsmathematik Hilfsmittel: etr, esa: 2 A4-Blätter S103/123 Dienstag, der 19.
Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.
Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...
Ist die Mathematik widerspruchsfrei?
Ist die Mathematik widerspruchsfrei? Heike Mildenberger Universität Freiburg, Mathematisches Institut, Abteilung für Logik http://home.mathematik.uni-freiburg.de/mildenberger/talks Kolloquium zur Didaktik
2. Vorlesung. Slide 40
2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b
Primzahlzertifikat von Pratt
Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren
Logik Vorlesung 1: Einführung
Logik Vorlesung 1: Einführung Andreas Maletti 17. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften
Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30
Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion
Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge
Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem
Algebra I. Zwischenprüfung. 19. Februar 2016
Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)
Einführung in die Informatik
Einführung in die Informatik Einleitung Organisatorisches, Motivation, Herangehensweise Wolfram Burgard 1.1 Vorlesung Zeit und Ort: Dienstags 10:00-12:00 Uhr Donnerstags 10:00-12:00 Uhr Gebäude 101 HS
x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.
SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten
Beschreibungslogiken. Daniel Schradick [email protected]
Beschreibungslogiken Daniel Schradick [email protected] Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining
Lineare Gleichungssysteme Basis
Lineare Gleichungssysteme Basis Graphische Lösung von Gleichungen Regel Gegeben sind zwei Gleichungen von zwei Funktionen. Die Lösung dieses Systems ist gleich dem Schnittpunkt beider Graphen. Verlaufen
Themen: Kubische Gleichungen, Ungleichungen, Induktion
Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,
Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt:
Informatik 13: Gierhardt Theoretische Informatik III Berechenbarkeit Nicht-berechenbare Funktionen Nach der Church-Turing-These kann alles, was berechenbar ist, mit einer Turing-Maschine oder einer While-Maschine
Modallogik (aussagenlogisch)
Kapitel 2 Modallogik (aussagenlogisch) In diesem Abschnitt wird eine Erweiterung der Aussagenlogik um sogenannte Modalitäten behandelt. Damit erlangt man eine größere Aussagekraft der Sprache, allerdings
Semantik von Formeln und Sequenzen
Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt
Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 8
Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt
Lineare Algebra I Klausur. Klausur - Musterlösung
Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.
Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik
Algorithmische Methoden zur Netzwerkanalyse Vorlesung für den Bereich Master Informatik Dozent: Prof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK
Klausur Formale Systeme Fakultät für Informatik WS 2009/2010
Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4
Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten:
Aussagen Aussagen Eine Aussage kann eine Eigenschaft für ein einzelnes, konkretes Objekt behaupten: verbale Aussage formale Aussage Wahrheitswert 1) 201 ist teilbar durch 3 3 201 wahre Aussage (w.a.) 2)
Prof. Dr. Tim Henning
Prof. Dr. Tim Henning Vorlesung Einführung in die Metaethik 127162001 Mittwoch, 11.30-13.00 Uhr M 18.11 19.10.2016 PO 09 / GymPO PO 14 / BEd 1-Fach-Bachelor: BM4 KM2 Bachelor Nebenfach (neu): KM2 KM2 Lehramt:
Einführung in die Informatik
Einführung in die Informatik Einleitung Organisatorisches, Motivation, Herangehensweise Wolfram Burgard Cyrill Stachniss 0.1 Vorlesung Zeit und Ort: Mo 16.00 18.00 Uhr Gebäude 101, HS 00-026 Informationen
Übersicht über die Einzelveranstaltungen im. B.Ed. Informatik 2+1. oder 2-stündige Klausur Rechnerstrukturen (V+Ü) 2+1 5 1
1 Übersicht über die Einzelveranstaltungen im B.Ed. Informatik Modul 1: Theoretische Grundlagen Automatentheorie und Formale Sprachen Berechenbarkeit und Komplexitätstheorie 10 2 3 Modul 2: Technische
Theoretische Informatik
Theoretische Informatik - das Quiz zur Vorlesung Teil I - Grundzüge der Logik In der Logik geht es um... (A) die Formen korrekten Folgerns (B) die Unterscheidung von wahr und falsch (C) das Finden von
Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von
Grundbegriffe der Mengenlehre 2 Mengenlehre gibt es seit den achtziger Jahren des 19. Jahrhunderts. Sie wurde von Georg Cantor begründet. Der Begriffsapparat der Mengenlehre hat sich als so nützlich für
Algorithmen und Berechnungskomplexität I
Institut für Informatik I Wintersemester 2010/11 Organisatorisches Vorlesung Montags 11:15-12:45 Uhr (AVZ III / HS 1) Mittwochs 11:15-12:45 Uhr (AVZ III / HS 1) Dozent Professor für theoretische Informatik
Hans Scheitter GmbH & Co.KG
2010 Beschläge in Schmiedeeisen, Messing und Kupfer JANUAR Neujahr 01 Samstag 02 Sonntag 03 Montag 04 Dienstag 05 Mittwoch 06 Donnerstag 07 Freitag 08 Samstag 09 Sonntag 10 Montag 11 Dienstag 12 Mittwoch
2 Mengen und Abbildungen
2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:
Zusammenhänge präzisieren im Modell
Zusammenhänge präzisieren im Modell Dr. Roland Poellinger Munich Center for Mathematical Philosophy Begriffsfeld Logik 1 Mathematik und Logik Die Mathematik basiert auf logisch gültigen Folgerungsschritten
Induktive Beweise und rekursive Definitionen
Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie
Pratts Primzahlzertifikate
Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest
Anselms Gottesbeweis und die Logik. und überhaupt: Beweise
Anselms Gottesbeweis und die Logik und überhaupt: Beweise Inhalt 1) Vorbemerkungen zur Logik (und Wissenschaft) 2) Vorbemerkungen zu Gottesbeweisen und zu Anselm von Canterbury 3) Anselms Ontologisches
Mathematik 1 für Informatik Inhalt Grundbegrie
Mathematik 1 für Informatik Inhalt Grundbegrie Mengen, speziell Zahlenmengen Aussagenlogik, Beweistechniken Funktionen, Relationen Kombinatorik Abzählverfahren Binomialkoezienten Komplexität von Algorithmen
Didaktik der Zahlbereiche
Didaktik der Zahlbereiche Natürliche Zahlen Aufbau und Einführung Erinnerung: Didaktische Grundfragen Welche Inhalte werden behandelt? In welcher Reihenfolge? Welche mentale Modelle werden erzeugt? Wie
11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16
11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p
y(p F x) gebunden und in den Formeln F xy
Wirkungsbereich (Skopus) eines Quantors i bzw. i nennen wir die unmittelbar auf i bzw. i folgende Formel. Wir sagen, eine IV i kommt in einer Formel A gebunden vor, wenn sie unmittelbar auf oder folgt
Webbasierte Programmierung
Webbasierte Programmierung Eine Einführung mit anschaulichen Beispielen aus der HTML5-Welt apl. Prof. Dr. Achim Ebert Inhalt Kapitel 0: Organisation Allgemeine Informationen Wer sind wir? Anforderungen
Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen.
Turing-Maschinen Nachdem wir endliche Automaten und (die mächtigeren) Kellerautomaten kennengelernt haben, werden wir nun ein letztes, noch mächtigeres Automatenmodell kennenlernen: Die Turing-Maschine
Automaten und Formale Sprachen
Automaten und Formale Sprachen Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2011/12 WS 11/12 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien
3. Sätze und Formeln
Klaus Mainzer, Die Berechnung der Welt. Von der Weltformel zu Big Data, München 2014 29.07.14 (Verlag C.H. Beck, mit zahlreichen farbigen Abbildungen, geb. 24,95, S.352) (empfohlene Zitierweise: Detlef
