Höhere Experimentalphysik II
|
|
|
- Steffen Weiß
- vor 6 Jahren
- Abrufe
Transkript
1 Höhere Experimentalphysik II Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 2. Teil 6. Vorlesung
2 Letzte Woche Plasmaerzeugung mit Hochfrequenz HF-Einkopplung Experimentiersession mit HF- Ionenquelle = ω e2 p n e ϵ 0 m e λ D= ϵ 0 k B T e n e e 2
3 Plasmaparameter Wann ist ein Plasma ein Plasma? Anzahl der Partikel in der Debye-Kugel nλ D 1 Debye-Länge ist kleiner als die Ausdehnung des Plasmas λ D < L Zeitlängen sind größer als T > 2 /ω pe Quasineutralität z n i = n e
4 Herleitung: Debye-Länge
5 Debye-Länge Mit einer Abschätzung des Potentials für eine Ladung innerhalb des quasineutralen Plasmas lässt sich die Debye- Länge fnden ε 0 Dielektrizitätskonstante k B Boltzmann-Konstante T e Elektronentemperatur λ D= ϵ 0 k B T e n e e 2 n e Teilchendichte der Elektronen
6 Plasma-Frequenz In welcher Zeit spielen sich die Abschirm-Efekte ab? Wenn äußere Einfüsse in das Plasma hineingetragen werden, wie schnell reagiert das Plasma darauf? Um die Anpassungsgeschwindigkeit des Plasmas zu beschreiben, wird die Plasmafrequenz verwendet: = ω e2 p n e ϵ 0 m e
7 Bohm-Kriterium Im Randbereich des Plasmas zu einer geerdeten Metalloberfäche gibt es eine Zone in der Elektronen aufgrund der höheren mittleren Geschwindigkeit (gleiche Temperatur, geringere Masse) statistisch gesehen häufger verloren gehen. Dies führt zu einer positiven Raumladung in dieser Randschicht.
8 Bohm-Kriterium Um die Quasineutralität im Plasma zu erhalten baut sich ein positives Potential im Plasma auf. Dies reduziert die Elektronenverluste an den Wänden, sodass sich ein Gleichgewicht zwischen Elektronen und Ionen einstellt. Die Potentialdiferenz zwischen dem Inneren des Plasmas und der Außenwelt nennt man Plasmapotential. Ein in das Plasma isoliert aufgehängtes Stück Draht läd sich bis auf das Plasmapotential auf es floatea. Dies kann man mit der Langmuir- Sonde messen, wenn man sie isoliert an ein Voltmeter anschließt.
9 Bohm-Kriterium Um die Quasineutralität im Plasma zu erhalten baut sich ein positives Potential im Plasma auf. Dies reduziert die Elektronenverluste an den Wänden, sodass sich ein Gleichgewicht zwischen Elektronen und Ionen einstellt. Die Potentialdiferenz zwischen dem Inneren des Plasmas und der Außenwelt nennt man Plasmapotential. Ein in das Plasma isoliert aufgehängtes Stück Draht läd sich bis auf das Plasmapotential auf es floatea. Dies kann man mit der Langmuir- Sonde messen, wenn man sie isoliert an ein Voltmeter anschließt.
10 Bohm-Kriterium Die Bohm-Ungleichung besagt, dass die Ionengeschwindigkeit in der Plasma-Sheath folgende Bedingung erfüllen muss v i> kt e m i Am Übergang von Pre-sheath zur Sheath müssen die Ionen mindestens die Bohm-Geschwindigkeit haben: v Bohm= kt e m i Daraus ergibt sich der Potentialabfall in der Presheath zu Δ Φ Presheth = kt e 2e.
11 Experiment von letzter Woche Hochfrequenz eingekoppelt in einen Vakuumrezipienten sorgt für die Zündung eines Plasmas M eßwerterfa ssung & Auswertung Langm uir - Sonde C:\ Kera m ikfe nster Druc kmessung & - rege lung Sp annung - sve rso rgung F LS HF - Sender Spule HF - Po tentia l Ho c hfreq ue nzeinkop plung Va kuum p um pe
12 (HF-)Plasmaerzeugung Erzeugung eines quasineutralen Plasmas durch Stoßionisation q n i i n e Bereitstellung freier Atome im Plasmagenerator durch: Einlassen eines Arbeitsgases Schmelzen und Verdampfen Sputtern von Feststofen Bereitstellung freier Elektronen durch: Glühemission Photoionisation Funkenentladung Bereitstellung der Ionisationsenergie durch: Beschleunigung der Elektronen HF-Heizung E x B-Drift
13 Elektronenbewegung im HF-Plasma Im Experiment war die Elektronenbewegung im Plasma erkennbar als die Langmuir-Sonde am Oszi angeschlossen war: Fall 1: HF eingekoppelt aber kein Plasma gezündet kein Signal am Oszi zu sehen Fall 2: HF eingekoppelt und Plasma war gezündet Sinus-Signal am Oszi zu sehen
14 Elektronenbewegung im HF-Plasma Im Fall 1 kann die Langmuir-Sonde kein HF-Signal empfangen, da die HF-Welle nicht in die Sonde einkoppelt: die Wellenlänge ist nicht angepasst (λ für 13,6 MHz: 22 m) Im Fall 2 ist das Plasma gezündet und die HF-Welle sorgt für Dichtewellen von Elektronen im Plasma die die Langmuir- Sonde beeinfussen. Quelle:
15 Langmuirsonae Ein in einer isolierenden Halterung verlaufender Draht wird an der Spitze der Isolierung auf ein Metallplättchen geführt, hier eine Kupferscheibe. Der Draht wird an geerdetes Netzgerät angeschlossen.
16 Langmuirsonae Um die Sondenoberfäche verändert sich das Plasma abhängig von der angelegten Spannung der Sonde. Um das Plasma zu charakterisieren wird ein Spannungsbereich durchfahren und der jeweilige Netto-Strom von/zur Sondenoberfäche aufgezeichnet.
17 Kennlinie aer Langmuir-Sonae Die Bereiche sind wie folgt benannt, wenn die x-achse von positiver zu negativer Spannung verläuft: A Ionensättigungsbereich B (Elektronen)anlaufgebiet C Floating-Potential D (Elektronen)anlaufgebiet E Plasmapotential F Elektronensättigungsbereich Aus dem Anstieg der Kurve lässt sich die Plasmatemperatur T e und die Elektronendichte n e bestimmen.
18 Variation von λ frei una n e Im Experiment wurden durch Einlassen von Gas die Randbedingungen geändert. Durch den höheren Druck wurde die mittlere freie Weglänge verringert und die Elektronendichte n e erhöht. Durch die häufgeren Stöße verrigert sich ebenso T e. Die Debye-Länge die im Experiment gut an der Spähre um die Langmuir-Sonde erkennbar war wurde dadurch beeinfusst: T e n e / m -3 λ D 100 ev ,43 mm 70 ev ,21 mm. 70 ev ,11 mm
19 Einschluss: Cusp-Konfguration una Magnetische Flasche Im Experiment waren zwei Spulen vorhanden, die in zwei Konfgurationen verschaltet werden können. Magnetfeld manipuliert die Beweglichkeit der Elektronen
20 Schönes Wochenenae!
Atomphysik für Studierende des Lehramtes
Atomphysik für Studierende des Lehramtes Teil 5 Elektronenladung und Elektronenmasse elektrische Ladungen in magnetischen Feldern aus der Lorentz-Kraft (v x B) folgt eine Kreisbewegung der elektrischen
Höhere Experimentalphysik II
Höhere Experimentalphysik II Institut für Angewandte Physik 2. Teil 4. Vorlesung 04.05.2018 Temperaturbestimmungen Pirani-Efekt Feldemission Geißler-Röhre Hittorf-Röhre Quelle: Ostbayerische Technische
Höhere Experimentalphysik 1
Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 3. Vorlesung 10.11.2017 Zusammenfassung der letzten Vorlesung Ladungen können auch bewegt werden dann aber gilt eine gänzlich andere
Versuch IC Plasmadiagnostik mit einer (kalten) Langmuirsonde
: Tag der Versuchsdurchführung: 16.6.2008 Spee Cornelia [email protected] Klaus Reitberger csaf@[email protected] Versuch IC Plasmadiagnostik mit einer (kalten) Langmuirsonde 1. Zusammenfassung Plasmen
Übungen zu Experimentalphysik 2 für MSE
Physik-Department LS für Funktionelle Materialien SS 28 Übungen zu Experimentalphysik 2 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Sebastian Grott, Julian Heger, Dr. Neelima Paul,
V20: Elektrische Sonden im Plasma
Fortgeschrittenen Praktikum im WS 2013/2014 Universität Stuttgart Protokoll zum Versuch V20: Elektrische Sonden im Plasma Robert Sittig, Sebastian Weber, Henri Menke 4. und 11. November 2013 Zusammenfassung
Plasmadiagnostig mittels Langmuirsonden
Plasmadiagnostig mittels Langmuirsonden Oktober 2010 Im Versuch sollen u.a. Plasmaparameter mittels einer Langmuirsonde bestimmt werden. Die vorliegende Anleitung dient lediglich als Ramenliteratur und
Vorbereitung: Franck-Hertz-Versuch. Christine Dörflinger und Frederik Mayer, Gruppe Do-9 3. Mai 2012
Vorbereitung: Franck-Hertz-Versuch Christine Dörflinger und Frederik Mayer, Gruppe Do-9 3. Mai 2012 1 Inhaltsverzeichnis 0 Allgemeines 3 1 Aufgabe 1 3 1.1 Versuchsaufbau.............................................
Physik und Technik von Ionenquellen
Physik und Technik von Ionenquellen 1) Einführung Zur Physik der Ionenquellen gehören: Produktion geladener Teilchen (Elektronen, Ionen) Erzeugung von Plasmen Ionisation von Atomen (Elektronenstoßionisation,
Quantitative Bestimmung der massenaufgelösten Ionenflüsse aus Wasserstoff-Argon-Plasmen
Quantitative Bestimmung der massenaufgelösten Ionenflüsse aus Wasserstoff-Argon-Plasmen Maik Sode, Th. Schwarz-Selinger, W. Jacob, D. Wünderlich, U. Fantz Arbeitsgruppe Reaktive Plasmaprozesse, Bereich
Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )
Aufgabe: Schwingung An eine Stahlfeder wird eine Kugel mit der Masse 500g gehängt. Federkraft: F 1 -b (b 50 N/m) Gravitationskraft: F mg (g 9,8 m/s ) m 500g F ma W 1 F( ) d W kin 1 mv b ( t + ϕ ) Acos(
8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten?
Staatliche Schule für technische Assistenten in der Medizin Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main Testklausur Physik 1. 10 2 10 3 =... 2. 4 10 3 2 10 3=... 3. 10 4 m= cm 4.
Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/
Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in
Höhere Experimentalphysik 2
Höhere Experimentalphysik 2 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 13. Vorlesung 28.04.2017 Ankündigung Die erste Übung finden am Montag, den 08.05.16 in im Raum 02.304 statt.
Physik der Halbleitertechnologie
Physik der Halbleitertechnologie III: DC-Plasmen Gerhard Franz ISBN 978-3-943872-03-3 Kompetenzzentrum Nanostrukturtechnik Hochschule München http://www.gerhard-franz.org Gerhard Franz: Plasmakurs WS 2013/14
Fortgeschrittenen Praktikum I Teil A. Langmuir-Sonde. Nils Thielke und Robert Brauer. 8. November 2012
Fortgeschrittenen Praktikum I Teil A Langmuir-Sonde Nils Thielke und Robert Brauer 8. November 2012 Wir erklären, dass wir dieses Protokoll eigenhändig anhand des angehängten Messprotokolls und der angegebenen
Bedienungs- und Experimentieranleitung
Bedienungs- und Experimentieranleitung 1. Aufbau Mit der Röhre kann die spezifische Elektronenladung e/m quantitativ bestimmt werden. In einem kugelförmigen Glaskolben befindet sich ein Elektronenstrahlsystem,
Protokoll zum Versuch: Thermische Elekronenemission
Protokoll zum Versuch: Thermische Elekronenemission Nils Brüdigam Fabian Schmid-Michels Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 05.12.2006 Inhaltsverzeichnis 1 Ziel des Versuchs
Konzept für einen induktiv gekoppelten HF-Plasmabrückenneutralisator
Konzept für einen induktiv gekoppelten HF-Plasmabrückenneutralisator Frank Scholze, Horst Neumann Leibniz-Institut für Oberflächenmodifizierung e.v.; Permoserstr.5; 438 Leipzig Konstruktion und Design
Höhere Experimentalphysik 1
Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 2. Vorlesung 04.11.2016 Was bisher geschah Was ist eine Punktladung und wie misst man sie? Das elektrische
Aufgabe 1 ( 3 Punkte)
Elektromagnetische Felder und Wellen: Klausur 2016-2 1 Aufgabe 1 ( 3 Punkte) Welche elektrische Feldstärke benötigt man, um ein Elektron (Masse m e, Ladung q = e) im Schwerefeld der Erde schweben zu lassen?
A 1. + r 2 ) 2. Stoßquerschnitt und mittlere freie Weglänge
Stoßquerschnitt und mittlere freie Weglänge Im idealen Gas findet zwischen zwei Teilchen ein Stoß statt, wenn der Abstand der Fluggeraden den beiden Teilchen, der Stoßparameter b, kleiner ist als die Summe
Induktiv gekoppelter HFPlasmabrückenneutralisator
Induktiv gekoppelter HFPlasmabrückenneutralisator Frank Scholze, Horst Neumann e.v.; Permoserstr.15; 04318 Leipzig Einleitung, Vorarbeiten erste Ergebnisse Zusammenfassung, Ausblick Gefördert durch DLR
Ferienkurs Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung
Fortgeschrittenen Praktikum, SS 2008
selektive Reflexionsspektroskopie (SRS) Fortgeschrittenen Praktikum, SS 2008 Alexander Seizinger, Michael Ziller, Philipp Buchegger, Tobias Müller Betreuer: Reinhardt Maier Tübingen, den 3. Juni 2008 1
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #35 am 28.06.2007 Vladimir Dyakonov Leitungsmechanismen Ladungstransport in Festkörpern Ladungsträger
17. Vorlesung EP. III. Elektrizität und Magnetismus
17. Vorlesung EP III. Elektrizität und Magnetismus 17. Elektrostatik (Fortsetzung) Spannung U Kondensator, Kapazität C Influenz 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen) Stromkreise
Klausur Experimentalphysik II
Universität Siegen Naturwissenschaftlich-Technische Fakultät Department Physik Sommer Semester 2018 Prof. Dr. Mario Agio Klausur Experimentalphysik II Datum: 25.9.2018-10 Uhr Name: Matrikelnummer: Einleitung
EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG
EINFÜHRUNG IN DIE PLASMAPHYSIK UND IHRE TECHNISCHE ANWENDUNG Herausgegeben von GUSTAV HERTZ und ROBERT ROMPE 2., erweiterte Auflage Mit 145 Abbildungen und 10 Tabellen AKADEMIE-VERLAG BERLIN 1968 INHALTSVERZEICHNIS
Elektrodynamik eines Plasmas
Elektrodynamik eines Plasmas Elektrodynamik eines Plasmas Klassifikation von Plasmen Klassisches Plasma / Quantenplasma nicht-relativistisches / relativistisches Plasma Schwach / stark wechselwirkendes
Klausur. Physik für Pharmazeuten (PPh) SS Juli 2006
Klausur Physik für Pharmazeuten (PPh) SS06 31. Juli 2006 Name: Matrikel-Nr.: Fachrichtung: Semester: Bearbeitungszeit: 90 min. Bitte nicht mit Bleistift schreiben! Nur Ergebnisse auf den Aufgabenblättern
Einführung in die Plasmaphysik. Hochfrequenz-geheizte Niedertemperaturplasmen. Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik D Garching
Einführung Plasmaphysik HF-Niedertemperaturplasmen Einführung in die Plasmaphysik Hochfrequenz-geheizte Niedertemperaturplasmen Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik D-85740 Garching Einführung
Nanoplasma. Nano(cluster)plasmen
Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik
18. Vorlesung III. Elektrizität und Magnetismus
18. Vorlesung III. Elektrizität und Magnetismus 17. Elektrostatik Zusammenfassung Nachtrag zur Influenz: Faraday-Käfig 18. Elektrischer Strom (in Festkörpern, Flüssigkeiten und Gasen; elektrische Stromkreise)
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 2 - Angabe Technische Universität München 1 Fakultät für Physik 1 Draht Strom fließt durch einen unendlich langen Draht mit Radius a. Dabei ist die elektrische
Physik mit einer Prise Mathe
Rainer Dohlus Physik mit einer Prise Mathe Basiswissen für Studierende technischer Fachrichtungen 4 } Springer Vieweg egal aber 1 Mechanik 1 11 Wie es sich bewegt warum 1 111 Zwei unmittelbar im Alltag
Experimentalphysik 2
Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008 Inhaltsverzeichnis 1 Übungsaufgaben 2 1.1 Übungsaufgaben....................................
Höhere Experimentalphysik 2
Höhere Experimentalphysik 2 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 14. Vorlesung 12.05.2017 Was bisher geschah Erzeugung von Plasmen und deren Einschluss Bewegung von Teilchen
Zulassungstest zur Physik II für Chemiker
SoSe 2016 Zulassungstest zur Physik II für Chemiker 03.08.16 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T TOT.../4.../4.../4.../4.../4.../4.../4.../4.../4.../4.../40 R1 R2 R3 R4 R TOT.../6.../6.../6.../6.../24
Schriftliche Prüfung zur Feststellung der Hochschuleignung
Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:
Physik für Studierende der Biologie, Chemie, Biochemie, Geowissenschaften und anderer Fächer im Wintersemester 2017/2018
Physik für Studierende der Biologie, Chemie, Biochemie, Geowissenschaften und anderer Fächer im Wintersemester 2017/2018 Übungsblatt 9 Rückgabe: Di 23.1. / Do 25.1. / Fr 26.1. in der jeweiligen Übungsgruppe
Q 2 - e/m Bestimmungen
15.1.09 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: Q - e/m Bestimmungen 1. Grundlagen Erzeugen von Elektronenstrahlen (Fadenstrahlrohr); Messung der spez. Ladung e/m durch Ablenkung eines Elektronenstrahles
Lösungen I km/h. 2. (a) Energieerhaltung (b) Impulserhaltung
Lösungen I.1 1. 33 km/h. (a) Energieerhaltung (b) Impulserhaltung Lösungen II.1 1.1 T ~ a 3 T nimmt mit a streng monoton zu; wenn a zwischen den Werten für Mars und Jupiter liegt, dann muss also auch T
Elektromagnetische Felder und Wellen
Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:
A. Erhaltungsgrößen (17 Punkte) Name: Vorname: Matr. Nr.: Studiengang: ET Diplom ET Bachelor TI WI. Platz Nr.: Tutor:
Prof. Dr. O. Dopfer Prof. Dr. A. Hese Priv. Doz. Dr. S. Kröger Cand.-Phys. A. Kochan Technische Universität Berlin A. Erhaltungsgrößen (17 Punkte) 1. Unter welcher Bedingung bleiben a) der Impuls b) der
Elektromagnetische Feldtheorie 1
Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Wintersemester 08/09 Elektromagnetische Feldtheorie 1 Mittwoch, 04. 03. 2009, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript
Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?
Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?
Protokoll. Versuch 21. Paschengesetz. F-Praktikum Institut für Angewandte Physik. Versuchsdurchführung: Montag, 01.November 2010
F-Praktikum Institut für Angewandte Physik Protokoll Versuch 21 Paschengesetz Intsar A. Bangwi Physik Bachelor 5.Semester Sven Köppel Physik Bachelor 5.Semester Versuchsdurchführung: Montag, 01.November
Klausur zur Vorlesung Experimentalphysik II (SS 2018)
Universität Siegen Sommersemester 2018 Naturwissenschaftlich-Technische Fakultät Prof. Dr. Mario Agio Department Physik Klausur zur Vorlesung Experimentalphysik II (SS 2018) Datum: Mittwoch, 22.08.2018,
Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur
Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche
Übungen zum Kompaktkurs der Experimentalphysik
Übungen zum Kompaktkurs der Experimentalphysik Übungsblatt 3: Elektrizitätslehre, Akustik und Optik 1. Aufgabe: Elektrisches Feld Ein Elektron mit Masse m e = 9, 1 10 31 kg und Ladung e = 1, 6 10 19 C
1 Physikalische Grundbegriffe
1 Physikalische Grundbegriffe Um die Voraussetzungen der physikalischen Kenntnisse in den nächsten Kapiteln zu erfüllen, werden hier die dafür notwendigen Grundbegriffe 1 wie das Atom, das Proton, das
Physik VI Plasmaphysik
Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
Maturaprüfung 2012 PHYSIK
Maturaprüfung 2012 PHYSIK Erlaubtes Material: Taschenrechner, Wörterbuch Deutsch-Französisch, Formelsammlung. Vorschriften: Zur Verfügung stehende Zeit: 3h00. Rechtfertigen Sie alle Ihre Antworten. Geben
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2014-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Gesamtpunktzahl:
TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern
TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine
I 1 R Die Maschenregel Beispiel: Wheatston sche Brücke. I ges
Netzwerke und Kirchhoff sche egeln Wie kann man Spannungen und Ströme in einem beliebig komplizierten Netzwerk bestimmen? Beispiel: 2 3 U U 2 4 5 6 7 Zur Lösung derartiger Probleme benutzt man die Kirchhoff
Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13
Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS 2-3 Prof. Dr. Alexander Mirlin Blatt Dr.
Thermoemission von Elektronen
Physikalisches Praktikum für Fortgeschrittene Versuchsbericht Versuch A3 Thermoemission von Elektronen Christian Haake Matthias Timmer Versuchstag: 08.07.2004 Betreuer: Herr Kury I Grundlagen I.1 Elektronen
Kernfusion durch magnetischen Einschluss
Bachelor Seminar SoSe 2012 13. Juli 2012 Gliederung Grundlagen der Kernfusion 1 Grundlagen der Kernfusion 2 Grundprinzip des magnetischen Einschlusses Der Tokamak Der Stellarator 3 Die Deuterium-Tritium-Reaktion
Praktikumsprotokoll. Versuch Nr. 601 Der Franck-Hertz-Versuch. Frank Hommes und Kilian Klug
Praktikumsprotokoll Versuch Nr. 601 Der Franck-Hertz-Versuch und Durchgeführt am: 20 Februar 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Aufbau des Franck-Hertz-Experimentes..............
Physik für Naturwissenschaften (HS 2016) Lösungen
Physik für Naturwissenschaften (HS 2016) Lösungen students4students [email protected] 1 Inhaltsverzeichnis 1 Serie 1 1 1.1 Elektrostatisches Pendel....................... 1 1.1.1 Aufgabe............................
1 Debye-Abschirmung. 1.1 Grundlagen. Φ = q r exp ( r/λ D), λ D =
1 Debye-Abschirmung Bringt man eine zusätzliche estladung in ein Plasma ein, so wird deren elektrisches Feld durch die Ladungen des Plasmas mit entgegengesetztem Vorzeichen abgeschirmt. Die charakteristische
Einführung in die Plasmaphysik. Transport und Heizung im Plasma durch Stöße zwischen Teilchen
Einführung Plasmaphysik Transport und Heizung durch Stöße 1 Einführung in die Plasmaphysik Transport und Heizung im Plasma durch Stöße zwischen Teilchen Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik
1.Klausur LK Physik 12/2 - Sporenberg Datum:
1.Klausur LK Physik 12/2 - Sporenberg Datum: 28.03.2011 1.Aufgabe: I. Eine flache Spule (n 500, b 5 cm, l 7 cm, R 280 Ω) wird mit v 4 mm in der Abbildung aus der Lage I durch das scharf begrenzte Magnetfeld
Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)
Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen
Aufgabe I: Fusionsreaktor und Sonne
Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle
Höhere Experimentalphysik 1
Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 7. Vorlesung 16.12.2016 Was bisher geschah Hertzscher Dipol Funktionsweise eines Senders Beschleunigte Ladung
Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11
Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #42 am
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #42 am 11.07.2007 Vladimir Dyakonov Resonanz Damit vom Sender effektiv Energie abgestrahlt werden
ABITURPRÜFUNG 2002 LEISTUNGSFACH PHYSIK (HAUPTTERMIN)
ABITURPRÜFUNG 2002 LEISTUNGSFACH PHYSIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben
Physik VI Plasmaphysik
Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im Magnetfeld 5. Wellen
4 V. c) 7 Messgrößen sind E (bzw. U und d), B und r. ebr m= v
Physik Aufgabe Ph Aufgabe BE Hinweise a) 6 Siehe Lehrbuch, Geschwindigkeitsfilter Die Magnetfeldrichtung ist senkrecht in die Zeichenebene hinein orientiert; die Polung der Platten ist oben positiv und
Elektrodynamik (T3p)
Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe
Technische Plasmen HF-Plasmen
Technische Plasmen HF-Plasmen Technische Plasmen HF-Plasmen Wolfgang Suttrop, Max-Planck-Institut für Plasmaphysik, Garching Quelle: NIRE (JP) http://www.nire.go.jp/ silica/si/plasma/job/resactiv.htm Technische
Physik Klausur
Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor
PE Peltier-Effekt. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2
PE Peltier-Effekt Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Seebeck-Effekt...................... 2 2.2 Peltier-Effekt.......................
Das Ohmsche Gesetz. Selina Malacarne Nicola Ramagnano. 1 von 15
Das Ohmsche Gesetz Selina Malacarne Nicola Ramagnano 1 von 15 21./22. März 2011 Programm Spannung, Strom und Widerstand Das Ohmsche Gesetz Widerstandsprint bestücken Funktion des Wechselblinkers 2 von
Diagnostik, Simulation und Visualisierung eines ECR-Plasmas
Institut für Experimentelle und Angewandte Physik Diagnostik, Simulation und Visualisierung eines ECR-Plasmas T. Brandt, T. Trottenberg und H. Kersten Institut für Experimentelle und Angewandte Physik
Versuch 17: Kennlinie der Vakuum-Diode
Versuch 17: Kennlinie der Vakuum-Diode Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Prinzip der Vakuumdiode.......................... 3 2.2 Anlaufstrom.................................. 3 2.3 Raumladungsgebiet..............................
Elektrische Schwingungen und Wellen
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen
Höhere Experimentalphysik 1
Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 5. Vorlesung 02.12.2016 Ankündigung Übung Die nächste Übung findet am 21.12. statt! Was bisher geschah. Erzeugung
PeP Physik erfahren im Forschungs-Praktikum. Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente
Die Entstehung des Lichts Das Spektrum Spektrometrie Kontinuumstrahler Das Bohrsche Atommodell Linienstrahler Halbleiterelemente Das elektromagnetische Spektrum Zur Veranschaulichung Untersuchung von Spektren
Polarisierung und Magnetisierung
Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische
Rainer Dohlus. Physik. Basiswissen für Studierende technischer. Fachrichtungen. 2. Auflage. 4^1 Springer Vieweg
Rainer Dohlus Physik Basiswissen für Studierende technischer Fachrichtungen 2 Auflage 4^1 Springer Vieweg egal Geht gibt 1 Mechanik 1 11 Wie es sich bewegt warum 2 111 Zwei unmittelbar im Alltag erlebbare
Vorlesung 17. Quantisierung des elektromagnetischen Feldes
Vorlesung 17 Quantisierung des elektromagnetischen Feldes Wir wissen, dass man das elektromagnetische Feld als Wellen oder auch als Teilchen die Photonen beschreiben kann. Die Verbindung zwischen Wellen
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2015-1 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Gesamtpunktzahl: Ergebnis: Bemerkungen: Elektromagnetische
