Spektrale Messung der im Verbrennungsraum von Glasschmelzwannen vorhandenen Strahlung im Rahmen des AiF-Forschungsvorhabens Nr.

Größe: px
Ab Seite anzeigen:

Download "Spektrale Messung der im Verbrennungsraum von Glasschmelzwannen vorhandenen Strahlung im Rahmen des AiF-Forschungsvorhabens Nr."

Transkript

1 HVG-Mitteilung Nr. 265 Spektrale Messung der im Verbrennungsraum von Glasschmelzwannen vorhandenen Strahlung im Rahmen des AiF-Forschungsvorhabens Nr. 8 ZN Spektral 1. Einführung - Teil 3: Physikalische und quantenmechanische Grundlagen und Interpretation der gemessenen Flammenspektren B. Fleischmann, J. Bauer, HVG, Offenbach am Main Zur Interpretation der gemessenen Emissionsspektren bzw. der Flammen -Spektren, die im Teil 2 der Veröffentlichungsreihe für oxidierend bzw. reduzierend eingestellte Flammen ermittelt wurden, muss auf physikalische und quantenmechanische Grundlagen, Gesetzmäßigkeiten und Vorgänge zurückgegriffen werden. Schon bei der Kalibrierung der Messeinheit stellte sich die Frage, inwieweit die Temperatur einen Einfluss auf Absorptionsvorgänge und Strahlungsemission von Gasen hat. Bei einer einfachen Abschätzung der Wärmeströme im Oberofen von Glasschmelzwannen können alle Strahler durch sogenannte graue Strahler beschrieben werden, ohne dass dies zu falschen Ergebnissen führt. Betrachtet man die gemessenen Spektren der einzelnen Strahler, so kann man erkennen, dass für eine detaillierte Beschreibung der Wärmeübertragung eine spektrale, d. h. wellenlängenabhängige Betrachtung nötig ist, da bei fast allen Spektren mehr oder weniger deutliche Abweichungen vom Verhalten des grauen Strahlers zu beobachten sind. Es stellt sich also die Frage: Was verursacht die Absorption von Wärmestrahlung? Worauf basiert die unterschiedliche Emission durch Wärmestrahlung bei Festkörpern, Gasgemischen bzw. den einzelnen Strahlungskomponenten im Oberofen von Glasschmelzwannen? Welche quantenmechanischen Vorgänge und Gesetze spielen dabei eine Rolle? 2. Quantenmechanische Grundlagen und Gesetzmäßigkeiten 2.1. Temperatur In der Wärmetechnik bzw. Thermodynamik ist die Temperatur über den 1. Hauptsatz der Thermodynamik definiert. Dieser besagt, dass die innere Energie eines Körpers durch Zufuhr von Wärme und/oder Arbeit geändert wird. Dabei ist für eine Wärmezufuhr eine Temperaturdifferenz als treibende Kraft nötig. Die Temperatur selbst wird in der Wärmetechnik nicht näher spezifiziert. System W 12 U=U 2 U 1 > Q 12 T 2 > T 1 Bild 1: Veranschaulichung des 2. Hauptsatz der Thermodynamik In der Physik bzw. physikalischen Chemie findet man für die Temperatur folgende Erläuterungen: Die Temperatur ist eine gemeinsame intensive Zustandsgröße von Systemen, die sich miteinander im thermischen Gleichgewicht befinden. Eine intensive Zustandsgröße ist unabhängig von der Stoffmenge, nicht additiv für einzelne Phasen und räumlich veränderbar, d. h. sie ist lokal definiert

2 Spektrale Messung der im Verbrennungsraum von Glasschmelzwannen vorhandenen Strahlung Die Temperatur steht im Zusammenhang mit der mittleren, den einzelnen Teilchen zur Verfügung stehenden Bewegungsenergie. Bei Gasgemischen ist es die mittlere Geschwindigkeit der einzelnen Gasteilchen, durch welche die Temperatur beschrieben wird. Bei Festkörpern wird die Temperatur durch die Schwingungen der Teilchen (Atome, Ionen) um ihre Gitterplätze bestimmt Absorption Das Lambert`sche Gesetz Das sogenannte Bouguer-Lambert-Beer-Gesetz beschreibt eigentlich die Absorption von Licht (monochromatisch und paralleler Strahlengang) durch ein homogenes Medium, wobei keine Streuung, Reflexion oder Beugung auftritt (Bild 2). Es wird vorausgesetzt, das die absorbierenden Teilchen homogen verteilt sind und keine Wechselwirkung untereinander zeigen (= verdünnte Lösung). Das Gesetz lautet: I I = e ( α ( λ ) c d ) (1) mit I als Intensität des Lichtes nach Durchgang durch des Materials, mit I als Intensität des Lichtes vor dem Durchgang durch das Material, mit α(λ) als Absorptionskoeffizient, der von der Wellenlänge abhängig ist, und mit c als Konzentration der absorbierenden Spezies sowie d als Dicke des durchstrahlten Materials. <,96*,96 Ausfallender Strahl <,96 Transmission,96 Reflektion <,4*,96 Reflektion,4 Einfallender Strahl 1 ( ) Schwächung Beugung Streuung Luft Glasprobe Bild 2: Vorgänge beim Durchgang eines Lichtstrahles durch eine planparallele Glasplatte in Luft. Im weiter gefassten Sinne wird das Bouger-Lambert-Beer-Gesetz zur Beschreibung von Signalschwächung genutzt. Je nachdem in welchem Rahmen das Gesetz genutzt wird, ist α der Schwächungs- oder Absorptionskoeffizient. Das Produkt aus dem Absorptionskoeffizienten α und der Konzentration c wird auch als Extinktion bezeichnet. Die Einheiten der beiden Größen Absorptionskoeffizient α bzw. der Extinktion ε sind 1/(cm mal Konzentrationseinheit) bzw. 1/cm

3 HVG-Mitteilung Nr Quantenmechanische Betrachtungsweise der Absorption Absorption tritt dann auf, wenn ein Teilchen vom niedrigeren Energiezustand E 1 durch elektromagnetische Strahlung und Wechselwirkung mit derselben in den energetisch höheren Energiezustand E 2 übergeht. Die Art des interagierenden Teilchens ist dabei auch von der zur Verfügung stehenden Energie und damit auch von der Wellenlänge der elektromagnetischen Strahlung abhängig. Außerdem spielt die Art des Teilchens (Atom, Ion, Elektron) und der Aggregatzustand der Teilchen und der damit verbundene Freiheitsgrad, um Energie aufzunehmen, eine wichtige Rolle. An Absorptionsvorgängen sind beteiligt: Elektronen, Atome, Ionen und Moleküle. Mit der Absorption elektromagnetischer Strahlung ist eine Zunahme der Bewegungsenergie des beteiligten Teilchens verbunden. Typische Beispiele für Absorptionserscheinungen sind: Farbe von Glas aufgrund der Absorption von Elektronen Absorption der IR-Strahlung durch Gasmoleküle und dadurch verursachte Rotations- und / oder Schwingungsbewegungen in Molekülen Absorption von IR-Strahlung durch Gläser und Anregung von Schwingungen der Netzwerkbauteile Kirchhoff sches Strahlungsgesetz Das Kirchhoff sche Strahlungsgesetz wird oft als Berechtigung für die Aussage Absorption = Emission aufgeführt. Das von Kirchhoff formulierte Gesetz lautet jedoch: Bei einem Temperaturstrahler ist für eine beliebige Wellenlänge das Emissionsvermögen dividiert durch das Absorptionsvermögen für dieselbe Wellenlänge gleich dem Emissionsvermögen eines schwarzen Körpers bei derselben Temperatur und für dieselbe Wellenlänge. Das Gesetz leitet man von dem zweiten Hauptsatz der Thermodynamik ab. (Brockhaus, Naturwissenschaften und Technik. F. A. Brockhaus GmbH, Wiesbaden. Sonderausgabe Bd. 3 Io-Ng) Anders formuliert und in eine Gleichung gefasst lautet das Kirchhoff sche Gesetz: M A M BB = für eine Temperatur T (2) mit M(λ) als Emission eines Temperaturstrahlers der Temperatur T, mit A(λ) als absorbiertem Anteil der Umgebungsstrahlung bei derselben Temperatur T und M BB (λ) als Emissionsstrahlung eines Schwarzen Strahlers (Black Body) bei derselben Temperatur. Das Kirchhoff sche Gesetz beschreibt makroskopische Größen. Der Emissionsgrad, der das Verhalten eines sog. Grauen Strahlers beschreibt ist folgendermaßen definiert: M M BB = E Dabei ist der Emissionsgrad nicht mehr von der Wellenlänge abhängig. Vergleicht man (2) und (3), so sieht man: ist der Absorptionsgrad A von der Wellenlänge unabhängig kann er dem Emissionsgrad E des Grauen Strahlers gleichgesetzt werden. Die beiden Größen Absorptionsgrad bzw. Absorptionsvermögen und Emissionsgrad sind dimensionslos! Die beiden Größen erlauben auch keine direkten Aussagen über molekular bzw. atomar bedingte Strahlung, d.h. über quantenphysikalische Vorgänge. (3) 265-3

4 Spektrale Messung der im Verbrennungsraum von Glasschmelzwannen vorhandenen Strahlung 3. Wärmestrahlung von Festkörpern und Gasen Höhere Temperaturen sind mit einer erhöhten Bewegung von Teilchen verbunden. Dabei bewegen sich beispielsweise bei ionischen Werkstoffen die verschieden geladenen Teilchen gegeneinander (z.b. Gitterschwingungen) und der Schwerpunkt des positiv geladenen Atomkerns bewegt sich gegenüber dem Schwerpunkt der umgebenden Elektronenhülle, auch bei neutralen Atomen oder Molekülen. Auf Grund dieser Bewegung von unterschiedlich geladenen Teilchen gegeneinander wird elektromagnetische Strahlung (Dipolstrahlung) ausgesandt. Dabei entsteht je nach Temperatur und beteiligten Teilchenarten eine mehr oder weniger kontinuierliche Strahlung bei Festkörpern und Flüssigkeiten (graue Strahler, siehe Bild 3). 2 Spektrale spezifische Austrahlung in kw/(m µm) a) b) Bild 3: Festkörperstrahlung: a) zueinander bewegte geladene Teilchen im Festkörper mit ionischen Elementarteilchen; b) Strahlungsverhalten von Festkörpern Bei Gasen kann die thermische Bewegungsenergie (Rotation, Schwingung) nur in diskreten Energien abgegeben werden, indem energetisch niedrigere Zustände eingenommen werden, die durch genau definierte Energieabstände gekennzeichnet sind. Daher geben heiße Gase nur diskrete Strahlungsbanden ab (Bild 4). HITRAN Absorptionbands of different gases at 1 C 3.5E-19 3.E-19 rel. Absorption 2.5E-19 2.E-19 CO NOx H2O CO2 1.5E-19 1.E-19 5.E-2 a) Wavelength in nm b) Bild 4: Gasstrahlung: a) einige mögliche Schwingungs- und Rotationszustände von Wasser; b) Gasstrahlungsbanden [HITRAN DATA BASE] Dass Festkörper und Flüssigkeiten eine kontinuierliche Strahlung abgeben liegt auch daran, dass die Nachbarschaft anderer Teilchen zu einer Aufspaltung der Energieniveaus führt. Diese Aufspaltung von Energieniveaus führt zu Zwischenniveaus. Je mehr Nachbarn für ein Teilchen noch bemerkbar sind, desto mehr Zwischenniveaus entstehen, effektiv sind die Abstände der erlaubten Energieniveaus so gering, dass praktisch ein Kontinuum vorliegt

5 HVG-Mitteilung Nr Emissionsstrahlung im Verbrennungsraum von Glasschmelzwannen Bild 5 zeigt Emissionsspektren von Gasflammen, die mit der in Teil 2 der Veröffentlichungsreihe beschriebenen Vorgehensweise ermittelt wurden, aus den Verbrennungsräumen zweier Glasschmelzwannen und aus dem Verbrennungsraum des GWI-Versuchsofen. Spektrale spezifische Ausstrahlung in kw/(m 2 µm) Versuchsofen 4,92 Vol.% CO Versuchsofen λ=1,5 Grünglaswanne B Grünglaswanne A Bild 5: Vergleich der Emissionsspektren von Gasflammen im GWI Versuchsofen und in Glasschmelzwannen Spektrale spezifische Ausstrahlung in kw/(m 2 µm) rel. Intensität Spektrale spezifische Ausstrahlung in kw/(m 2 µm) E-19 3.E E-19 2.E-19 CO NOx 1.5E-19 Wasser CO2 1.E-19 5.E Bild 6: Festkörperstrahlung und Gasabsorption prägen das Emissionsverhalten von Flammen Es stellt sich nun die Frage, aus welchen Strahlungskomponenten sich diese Spektren zusammensetzen und welche Informationen ihnen entnommen werden können. Bild 6 zeigt die beiden wichtigsten Mechanismen, aus denen sich die gemessene Strahlungsemission der Flamme im Oberofen von Glasschmelzwannen zusammensetzt: Festkörperstrahlung von Ruß und Staubteilchen sowie Absorption von Gasspezies in den äußeren und kälteren Abgasschichten am Rand der Flamme. Dabei ist zu beachten, dass die Absorption mit sinkender Temperatur in den meisten Fällen zunimmt (Bild 7 beispielhaft für Wasserdampf)

6 Spektrale Messung der im Verbrennungsraum von Glasschmelzwannen vorhandenen Strahlung Bild 7: Temperaturabhängigkeit der Absorption und Emission von elektromagnetischer Strahlung durch Wassermoleküle im Gas Vergleicht man die Emissionsspektren der Flammen (Bild 5) und die Lage der Absorptionsspektren von Wasser (Bild 7) und anderer Gasspezies (Bild 6, rechts unten bzw. Bild 8 aus Teil 2 der Veröffentlichungsreihe) so ist eine grobe Zuordnung der Absorption durch die kalten Abgase, d.h. kälter als in der Reaktionszone, zu entsprechenden Emissionsminima in den Strahlungsspektren der Flammen möglich. Die im Teil 2 der Reihe genannten Flammentemperaturen werden mit Hilfe von Stützstellen ermittelt, an denen die Absorption durch Gasspezies des Abgases praktisch nicht vorhanden ist. Trotzdem wird die ermittelte Flammen -Temperatur auch durch die Wärmestrahlung emittierende Umgebung der Flamme mit beeinflusst. Die Flammentemperatur hängt außerdem von der Lage der Messstelle in der Flamme ab. Wird die Emission der Flamme auf Höhe des Hot Spot der Wanne ermittelt, so ist im Sichtbaren fast keine Flamme mehr zu erkennen, während mit einer UV-Kamera die Anwesenheit von Radikalen nachgewiesen werden kann, was auf die noch ablaufenden Verbrennungsreaktionen hinweist. Trotzdem ist die Temperatur der Flamme bei der heute üblichen Einstellung der Brenner geringer als in der Flammenwurzel. Dies spiegelt sich auch in den Temperaturen wider, die aus den Emissionsspektren ermittelt wurden und in Teil 2 in Bild 2 und 3 genannt werden: 1786 C beim Blick auf die Flamme im ersten Viertel und 165 C beim Blick auf die Flamme im letzten Viertel vor dem Umkehrpunkt (beides U-Flammen). Der ermittelte Emissionsgrad gibt Aufschluss über die örtlichen Redoxverhältnisse in der Flamme. Die Flammen mit der höheren Temperatur (Wanne A) wurde oxidierender gefahren als die im zweiten Flammenteil kältere Flamme der Wanne B. Die reduzierendere Fahrweise der Flamme in Ofen B führt an sich zu etwas niedrigeren Flammentemperaturen, da partiell nicht genügend Sauerstoff zur Reaktion zur Verfügung steht, was zur Vermeidung von Stickoxiden durchaus gewünscht ist. Tabelle 1 zeigt den Anteil der reinen Flammenstrahlung (ohne Mehrfachreflektion an den Wänden) an der Gesamtstrahlung im Verbrennungsraum. Dabei werden Ergebnisse, die am Laborofen des GWI ermittelt wurden, verglichen mit Messungen an Glasschmelzwannen. Auch wenn der Anteil der Flamme selbst an der Wärmestrahlung im Verbrennungsraum gering ist, ist sie doch der Ausgangspunkt für die gesamte zur Verfügung stehende Strahlung im Oberofen

7 HVG-Mitteilung Nr. 265 Tabelle 1: Anteil der reinen Flammenstrahlung an der Gesamtstrahlung im Verbrennungsraum zwischen den beiden Seitenwänden Laborofen λ=1,5 Laborofen 4,92 Vol.% CO Wanne A Flammenanfang Wanne B Flammenende Wände 7 % 66 % 75 % 87 % Reine Flamme (ohne Mehrfachreflektion an den Wänen) Flamme mit Mehrfachreflektion 14 % 16 % 7,5 % 1,5 % 3 % 34 % 25 % 13 % Die Forschungsarbeiten wurden durchgeführt mit der freundlichen Unterstützung der Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF), Köln, (AiF-Nr.: 8ZN) und der Hüttentechnischen Vereinigung der Deutschen Glasindustrie (HVG), Offenbach am Main. Finanziert wurde das Projekt mit Mitteln des Bundesministers für Wirtschaft und Arbeit, Berlin. Wir danken allen genannten Institutionen

HVG-Mitteilung Nr Ergebnisse von Messungen mit dem Spektralradiometer

HVG-Mitteilung Nr Ergebnisse von Messungen mit dem Spektralradiometer HVG-Mitteilung Nr. 257 Spektrale Messung der im Verbrennungsraum von Glasschmelzwannen vorhandenen Strahlung im Rahmen des AiF-Forschungsvorhabens Nr. 8 ZN Spektral Teil 2: Messungen mit dem Spektralradiometer

Mehr

HVG-Mitteilung Nr. 2103

HVG-Mitteilung Nr. 2103 HVG-Mitteilung Nr. 2103 Optische Messung der Temperatur mit Pyrometern bei der Glasherstellung Teil 1: Bestimmung der Temperatur von feuerfesten Bauteilen im Verbrennungsraum von Glasschmelzwannen B. Fleischmann,

Mehr

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen

Physik für Maschinenbau. Prof. Dr. Stefan Schael RWTH Aachen Physik für Maschinenbau Prof. Dr. Stefan Schael RWTH Aachen Vorlesung 11 Brechung b α a 1 d 1 x α b x β d 2 a 2 β Totalreflexion Glasfaserkabel sin 1 n 2 sin 2 n 1 c arcsin n 2 n 1 1.0 arcsin

Mehr

HVG-Mitteilung Nr Optische Messung der Temperatur mit Pyrometern bei der Glasherstellung Teil 2: Grundlegendes zur Strahlungsthermometrie

HVG-Mitteilung Nr Optische Messung der Temperatur mit Pyrometern bei der Glasherstellung Teil 2: Grundlegendes zur Strahlungsthermometrie HVG-Mitteilung Nr. 2108 Optische Messung der Temperatur mit Pyrometern bei der Glasherstellung Teil 2: Grundlegendes zur Strahlungsthermometrie B. Fleischmann, Hüttentechnische Vereinigung der Deutschen

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

GASWÄRME- INSTITUT E.V. ESSEN. DVV- Fachausschuss "Grundlagen und Anwendung"

GASWÄRME- INSTITUT E.V. ESSEN. DVV- Fachausschuss Grundlagen und Anwendung DVV- Fachausschuss "Grundlagen und Anwendung" 29.11.2002 Verbesserung des Wärmeeintrages in die Glasschmelze unter Ausnutzung der spektralen Wärmestrahlung durch gezielte Brennereinstellungen zur Steigerung

Mehr

Wechselwirkung zwischen Licht und chemischen Verbindungen

Wechselwirkung zwischen Licht und chemischen Verbindungen Photometer Zielbegriffe Photometrie. Gesetz v. Lambert-Beer, Metallkomplexe, Elektronenanregung, Flammenfärbung, Farbe Erläuterungen Die beiden Versuche des 4. Praktikumstages sollen Sie mit der Photometrie

Mehr

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Lambert Beer sches Gesetz - Zerfall des Manganoxalations

Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1. Lambert Beer sches Gesetz - Zerfall des Manganoxalations Versuchsanleitungen zum Praktikum Physikalische Chemie für Anfänger 1 A 34 Lambert Beer sches Gesetz - Zerfall des Manganoxalations Aufgabe: 1. Bestimmen Sie die Wellenlänge maximaler Absorbanz λ max eines

Mehr

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen

Ferienkurs Experimentalphysik II Thermodynamik Grundlagen Ferienkurs Experimentalphysik II Thermodynamik Grundlagen Lennart Schmidt 08.09.2011 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Temperatur und Wärme............................ 3 1.2 0. und 1. Hauptsatz..............................

Mehr

4 Wärmeübertragung durch Temperaturstrahlung

4 Wärmeübertragung durch Temperaturstrahlung Als Wärmestrahlung bezeichnet man die in einem bestimmten Bereich der Wellenlängen und Temperaturen auftretende Energiestrahlung (elektromagnetische trahlung). Nach den Wellenlängen unterscheidet man:

Mehr

Die Farbstofflösung in einer Küvette absorbiert 90% des einfallenden Lichtes. Welche Extinktion hat diese Lösung? 0 0,9 1,9 keine der Aussagen ist richtig Eine Küvette mit einer wässrigen Farbstofflösung

Mehr

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung

Wärmestrahlung. Einfallende Strahlung = absorbierte Strahlung + reflektierte Strahlung Wärmestrahlung Gleichheit von Absorptions- und Emissionsgrad Zwei Flächen auf gleicher Temperatur T 1 stehen sich gegenüber. dunkelgrau hellgrau Der Wärmefluss durch Strahlung muss in beiden Richtungen

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Wellenlängen bei Strahlungsmessungen. im Gebiet der Meteorologie nm nm

Wellenlängen bei Strahlungsmessungen. im Gebiet der Meteorologie nm nm Die Solarstrahlung Die Sonne sendet uns ein breites Frequenzspektrum. Die elektromagnetische Strahlung der Sonne, die am oberen Rand der Erdatmosphäre einfällt, wird als extraterrestrische Sonnenstrahlung

Mehr

10. Thermodynamik Wärmetransport Wämeleitung Konvektion Wärmestrahlung Der Treibhauseffekt. 10.

10. Thermodynamik Wärmetransport Wämeleitung Konvektion Wärmestrahlung Der Treibhauseffekt. 10. 10.5 Wärmetransport Inhalt 10.5 Wärmetransport 10.5.1 Wämeleitung 10.5.2 Konvektion 10.5.3 Wärmestrahlung 10.5.4 Der Treibhauseffekt 10.5.1 Wärmeleitung 10.5 Wärmetransport an unterscheidet: Wärmeleitung

Mehr

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz

Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz Das plancksche Strahlungsgesetz 1 Historisch 164-177: Newton beschreibt Licht als Strom von Teilchen 1800 1900: Licht als Welle um 1900: Rätsel um die "Hohlraumstrahlung" Historisch um 1900: Rätsel um

Mehr

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System:

4 Thermodynamik mikroskopisch: kinetische Gastheorie makroskopisch: System: Theorie der Wärme kann auf zwei verschiedene Arten behandelt werden. mikroskopisch: Bewegung von Gasatomen oder -molekülen. Vielzahl von Teilchen ( 10 23 ) im Allgemeinen nicht vollständig beschreibbar

Mehr

Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre?

Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre? Spektren 1 Welche Strahlen werden durch die Erdatmosphäre abgeschirmt? Welche Moleküle beeinflussen wesentlich die Strahlendurchlässigkeit der Atmosphäre? Der UV- und höherenergetische Anteil wird fast

Mehr

9. Thermodynamik. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Thermodynamik Physik für E-Techniker

9. Thermodynamik. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Thermodynamik Physik für E-Techniker 9. Thermodynamik 9.5 Wärmetransport 9.5.1 Wärmeleitung 9.5.2 Konvektion 953 9.5.3 Wärmestrahlung 9.5.4 Der Treibhauseffekt 9.5 Wärmetransport Man unterscheidet: Wärmeleitung Energietransport durch Wechselwirkung

Mehr

9. Thermodynamik. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Thermodynamik Physik für E-Techniker

9. Thermodynamik. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Thermodynamik Physik für E-Techniker 9. Thermodynamik 9.5 Wärmetransport 9.5.1 Wärmeleitung 9.5.2 Konvektion 953 9.5.3 Wärmestrahlung 9.5.4 Der Treibhauseffekt 9.5 Wärmetransport Man unterscheidet: Wärmeleitung Konvektion Strahlung Energietransport

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 9. Vorlesung 13.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Grundpraktikum der Physik. Versuch Nr. 21 TEMPERATURSTRAHLUNG. Versuchsziel: Verifizierung von Strahlungsgesetzen.

Grundpraktikum der Physik. Versuch Nr. 21 TEMPERATURSTRAHLUNG. Versuchsziel: Verifizierung von Strahlungsgesetzen. Grundpraktikum der Physik Versuch Nr. 21 TEMPERATURSTRAHLUNG Versuchsziel: Verifizierung von Strahlungsgesetzen. 1 1. Einführung Neben Konvektion und Wärmeleitung stellt die Wärmestrahlung eine der wichtigsten

Mehr

A. Mechanik (18 Punkte)

A. Mechanik (18 Punkte) Prof. Dr. A. Hese Prof. Dr. G. v. Oppen Dipl.-Phys. G. Hoheisel Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik (18 Punkte) 1. Wie

Mehr

HVG-Mitteilung Nr Optische Emissionsspektroskopie an eisenhaltigen Gläsern (HVG/AiF-Forschungsvorhaben Nr BR)

HVG-Mitteilung Nr Optische Emissionsspektroskopie an eisenhaltigen Gläsern (HVG/AiF-Forschungsvorhaben Nr BR) HVG-Mitteilung Nr. 294 (HVG/AiF-Forschungsvorhaben Nr. 13653 BR) A. Baum, M. Müller, C. Rüssel, Otto-Schott-Institut für Glaschemie, Jena Vortrag im Fachausschuss III der DGG am 12. Oktober 25 in Würzburg

Mehr

Hochschule Düsseldorf University of Applied Sciences. 04. Oktober 2016 HSD. Solarenergie. Die Sonne

Hochschule Düsseldorf University of Applied Sciences. 04. Oktober 2016 HSD. Solarenergie. Die Sonne Solarenergie Die Sonne Wärmestrahlung Wärmestrahlung Lichtentstehung Wärme ist Bewegung der Atome Im Festkörper ist die Bewegung Schwingung Diese Schwingungen können selber Photonen aufnehmen und abgeben

Mehr

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung.

Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Thermodynamik 1. Typen der thermodynamischen Systeme. Intensive und extensive Zustandsgröße. Phasenübergänge. Ausdehnung bei Erwärmung. Nullter und Erster Hauptsatz der Thermodynamik. Thermodynamische

Mehr

9. Wärmelehre. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Wärmelehre Physik für Informatiker

9. Wärmelehre. 9.5 Wärmetransport Wärmeleitung Konvektion Der Treibhauseffekt. 9. Wärmelehre Physik für Informatiker 9. Wärmelehre 9.5 Wärmetransport 9.5.1 Wärmeleitung 9.5.2 Konvektion 953 9.5.3 Wärmestrahlung 9.5.4 Der Treibhauseffekt 9.5 Wärmetransport Man unterscheidet: Wärmeleitung Energietransport durch Wechselwirkung

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Medizinische Biophysik 6

Medizinische Biophysik 6 Eigenschaften des Lichtes Medizinische Biophysik 6 Geradlinige Ausbreitung Energietransport Licht in der Medizin. 1 Geometrische Optik Wellennatur Teilchennatur III. Teilchencharakter des Lichtes a) Lichtelektrischer

Mehr

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K

Temperatur. Temperaturmessung. Grundgleichung der Kalorik. 2 ² 3 2 T - absolute Temperatur / ºC T / K Temperatur Temperatur ist ein Maß für die mittlere kinetische Energie der Teilchen 2 ² 3 2 T - absolute Temperatur [ T ] = 1 K = 1 Kelvin k- Boltzmann-Konst. k = 1,38 10-23 J/K Kelvin- und Celsiusskala

Mehr

Reduktion des Strahlungstransports durch IR-Trübungsmittel

Reduktion des Strahlungstransports durch IR-Trübungsmittel Sitzung des AK-Thermophysik am 04./05. März 2010 Reduktion des Strahlungstransports durch IR-Trübungsmittel M. Rydzek, M.H. Keller, M. Arduini-Schuster, J. Manara Bayerisches Zentrum für Angewandte Energieforschung

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 24. Vorlesung EP 27. Wärmestrahlung rmestrahlung, Quantenmechanik V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung

Mehr

CMB Echo des Urknalls. Max Camenzind Februar 2015

CMB Echo des Urknalls. Max Camenzind Februar 2015 CMB Echo des Urknalls Max Camenzind Februar 2015 Lemaître 1931: Big Bang des expandierenden Universums Big Bang : Photonenhintergrund + Neutrinohintergrund 3-Raum expandiert: dx a(t) dx ; Wellenlängen

Mehr

Grundpraktikum der Physik. Versuch Nr. 21 TEMPERATURSTRAHLUNG. Versuchsziel: Verifizierung von Strahlungsgesetzen.

Grundpraktikum der Physik. Versuch Nr. 21 TEMPERATURSTRAHLUNG. Versuchsziel: Verifizierung von Strahlungsgesetzen. Grundpraktikum der Physik Versuch Nr. 21 TEMPERATURSTRAHLUNG Versuchsziel: Verifizierung von Strahlungsgesetzen. 1 1. Einführung Neben Konvektion und Wärmeleitung stellt die Wärmestrahlung eine der wichtigsten

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

4.6.5 Dritter Hauptsatz der Thermodynamik

4.6.5 Dritter Hauptsatz der Thermodynamik 4.6 Hauptsätze der Thermodynamik Entropie S: ds = dq rev T (4.97) Zustandsgröße, die den Grad der Irreversibilität eines Vorgangs angibt. Sie ist ein Maß für die Unordnung eines Systems. Vorgänge finden

Mehr

Bilder und Erläuterungen zur Vorlesung 12. Bremsstrahlung

Bilder und Erläuterungen zur Vorlesung 12. Bremsstrahlung Bilder und Erläuterungen zur Vorlesung 12 Bremsstrahlung Natürliche Strahlungsquellen/Strahlungsmechanismen: 1) Thermische Emission von (Fest-)Körpern ( 1cm) (Wärmestrahlung verteilt über viele Wellenlängen)

Mehr

Umweltphysik / Atmosphäre V1: Strahlungsbilanz Erde WS 2011/12

Umweltphysik / Atmosphäre V1: Strahlungsbilanz Erde WS 2011/12 Umweltphysik / Atmosphäre V1: Strahlungsbilanz Erde WS 2011/12 - System Erde- Sonne - Strahlungsgesetze - Eigenschaften strahlender Körper - Strahlungsbilanz der Erde - Albedo der Erde - Globale Strahlungsbilanz

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 5 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Farbstoffmoleküle In der Spektroskopie unterscheidet man zwei grundsätzliche Typen von Spektren: Emissionsspektren, wie sie

Mehr

PROBLEME AUS DER PHYSIK

PROBLEME AUS DER PHYSIK Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Allgemeines Gasgesetz. PV = K o T

Allgemeines Gasgesetz. PV = K o T Allgemeines Gasgesetz Die Kombination der beiden Gesetze von Gay-Lussac mit dem Gesetz von Boyle-Mariotte gibt den Zusammenhang der drei Zustandsgrößen Druck, Volumen, und Temperatur eines idealen Gases,

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas. Thermodynamik Prof. Dr. Norbert Hampp 1/9 1. Das Ideale Gas Thermodynamik Teilgebiet der klassischen Physik. Wir betrachten statistisch viele Teilchen. Informationen über einzelne Teilchen werden nicht gewonnen bzw.

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Kapitel 5: Die Strahlung der Treibstoff der Atmosphäre

Kapitel 5: Die Strahlung der Treibstoff der Atmosphäre Kapitel 5: Die Strahlung der Treibstoff der Atmosphäre Was ist Strahlung Strahlung besteht aus elektromagnetischen Welle Strahlungsarten unterscheiden sich durch die Wellenlänge https://de.wikipedia.org/wiki/elektromagnetisches_spektrum

Mehr

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie

Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie 7 Physikalische Grundlagen zur Wärmegewinnung aus Sonnenenergie Umwandlung von Licht in Wärme Absorptions- und Emissionsvermögen 7.1 Umwandlung von Licht in Wärme Zur Umwandlung von Solarenergie in Wärme

Mehr

Grundlagen der statistischen Physik und Thermodynamik

Grundlagen der statistischen Physik und Thermodynamik Grundlagen der statistischen Physik und Thermodynamik "Feuer und Eis" von Guy Respaud 6/14/2013 S.Alexandrova FDIBA 1 Grundlagen der statistischen Physik und Thermodynamik Die statistische Physik und die

Mehr

Hochschule Düsseldorf University of Applied Sciences. 29. September 2015 HSD. Solarenergie. Die Sonne

Hochschule Düsseldorf University of Applied Sciences. 29. September 2015 HSD. Solarenergie. Die Sonne Solarenergie Die Sonne Wärmestrahlung Wärmestrahlung Lichtentstehung Wärme ist Bewegung der Atome Im Festkörper ist die Bewegung Schwingung Diese Schwingungen können selber Photonen aufnehmen und abgeben

Mehr

Wellenlängenspektrum der elektromagnetischen Strahlung

Wellenlängenspektrum der elektromagnetischen Strahlung Wellenlängenspektrum der elektromagnetischen Strahlung Wellenlängen- / Frequenzabhängigkeit Richtungsabhängigkeit Eigenschaften der von Oberflächen emittierten Strahlung Einfallende Strahlung α+ ρ+ τ=

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher Wärmetransport

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher Wärmetransport Energiespeicher 03 - Wärmetransport Wärmetransport Konvektion Konduktion http://www.lkvbw.de/kamera_gmbh.html Strahlung http://www.youtube.com/watch?v=rl998krkppa Konvektion Konvektion - Materialfluss

Mehr

Wärmelehre/Thermodynamik. Wintersemester 2007

Wärmelehre/Thermodynamik. Wintersemester 2007 Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 007 Vladimir Dyakonov #15 am 01.0.007 Folien im PDF Format unter: http://www.physik.uni-wuerzburg.de/ep6/teaching.html Raum E143, Tel.

Mehr

Konvektion. Prinzip: Bei Konvektion ist Wärmetransport an Materialtransport. Beispiel: See- und Landwind

Konvektion. Prinzip: Bei Konvektion ist Wärmetransport an Materialtransport. Beispiel: See- und Landwind Konvektion Fluides Medium dehnt sich durch Erwärmung lokal aus erwärmte Stoffmenge hat kleinere Dichte steigt auf und wird durch kälteren Stoff ersetzt Konvektionskreislauf Prinzip: Warme Flüssigkeit steigt

Mehr

Anwendung der Verdünnte Verbrennung für regenerativ beheizte Glasschmelzwannen Eine Möglichkeit zur NO x -Reduzierung

Anwendung der Verdünnte Verbrennung für regenerativ beheizte Glasschmelzwannen Eine Möglichkeit zur NO x -Reduzierung Anwendung der Verdünnte Verbrennung für regenerativ beheizte Glasschmelzwannen Eine Möglichkeit zur NO x -Reduzierung Dr.-Ing. Anne Giese, Prof. Dr.-Ing. habil. Klaus Görner 24. Deutscher Flammentag Postersession

Mehr

Seminar: Photometrie

Seminar: Photometrie Seminar: Photometrie G. Reibnegger und W. Windischhofer (Teil II zum Thema Hauptgruppenelemente) Ziel des Seminars: Theoretische Basis der Photometrie Lambert-Beer sches Gesetz Rechenbeispiele Literatur:

Mehr

Basiskenntnistest - Chemie

Basiskenntnistest - Chemie Basiskenntnistest - Chemie 1.) Welche Aussage trifft auf Alkohole zu? a. ) Die funktionelle Gruppe der Alkohole ist die Hydroxygruppe. b. ) Alle Alkohole sind ungiftig. c. ) Mehrwertige Alkohole werden

Mehr

AiF-Forschungsvorhabens Nr. 80ZN Spektral

AiF-Forschungsvorhabens Nr. 80ZN Spektral AiF-Forschungsvorhabens Nr. 80ZN Spektral Verbesserung des Wärmeeintrags in die Glasschmelze unter Ausnutzung der spektralen Wärmestrahlung durch gezielte Brennereinstellungen zur Steigerung der Glasqualität

Mehr

Wärmelehre Wärme als Energie-Form

Wärmelehre Wärme als Energie-Form Wärmelehre Wärme als Energie-Form Joule's Vorrichtung zur Messung des mechanischen Wärme-Äquivalents alte Einheit: 1 cal = 4.184 J 1 kcal Wärme erwärmt 1 kg H 2 O um 1 K Wird einem Körper mit der Masse

Mehr

K1: Lambert-Beer`sches Gesetz

K1: Lambert-Beer`sches Gesetz K1: Lambert-Beer`sches Gesetz Einleitung In diesem Versuch soll die Entfärbung von Kristallviolett durch atronlauge mittels der Absorptionsspektroskopie untersucht werden. Sowohl die Reaktionskinetik als

Mehr

Thermodynamik (Wärmelehre) III kinetische Gastheorie

Thermodynamik (Wärmelehre) III kinetische Gastheorie Physik A VL6 (07.1.01) Thermodynamik (Wärmelehre) III kinetische Gastheorie Thermische Bewegung Die kinetische Gastheorie Mikroskopische Betrachtung des Druckes Mawell sche Geschwindigkeitserteilung gdes

Mehr

Medizinische Biophysik Licht in der Medizin. Temperaturstrahlung, Lumineszenz

Medizinische Biophysik Licht in der Medizin. Temperaturstrahlung, Lumineszenz V. Lichtemission Medizinische Biophysik Licht in der Medizin. Temperaturstrahlung, Lumineszenz 6. Vorlesung Lichtquellen warmes Licht kaltes Licht kontinuierliches Spektrum Linien- oder Bandenspektrum

Mehr

Wind/Strömung September Wind und Strömung... 2

Wind/Strömung September Wind und Strömung... 2 Wind/Strömung Inhalt Wind und Strömung... 2 Strömung... 2 Strömungsfeld, stationäre Strömung... 2 Reibungsfreie Strömung... 2 Laminare Strömung... 2 Beaufort... 2 Temperaturstrahlung... 3 Strahlungsgesetze...

Mehr

Versuch A06: Stefan-Boltzmannsches Strahlungsgesetz

Versuch A06: Stefan-Boltzmannsches Strahlungsgesetz Versuch A06: Stefan-Boltzmannsches Strahlungsgesetz 14. März 2014 I Lernziele Plancksche Strahlungsformel Stefan-Boltzmannsches Strahlungsgesetz Wiensches Verschiebungsgesetz II Physikalische Grundlagen

Mehr

Einführung in die Astronomie und Astrophysik I

Einführung in die Astronomie und Astrophysik I Einführung in die Astronomie und Astrophysik I Teil 8 Jochen Liske Fachbereich Physik Hamburger Sternwarte jochen.liske@uni-hamburg.de Astronomische Nachricht der Woche Astronomische Nachricht der Woche

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen

1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen IV. Wärmelehre 1. Wärme und der 1. Hauptsatz der Thermodynamik 1.1. Grundlagen Historisch: Wärme als Stoff, der übertragen und in beliebiger Menge erzeugt werden kann. Übertragung: Wärmezufuhr Joulesche

Mehr

Max Planck: Das plancksche Wirkungsquantum

Max Planck: Das plancksche Wirkungsquantum Max Planck: Das plancksche Wirkungsquantum Überblick Person Max Planck Prinzip schwarzer Strahler Klassische Strahlungsgesetze Planck sches Strahlungsgesetz Beispiele kosmische Hintergrundstrahlung Sternspektren

Mehr

Photom etrieren Photometrie Fraunhofer sche Linien

Photom etrieren Photometrie Fraunhofer sche Linien 17 Photometrieren Die Spektroskopie, auch Spektralphotometrie, Spektrophotometrie oder einfach nur Photometrie genannt, umfasst eine Anzahl experimenteller Messverfahren, die generell die Wechselwirkung

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 8 VL8. VL9. VL10. Das Wasserstoffatom in der klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Planungsblatt Physik für die 3B

Planungsblatt Physik für die 3B Planungsblatt Physik für die 3B Woche 20 (von 15.01 bis 19.01) Hausaufgaben 1 Bis Montag 22.01: Lerne die Notizen von Woche 20! Kernbegriffe dieser Woche: Energie, Leistung, Wärme, Wärmeleitung, Konvektion,

Mehr

A. Mechanik (20. Punkte. Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: Diplomvorprüfung in Physik für Elektrotechniker am

A. Mechanik (20. Punkte. Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: Diplomvorprüfung in Physik für Elektrotechniker am Dr. S. Kröger Prof. Dr. G. von Oppen Prof. Dr. A. Hese Dipl.-Phys. G. Hoheisel Dipl.-Phys. H. Valipour Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik

Mehr

Übersicht. 1. Geschichte der Thermografie 2. Messtechnische Grundlagen 3. Welche Ergebnisse können erwartet werden 4.

Übersicht. 1. Geschichte der Thermografie 2. Messtechnische Grundlagen 3. Welche Ergebnisse können erwartet werden 4. 1. Geschichte der Thermografie 2. Messtechnische Grundlagen 3. Welche Ergebnisse können erwartet werden 4. Bildbeispiele Übersicht 5. Wann sollte die Wärmebildmessung erfolgen und wie sollte das Haus vorbereitet

Mehr

Spektroskopie im sichtbaren und UV-Bereich

Spektroskopie im sichtbaren und UV-Bereich Spektroskopie im sichtbaren und UV-Bereich Theoretische Grundlagen Manche Verbindungen (z.b. Chlorophyll oder Indigo) sind farbig. Dies bedeutet, dass ihre Moleküle sichtbares Licht absorbieren. Durch

Mehr

Kameras im thermischen Infrarot zur Messung von Temperatur und Wärmeverlusten: Grundlagen, Möglichkeiten, Grenzen

Kameras im thermischen Infrarot zur Messung von Temperatur und Wärmeverlusten: Grundlagen, Möglichkeiten, Grenzen Energie Apero Moosseedorf, 12. Dezember 2009 Kameras im thermischen Infrarot zur Messung von Temperatur und Wärmeverlusten: Grundlagen, Möglichkeiten, Grenzen INSTITUTE OF APPLIED PHYSICS OESCHGER CENTRE

Mehr

Simulation von Wolkenwachstum und Strahlungstransfer in der Atmosphäre. 18. November 2009 David Neubauer

Simulation von Wolkenwachstum und Strahlungstransfer in der Atmosphäre. 18. November 2009 David Neubauer Simulation von Wolkenwachstum und Strahlungstransfer in der Atmosphäre 18. November 2009 David Neubauer 1 Motivation Streuung und Absorption von Strahlung durch atmosphärische Gase, Aerosolpartikel und

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Klausurtermin: Nächster Klausurtermin: September :15-11:15

Klausurtermin: Nächster Klausurtermin: September :15-11:15 Klausurtermin: 10.02.2017 Gruppe 1: 9:15 11:15 Uhr Gruppe 2: 11:45-13:45 Uhr Nächster Klausurtermin: September 2017 9:15-11:15 Fragen bitte an: Antworten: t.giesen@uni-kassel.de direkt oder im Tutorium

Mehr

22. April Energiespeicher Wärmetransport

22. April Energiespeicher Wärmetransport Energiespeicher 03 - Wärmetransport Wärmetransport Konvektion Konduktion http://www.lkvbw.de/kamera_gmbh.html Strahlung http://www.youtube.com/watch?v=rl998krkppa Konvektion Konvektion - Materialfluss

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Betreuer Andreas Branding - 1 - Theorie Zur Erläuterung

Mehr

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand

1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand 1.2 Zustandsgrößen, Zustandsänderungen, Gleichgewichtszustand Wie erfolgt die Beschreibung des Zustands eines Systems? über Zustandsgrößen (makroskopische Eigenschaften, die den Zustand eines Systems kennzeichnen)

Mehr

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik

23. Vorlesung EP. IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik 23. Vorlesung EP IV Optik 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Strahlung: Stoff der Optik, Wärme-, Elektrizitätslehre u. Quantenphysik Photometrie

Mehr

Erweiterung einer Apparatur zur winkelabhängigen Bestimmung des Emissionsgrades bei hohen Temperaturen

Erweiterung einer Apparatur zur winkelabhängigen Bestimmung des Emissionsgrades bei hohen Temperaturen Bayerisches Zentrum für Angewandte Energieforschung e.v. Erweiterung einer Apparatur zur winkelabhängigen Bestimmung des Emissionsgrades bei hohen Temperaturen M. Rydzek, T. Stark, M. Arduini-Schuster,

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

Inkohärente Lichtquellen NIR-Strahlungsquellen

Inkohärente Lichtquellen NIR-Strahlungsquellen Inkohärente Lichtquellen NIR-Strahlungsquellen Marc Scheffer Physikalische Technik 30.04.2014 Inhalt 1. Historischer Hintergrund der IR-Strahlung 2. Einteilung der Infrarotstrahlung 3. Arten von NIR-Strahlungsquellen

Mehr

Strahlungsgesetze. Stefan-Boltzmann Gesetz. Wiensches Verschiebungsgesetz. Plancksches Strahlungsgesetz

Strahlungsgesetze. Stefan-Boltzmann Gesetz. Wiensches Verschiebungsgesetz. Plancksches Strahlungsgesetz Tell me, I will forget Show me, I may remember Involve me, and I will understand Chinesisches Sprichwort Strahlungsgesetze Stefan-Boltzmann Gesetz Wiensches Verschiebungsgesetz Plancksches Strahlungsgesetz

Mehr

Versuch: Sieden durch Abkühlen

Versuch: Sieden durch Abkühlen ersuch: Sieden durch Abkühlen Ein Rundkolben wird zur Hälfte mit Wasser gefüllt und auf ein Dreibein mit Netz gestellt. Mit dem Bunsenbrenner bringt man das Wasser zum Sieden, nimmt dann die Flamme weg

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

2 Grundbegriffe der Thermodynamik

2 Grundbegriffe der Thermodynamik 2 Grundbegriffe der Thermodynamik 2.1 Thermodynamische Systeme (TDS) Aufteilung zwischen System und Umgebung (= Rest der Welt) führt zu einer Klassifikation der Systeme nach Art der Aufteilung: Dazu: adiabatisch

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

mit Mg Wiederholung: Barometrische Höhenformel Annahmen: Resultate: Hydrostatische Atmosphäre Temperaturprofil bekannt Ideales Gas

mit Mg Wiederholung: Barometrische Höhenformel Annahmen: Resultate: Hydrostatische Atmosphäre Temperaturprofil bekannt Ideales Gas Übersicht VL Datum Thema Dozent(in) 1 01.11.2011 Einführung & Vert. Struktur der Atmos. Reuter 2 08.11.2011 Strahlung I Reuter 3 15.11.2011 Strahlung II Reuter 4 22.11.2011 Strahlung III Reuter 8 29.11.2011

Mehr

27. Wärmestrahlung. rmestrahlung, Quantenmechanik

27. Wärmestrahlung. rmestrahlung, Quantenmechanik 25. Vorlesung EP 27. Wärmestrahlung V. STRAHLUNG, ATOME, KERNE 27. Wä (Fortsetzung) Photometrie Plancksches Strahlungsgesetz Welle/Teilchen Dualismus für Strahlung und Materie Versuche: Quadratisches Abstandsgesetz

Mehr

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen)

Versuch Nr.53. Messung kalorischer Größen (Spezifische Wärmen) Versuch Nr.53 Messung kalorischer Größen (Spezifische Wärmen) Stichworte: Wärme, innere Energie und Enthalpie als Zustandsfunktion, Wärmekapazität, spezifische Wärme, Molwärme, Regel von Dulong-Petit,

Mehr

8.1. Kinetische Theorie der Wärme

8.1. Kinetische Theorie der Wärme 8.1. Kinetische Theorie der Wärme Deinition: Ein ideales Gas ist ein System von harten Massenpunkten, die untereinander und mit den Wänden elastische Stöße durchühren und keiner anderen Wechselwirkung

Mehr