Experimentalphysik 2
|
|
|
- Elke Pfeiffer
- vor 7 Jahren
- Abrufe
Transkript
1 Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008
2 Inhaltsverzeichnis 1 Übungsaufgaben Übungsaufgaben
3 1 Übungsaufgaben 1.1 Übungsaufgaben Aufgabe 1 (Binnendruck und Kovolumen) Für CO 2 (M = 44 g/mol) ist die kritische Temperatur T k = 304,2K und der kritische Druck p k = 7, Pa, seine Dichte am kritischen Punkt ρ k = 46 kg/m 3. Berechnen Sie den Binnendruck und das Eigenvolumen und vergleichen Sie die Werte mit dem Druck und Volumen bei Normalbedingungen (p=10 5 P a, T = 273K)! Aufgabe 2 (reales Gas) 1. 9 g Helium (Molmasse 4 g/mol) besitzen bei 101 kpa ein Volumen von 10l. Welche Temperatur hat das Gas, wenn sie die Gleichung für ein reales Gas mit a= 3, 45 l2 kp a und b = 0, 0237 l verwenden. Das Gas wird jetzt aufgeheizt, bis das Volumen 20 mol 2 mol l beträgt, berechnen Sie die Endtemperatur. Schließlich wird das Gas bei konstantem Volumen auf 350K erwärmt, wie groß ist jetzt der Druck? 2. Berechnen Sie P 2 für ein ideales Gas und für Wasser (a = 551 l2 kp a mol 2 vergleichen sie die Ergebnisse. und b = 0, 0305 l mol ) und Aufgabe 3 (homogen geladene Kugel) Berechnen sie das elektrische Felder einer homogen geladenen Kugel mit Radius R und { Q 4π r < R ρ(r) = 3 R3 0 r > R Aufgabe 4 (Potential und elektrisches Feld) Berechnen Sie das Potential und daraus, durch Berechnung des Gradienten, das Elektrische Feld am Ursprung für ein Teilchen mit -e bei r 1 = und ein Teilchen mit 3e bei r 2 = 0! Welche Arbeit muss man Aufwenden umd die Ladungen zu 1 trennen? 2
4 1.1 Übungsaufgaben Aufgabe 5 (elektrischer Fluss) Berechnen Sie explizit den Elektrischen Fluss durch eine Kugel mit ein Ladung Q im Mittelpunkt. Aufgabe 6 (Kugelfelder) Gegeben sei eine geladene Kugel mit Radius a. Berechnen und skizzieren Sie die elektrischen Felder und Potentiale sowohl innerhalb als auch außerhalb der Kugel für den Fall a) einer leitenden Kugel. b) einer Kugel mit sphärischer Ladungsverteilung, mit ϱ r n, n > 3 variiert. Skizzieren Sie die Fälle n = -2 und n = +2. Aufgabe 7 (Wassermolekül im homogenen elektrischen Feld) Das Sauerstoffatom eines Wassermoleküls befinde sich im Ursprung. Eines der beiden Wasserstoffatome liegt bei x 1 = 0, 077nm, y 1 = 0, 058nm und das andere bei x 2 = 0, 077nm, y 2 = 0, 058nm. a) Berechnen sie das Dipolmoment des H 2 O-Moleküls unter der Annahme, dass die H-Atome ihre Elektronen ganz an das O-Atom abgeben. b) Der Wasserdipol befindet sich nun in einem homogenen elektrischen Feld der Stärke V/m. Welchen Betrag hat das Drehmoment auf den Dipol, wenn er parallel, senkrecht oder in einem Winkel von 30 zum E-Feld liegt? c) Berechnen Sie für die drei Fälle von b) jeweils die potenzielle Energie des Dipols. Aufgabe 8 (Plattenkondensator) Ein Plattenkondensator ohne Dielektrikum hat eine Fläche A = 600cm 2. Die Platten haben einen Abstand d 1 = 3mm und sind zunächst mit den Polen einer Spannungsquelle mit U 1 = 300V verbunden. a) Berechnen Sie die Kapazität C 1 des Kondensators, seine Ladung Q 1, elektrische Feldstärke E 1, Feldenergie W 1 und die Kraft F 1, mit der sich die Platten anziehen. b) Nun wird bei angeschlossener Spannungsquelle der Plattenabstand auf d 2 = 10mm erhöht. Wie groß sind jetzt U 2, C 2, Q 2, E 2, W 2, F 2? c) Vom Zustand in a) ausgehend wird diesmal die Verbindung zur Spannungsquelle unterbrochen und erst dann der Abstand auf d 3 = 10mm vergrößert. Wie groß sind jetzt U 3, C 3, Q 3, E 3, W 3 und F 3? d) Vom Zustand a) ausgehend wird nach Trennung von der Spannungsquelle ein Dielektrikum (ɛ r = 8) eingefügt. Berechnen Sie U 4, C 4, Q 4, E 4, W 4 und F 4! 3
5 1 Übungsaufgaben Aufgabe 9 (Kapazität Zylinderkondensator) Berechnen Sie die Kapazität von 2 konzentrischen, dünnen, leitenden Zylinderflächen der Länge L mit Radien a, b, wobei gilt L» b > a. Aufgabe 10 (Ping-Pong) Eine Kugel der Masse 1 g und Durchmesser 2 cm mit einem Metallüberzug liegt wie in der Abbildung zu sehen in einem Kondensator (A = 60 cm 2, d= 4 cm). Welche Spannung muss angelegt werden, damit sich die Kugel vom Boden löst? Wie lange braucht sie bei einer Spannung von 25 kv bis zur oberen Platte? Welche Ladung ist dann auf der Kugel und wie viele Elektronen sind das? Berechnen Sie die Ladung auf der Kugel mit Hilfe der Kapazität eines Kugelkondensators und nehmen sie eine homogene Verteilung der Ladung auf Kugel und Platten an. Aufgabe 11 (Kondensator mit Dielektrika) Zwischen den Platten eines Plattenkondensators sind zwei 2 Schichten verschiedener Dielektrika mit der Dicke a 1 = 0, 1 mm und a 2 = 0, 05 mm mit den Dielektrizitätszahlen ɛ r1 = 2 bzw ɛ r2 = 6. Die Kondensatorfläche ist A = 10 cm 2 und der Abstand d=0,15 mm. Zeigen sie, dass für die Kapazität gilt: 1 C = 1 C C 2 und berechnen sie C. Aufgabe 12 (Kondensator im Wasser) Gegeben sei ein Plattenkondensator mit Plattenfläche 10 x 10 cm 2 im Abstand von 10 cm. Der Kondensator sei mit der Ladung Q = 885 pc geladen. 4
6 1.1 Übungsaufgaben a) Berechnen Sie die Spannung U und das D-Feld zwischen den Platten! b) Wie hoch steigt die Flüssigkeitssäule im Kondensator, wenn man ihn in einen großen Behälter mit reinem Wasser (Isolator, ɛ H2 O = 81) hält? Was passiert (qualitativ) bei konstanter Spannung? c) Der Kondensator wird nun bei konstanter Ladung (885 pc) zu einer festen Füllhöhe von 1 cm mit reinem Wasser gefüllt. Berechnen Sie nun die Spannung zwischen den Platten (Hinweis: Die Anordnung kann als Parallelschaltung betrachtet werden). d) Berechnen sie das D-Feld im Kondensator (Hinweis: E 1 = E 2 wegen Stetigkeit der Tangentialkomponente des E-Feldes). e) Nun wird 0,1 µmol Kochsalz zum Zeitpunkt t=0 im Wasser gelöst. Die Lösung sei sofort gleichmäßig durchmischt und das Salz dissoziiert vollständig in einfach positiv geladene Natriumionen ( τ = 2, m2 ) und einfach negativ geladene Chloridionen ( τ = 4, m2 ). m A V C m A V C Nach welcher Zeit wird die Ladung auf dem Plattenkondensator auf exp( 2)Q 0 reduziert? Aufgabe 13 (elektrischer Strom) Gegeben ist ein zylinderförmiger ohmscher Leiter mit dem Radius R und der, Länge L. An diesen ist über die ideal leitende Deck- und Bodenfläche eine ideale Spannungsquelle mit der Spannung U angeschlossen (siehe Abbildung). Im Leiter verteilt fließt ein elektrischer Strom entgegen der z-richtung. Der Betrag der Stromdichte j( r) = j(r) e z im Leiter lautet in Zylinderkoordinaten: { j 0 (2 ( r R j(r) = )2 ) r R 0 r > R In dem Leiter Leiter tragen nur Elektronen mit der konstanten Beweglichkeit /mu e = qτ m Stromtransport bei. > 0 zum 5
7 1 Übungsaufgaben a) Das elektrische Feld E im Inneren des Zylinders sei konstant. Bestimmen Sie Betrag und Richtung von E? b) Berechnen Sie den Strom I, der durch die gesamte Anordnung fließt. c) Wie groß ist die in dem Leiter abfallende Leistung P(=U I)? d) Bestimmen Sie die spezifische elektrische Leitfähigkeit σ(r). e) Berechnen Sie Betrag und Richtung der Driftgeschwindigkeit v e der Elektronen. f) Wie groß ist die Teilchendichten n(r) der Elektronen, die zum Stromtransport beitragen? Aufgabe 14 (Kugelkondensator) Gegeben ist ein Kugelkondensator. Der Radius der Innenelektrode beträgt a=5 mm, der Radius der Außenelektrode b= 15 mm. Der Raum zwischen den Elektroden ist mit einer Flüssigkeit gefüllt, die eine relative Dielektrizitätskonstante ɛ r =4 und eine spezifische Leitfähigkeit σ = 10 3 Ω 1 m 1 besitzt. An den Elektroden liegt eine Spannung U und es fließt ein Strom I. a) Bestimmen Sie die Stromdichteverteilung j(r) = j r (r) e r in Abhängigkeit von I b) Ermitteln Sie daraus die Feldstärke E r (r) c) Berechnen Sie damit die Spannung U in Abhängigkeit von I d) Berechnen Sie den Widerstand R der Anordnung e) Welche Kapazität besitzt die Anordnung? 6
Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen
Technische Universität München Department of Physics Ferienkurs - Experimentalphysik 2 - Übungsblatt - Lösungen Montag Daniel Jost Datum 2/8/212 Aufgabe 1: (a) Betrachten Sie eine Ladung, die im Ursprung
Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12
Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 4 - letzte Übung in
2. Elektrisches Feld 2.2 Elektrostatisches Feld
Definition Verschiebungsfluß und Verschiebungsflußdichte Arbeit im elektrostatischen Feld Feld einer geladenen Kugel, Zylinder Potential im elektrischen Feld Feld einer Linienladung 1 Feldbegriff Elektrisches
Elektromagnetische Felder und Wellen. Klausur Herbst Aufgabe 1 (5 Punkte) Aufgabe 2 (3 Punkte) Aufgabe 3 (5 Punkte) Aufgabe 4 (12 Punkte) Kern
Elektromagnetische Felder und Wellen Klausur Herbst 2000 Aufgabe 1 (5 Punkte) Ein magnetischer Dipol hat das Moment m = m e z. Wie groß ist Feld B auf der z- Achse bei z = a, wenn sich der Dipol auf der
81 Übungen und Lösungen
STR ING Elektrotechnik 10-81 - 1 _ 81 Übungen und Lösungen 81.1 Übungen 1. ELEKTRISCHES FELD a 2 A α 1 b B Zwischen zwei metallischen Platten mit dem Abstand a = 15 mm herrsche eine elektrische Feldstärke
Übungsaufgaben z. Th. Plattenkondensator
Übungsaufgaben z. Th. Plattenkondensator Aufgabe 1 Die Platten eines Kondensators haben den Radius r 18 cm. Der Abstand zwischen den Platten beträgt d 1,5 cm. An den Kondensator wird die Spannung U 8,
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:
Übungsblatt 3 - Lösungen
Übungsblatt 3 - Lösungen zur Vorlesung EP2 (Prof. Grüner) im 2010 3. Juni 2011 Aufgabe 1: Plattenkondensator Ein Kondensator besteht aus parallelen Platten mit einer quadratischen Grundäche von 20cm Kantenlänge.
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #17 19/11/2010 Vladimir Dyakonov [email protected] Elektrizitätslehre Teil 2 Kondensator Kondensator Im einfachsten Fall besteht ein Kondensator aus
v q,m Aufgabensammlung Experimentalphysik für ET
Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz
Aufgaben zur Vorbereitung der Klausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/
Aufgaben zur Vorbereitung der Klausur zur Vorlesung inführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS213/14 5.2.213 Aufgabe 1 Zwei Widerstände R 1 =1 Ω und R 2 =2 Ω sind in
Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12
Institut für Experimentelle Kernphysik Übungen zu Wellen und Elektrodynamik für Chemie- und Bioingenieure und Verfahrenstechniker WS 11/12 Prof. Dr. T. Müller Dr. F. Hartmann Blatt 3 Bearbeitung: 25.11.2011
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2012-2 Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12: Aufgabe 13: Aufgabe
Abschlussprüfung an Fachoberschulen im Schuljahr 2000/2001
Abschlussprüfung an Fachoberschulen im Schuljahr 2000/2001 Haupttermin: Nach- bzw. Wiederholtermin: 2.0.2001 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: Formelsammlung/Tafelwerk
5.5 Elektrisches Zentralfeld, Coulombsches Gesetz
5 Elektrizität und Magnetismus 5.5 Elektrisches Zentralfeld, Coulombsches Gesetz Elektrisches Zentralfeld Kugel mit Radius r um eine Punktladung = ǫ 0 Ed A = ǫ 0 E E d A Kugel da = ǫ 0 E(4πr 2 ) (5.26)
Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz
KRG NW, Physik Klasse 10, Kräfte auf Ladungen, Kondensator, Fachlehrer Stahl Seite 1 Kraft zwischen zwei Ladungen Q 1 und Q 2 / Coulomb'sches Gesetz Kraft auf eine Probeladung q im elektrischen Feld (homogen,
Abschlussprüfung an Fachoberschulen im Schuljahr 2004/2005
Abschlussprüfung an Fachoberschulen im Schuljahr 200/200 Haupttermin: Nach- bzw Wiederholtermin: 0909200 Fachrichtung: Technik Fach: Physik Prüfungsdauer: 210 Minuten Hilfsmittel: - Formelsammlung/Tafelwerk
Übungsblatt 4 ( )
Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt 4 (08.06.0) ) Geladene Kugeln Zwei homogen geladene Eisenkugeln mit den Ladungen Q = q = q = 0, 0µC haben einen
Physik Klausur
Physik Klausur 1.1 1 6. November 00 Aufgaben Aufgabe 1 a) Eine Kugel mit der Ladung q 3 nc und der Masse m 1 g hängt an einem Faden der Länge l 1 m. Der Kondersator hat den Plattenabstand d 0 10 cm und
K l a u s u r N r. 2 Gk Ph 12
0.2.2009 K l a u s u r N r. 2 Gk Ph 2 ) Leiten Sie die Formel für die Gesamtkapazität von drei in Serie geschalteten Kondensatoren her. (Zeichnung, Formeln, begründender Text) 2) Berechnen Sie die Gesamtkapazität
Tutorium Physik 2. Elektrizität
1 Tutorium Physik 2. Elektrizität SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 10. ELEKTRIZITÄT 4 10.1 Coulombkraft:
2 Das elektrostatische Feld
Das elektrostatische Feld Das elektrostatische Feld wird durch ruhende elektrische Ladungen verursacht, d.h. es fließt kein Strom. Auf die ruhenden Ladungen wirken Coulomb-Kräfte, die über das Coulombsche
Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung
Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze
Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung
Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen
Lk Physik in 12/1 1. Klausur aus der Physik Blatt 1 (von 2) C = 4πε o r
Blatt 1 (von 2) 1. Ladung der Erde 6 BE a) Leite aus dem oulombpotential die Beziehung = 4πε o r für die Kapazität einer leitenden Kugel mit Radius r her. In der Atmosphäre herrscht nahe der Erdoberfläche
Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern.
16. Kapazität Unter Kapazität versteht man die Eigenschaft von Kondensatoren, Ladung oder elektrische Energie zu speichern. 16.1 Plattenkondensator Das einfachste Beispiel für einen Kondensator ist der
Im folgenden Schaltkreis beobachtet man eigenartige Phänomene: = > Beim Einschalten leuchtet die Glühbirne für
+ Kapitel 4 KAPAZITÄT und ENERGIE 4. Kondensator Ein Kondensator besteht typischerweise aus zwei Leiterplatten, die sich in einem kleinen Abstand voneinander befinden. Meist liegt zwischen den Elektroden
1. Klausur in K1 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung:. Klausur in K am 4. 0. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60
Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung
Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.)
Wiederholung: Elektrisches Feld und Feldlinien I Feld zwischen zwei Punktladungen (pos. und neg.) 1 Grieskörner schwimmen in Rhizinusöl. Weil sie kleine Dipole werden, richten sie sich entlang der Feldlinien
Aufgabensammlung zu Kapitel 2
Aufgabensammlung zu Kapitel 2 Aufgabe 2.1: Ein Plattenkondensator (quadratische Platten der Kantenlänge a=15cm, Plattenabstand d=5mm) wird an eine Gleichspannungsquelle mit U=375V angeschlossen. Berechnen
Elektrische und magnetische Felder
Marlene Marinescu Elektrische und magnetische Felder Eine praxisorientierte Einführung Mit 260 Abbildungen @Nj) Springer Inhaltsverzeichnis I Elektrostatische Felder 1 Wesen des elektrostatischen Feldes
6. Welche der folgenden Anordnungen von vier gleich großen ohmschen Widerständen besitzt den kleinsten Gesamtwiderstand?
1 1. Welche der folgenden Formulierungen entspricht dem ersten Newton schen Axiom (Trägheitsprinzip)? Ein Körper verharrt in Ruhe oder bewegt sich mit konstanter gleichförmiger Geschwindigkeit, wenn die
2. Klausur in K1 am
Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60
Alte Physik III. 10. Februar 2011
D-MATH/D-PHYS Prof. R. Monnier Studienjahr HS11 ETH Zürich Alte Physik III 10. Februar 2011 Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus, und kreuzen Sie Ihre Studienrichtung
Physik LK 12, 2. Kursarbeit Magnetismus Lösung A: Nach 10 s beträgt ist der Kondensator praktisch voll aufgeladen. Es fehlen noch 4μV.
Physik LK 2, 2. Kursarbeit Magnetismus Lösung 07.2.202 Konstante Wert Konstante Wert Elementarladung e=,602 0 9 C. Masse Elektron m e =9,093 0 3 kg Molmasse Kupfer M Cu =63,55 g mol Dichte Kupfer ρ Cu
Elektrizitätslehre 2.
Elektrizitätslehre. Energieumwandlung (Arbeit) im elektrischen Feld Bewegung einer Ladung gegen die Feldstärke: E s Endposition s Anfangsposition g W F Hub s r F Hub r Fq FHub Eq W qes W ist unabhängig
Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten)
Aufgabenblatt Z/ 01 (Physikalische Größen und Einheiten) Aufgabe Z-01/ 1 Welche zwei verschiedenen physikalische Bedeutungen kann eine Größe haben, wenn nur bekannt ist, dass sie in der Einheit Nm gemessen
PS III - Rechentest
Grundlagen der Elektrotechnik PS III - Rechentest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 Summe Punkte 3 15 10 12 11 9 60 erreicht Hinweise: Schreiben Sie auf das Deckblatt Ihren Namen und
Induktion, Polarisierung und Magnetisierung
Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser
Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke.
Übungsbeispiele: 1) Auf eine Ladung von 20nClb wirkt eine Kraft von 8mN. Berechnen Sie die Feldstärke. 2) Zwischen zwei Aluminum-Folien eines Wickelkondensators,der an einer Gleichspannung vo 60 V liegt,
Misst man die Ladung in Abhängigkeit von der angelegten Spannung, so ergibt sich ein proportionaler Zusammenhang zwischen Ladung und Spannung:
3.11 Der Kondensator In den vorangegangenen Kapiteln wurden die physikalischen Eigenschaften von elektrischen Ladungen und Feldern näher untersucht. In vielen Experimenten kamen dabei bereits Kondensatoren
Klausur Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5
Klausur 15.08.2011 Grundlagen der Elektrotechnik II (MB, EUT, LUM) Seite 1 von 5 Vorname: Matr.-Nr.: Nachname: Aufgabe 1 (6 Punkte) Gegeben ist folgende Schaltung aus Kondensatoren. Die Kapazitäten der
1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften
1 Elektrostatik 1.1 Ladung 1.1.1 Eigenschaften 1 Das heutige Bild vom Aufbau eines Atoms Größe < 10-18 m Größe 10-14 m Größe < 10-18 m Größe 10-15 m Größe 10-10 m 2 Ausblick: Ladung der Quarks & Hadronen
Aufgabe III: Die Erdatmosphäre
Europa-Gymnasium Wörth Abiturprüfung 212 Leistungskurs Physik LK2 Aufgabe III: Die Erdatmosphäre Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Taschenrechner
Aufgaben zum Kondensator - ausgegeben am
Aufgaben zum Kondensator - ausgegeben am 17.09.2012 konden2_17_09_2012.doc 1.Aufgabe: Ein Kondensator hat die Plattenfläche A 1,2 10-2 m 2, den Plattenabstand d 0,5 mm und die Ladung Q 2,6 10-7 C. Berechnen
Übungen zu ET1. 3. Berechnen Sie den Strom I der durch die Schaltung fließt!
Aufgabe 1 An eine Reihenschaltung bestehend aus sechs Widerständen wird eine Spannung von U = 155V angelegt. Die Widerstandwerte betragen: R 1 = 390Ω R 2 = 270Ω R 3 = 560Ω R 4 = 220Ω R 5 = 680Ω R 6 = 180Ω
Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:
Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der
Maßeinheiten der Elektrizität und des Magnetismus
Maßeinheiten der Elektrizität und des Magnetismus elektrische Stromstärke I Ampere A 1 A ist die Stärke des zeitlich unveränderlichen elektrischen Stromes durch zwei geradlinige, parallele, unendlich lange
Aufgabenkatalog ET2 - v12.2. σ 1 σ 2
2 Strömungsfeld 2.1 Geschichtetes Medium Gegeben ist ein geschichteter Widerstand (Länge 2a) mit quadratischen Platten der Kantenlänge a, der vom Strom durchflossen wird. Der Zwischenraum habe wie eingezeichnet
Thüringer Kultusministerium
Thüringer Kultusministerium Abiturprüfung 1998 Physik als Grundfach (Haupttermin) Arbeitszeit: Einlesezeit: Hilfsmittel: 180 Minuten 30 Minuten Taschenrechner (nicht programmierbar, nicht graphikfähig)
Experimentalphysik für ET. Aufgabensammlung
Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe
Übung 3 - Musterlösung
Experientalphysik 2 für Lehratskandidaten und Meteorologen 5. Mai 200 Übungsgruppenleiter: Heiko Dulich Übung 3 - Musterlösung Aufgabe 6: Wann funkt es? Eigene Koordinaten r 2, 2. Hohlkugel: Koordinaten
8. Reines Ethanol besitzt eine Dichte von ρ = 0,79 g/cm³. Welches Volumen V Ethanol ist erforderlich, um eine Masse von m = 158g Ethanol zu erhalten?
Staatliche Schule für technische Assistenten in der Medizin Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main Testklausur Physik 1. 10 2 10 3 =... 2. 4 10 3 2 10 3=... 3. 10 4 m= cm 4.
PS II - Verständnistest
Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:
Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert.
Ziel dieses Kapitels ist es zu verstehen warum ein Blitz meistens in spitze Gegenstände einschlägt und wie ein Kondensator Ladungen speichert. 11.1 Grundlagen Versuch 1: "Der geladene Schüler" Beobachtungen:
Versuch E1: Elektrisches Feld
Versuch E1: Elektrisches Feld Aufgaben: 1. Untersuchen Sie die Abhängigkeit der räumlich konstanten elektrischen Feldstärke im Plattenkondensator von der Spannung und vom Plattenabstand. 2. Untersuchen
Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I
Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,
ELEKTRIZITÄT & MAGNETISMUS
ELEKTRIZITÄT & MAGNETISMUS Elektrische Ladung / Coulombkraft / Elektrisches Feld Gravitationsgesetz ( = Gewichtskraft) ist die Ursache von Gravitationskonstante Coulombgesetz ( = Coulombkraft) Elementarladung
PS II - Verständnistest 24.02.2010
Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:
PN 2 Einführung in die Experimentalphysik für Chemiker
PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität
4. Elektrisches Feld 4.1 Elektrisches Strömungsfeld. 4. Elektrische und magnetische Felder. 4. Elektrisches Feld 4.1 Elektrisches Strömungsfeld
4. Elektrische und magnetische Felder Themen: Einführung Elektrisches Strömungsfeld, elektrische Spannung und Widerstand Elektrostatisches Feld, elektrische Kapazität Magnetisches Feld, Induktivität Kräfte
Physik LK 12, Klausur 02 Elektrisches Feld und Kondensator Lösung
Konstanten: Elementarladung e=,602 0 9 2 As 2 C. Elektrische Feldkonstante: 8,8542 0 N m 2 Dielektrizitätszahl: r Luft = Aufgabe : Eine studentische Hilfskraft wurde eingestellt, um acht Stunden lang Ladungen
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kupfermünze Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA bestand aus reinem
Elektromagnetische Felder und Wellen: Klausur
Elektromagnetische Felder und Wellen: Klausur 2009-2 Name : Vorname : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe
Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten
Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen
Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 2011 Teilchenbahnen im elektrischen Querfeld
Kursstufe Physik / Aufgaben / 04 Teilchenbahnen im E Feld Kopetschke 011 Teilchenbahnen im elektrischen Querfeld 1) Elektronen starten an der negativen Platte eines Kondensators (d = 5 mm, U = 300 V) und
Technische Universität Clausthal
Technische Universität Clausthal Klausur im Sommersemester 2013 Grundlagen der Elektrotechnik I Datum: 09. September 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.
Elektrotechnik Formelsammlung v1.2
Inhaltsverzeichnis 3. Das Coulombsches Gesetz...2 3.. Elementarladung...2 32. Elektrische Arbeit...2 33. Elektrische Feldstärke...2 34. Elektrische Spannung...3 34.. Ladung Q...3 34... Kondensatoren-Gesetz...3
Elektrizität und Magnetismus
Grundlagen- und Orientierungsprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 2010 Elektrizität und Magnetismus Donnerstag, 05. 08. 2010, 8:30 10:30 Uhr Zur Beachtung: Zugelassene Hilfsmittel:
Elektrotechnik I MAVT
Prof. Dr. Q. Huang Elektrotechnik MAVT Prüfung H07 BSc 23.08.2007 1. [30P] DC-Aufgaben (a) [9P] Betrachten Sie die Schaltung in Abbildung 1 und lösen Sie die nachfolgenden Aufgaben. Vereinfachen Sie die
Zusammenfassung EPII. Elektromagnetismus
Zusammenfassung EPII Elektromagnetismus Elektrodynamik: Überblick Dynamik (Newton): Elektromagnetische Kräfte zw. Ladungen: Definition EFeld: Kraft auf ruhende Testladung Q: BFeld: Kraft auf bewegte Testladung:
Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995
Bewegung von Teilchen im elektrischen und magnetischen Feld Schularbeiten bis Oktober 1995 1) Ein Elektron (e = 1,6.10-19 C ; m e = 9,1.10-31 kg) mit der Anfangsgeschwindigkeit v o = 2.10 6 m/s durchläuft
Aufgabe Summe Note Mögliche Punkte Erreichte Punkte
Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 7. April 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung DIN
3.1. Aufgaben zur Elektrostatik
3.1. Aufgaben zur Elektrostatik Aufgabe 1 a) Wie lassen sich elektrische Ladungen nachweisen? b) Wie kann man positive und negative elektrische Ladungen unterscheiden? c) In welcher Einheit gibt man elektrische
Experimentalphysik EP, WS 2013/14
FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. J. Schreiber, PD. W. Assmann Experimentalphysik EP, WS 2013/14 Probeklausur (ohne Optik)-Nummer: 7. Januar 2014 Hinweise zur Bearbeitung
Experimentalphysik für Naturwissenschaftler 2 Universität Erlangen Nürnberg SS 2009 Klausur ( )
Nur vom Korrektor auszufüllen 1 2 3 4 5 6 7 8 9 10 Note Experimentalphysik für Naturwissenschaftler 2 Universität Erlangen Nürnberg SS 2009 Klausur (24.7.2009) Name: Studiengang: In die Wertung der Klausur
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK. Messung von Kapazitäten Auf- und Entladung von Kondensatoren. Sebastian Finkel Sebastian Wilken
PROTOKOLL ZUM ANFÄNGERPRAKTIKUM PHYSIK Messung von Kapazitäten Auf- und Entladung von Kondensatoren Sebastian Finkel Sebastian Wilken Versuchsdurchführung: 23. November 2005 0. Inhalt 1. Einleitung 2.
Definition Elektrisches Strömungsfeld in einem Zylinder eines Punktes einer Linie Elektrische Spannung und Widerstand Grenzbedingungen
Definition Elektrisches Strömungsfeld in einem Zylinder eines Punktes einer Linie Elektrische Spannung und Widerstand Grenzbedingungen 1 Feldbegriff Feld räumliche Verteilung einer physikalischen Größe
2 Grundgrößen und -gesetze der Elektrodynamik
Grundgrößen und -gesetze der Elektrodynamik. Grundgrößen der Elektrodynamik.. Ladung und die dreidimensionale δ-distribution Ladung Q, q Ladungen treten in zwei Variationen auf: positiv und negativ Einheit:
IIE2. Modul Elektrizitätslehre II. Dielektrika
IIE2 Modul Elektrizitätslehre II Dielektrika Ziel dieses Versuches ist, die Funktionsweise eines Kondensators mit Dielektrikum zu verstehen. Des weiteren soll die Kapazität des Kondensators und die relative
Elektrizität und Magnetismus - Einführung
Elektrizität und Magnetismus - Einführung Elektrostatik - elektrische Ladung - Coulomb Kraft - elektrisches Feld - elektrostatisches Potential - Bewegte Ladung -Strom - Magnetismus - Magnetfelder - Induktionsgesetz
Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz
Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt
Felder und Wellen WS 2016/2017
Felder und Wellen WS 216/217 Musterlösung zum 2. Tutorium 1. Aufgabe (**) Berechnen Sie das el. Feld einer in z-richtung unendlich lang ausgedehnten unendlich dünnen Linienladung der Ladungsdichte η pro
5) Nennen Sie zwei Beispiele für Scheinkräfte! (2 Punkte)
1) a) Wie ist Dichte definiert? (2 Punkte) b) In welcher Einheit wird sie gemessen? (2 Punkte) c) Von welchen Parametern hängt die Dichte eines idealen Gases ab? Leiten sie dazu die Dichte aus dem idealen
Elektrische und Magnetische Felder
Q1 LK Physik s6dea Themen für Kursarbeit Nr.2 am 6.12.2016 Elektrische und Magnetische Felder Statische elektrische Felder, Kondensatoren Zusammenhang zwischen Ladung und Stromstärke elektrische Energie
PHYSIK. 2. Klausur - Lösung
EI PH3 2010-11 PHYSIK 2. Klausur - Lösung 1. Aufgabe (2 Punkte) Unten befindet sich ein Proton im elektrischen Feld zwischen einer ortsfesten positiven sowie einer ortsfesten negativen Ladung. a) Beschreibe,
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche
Probeklausur 1 - Einführung in die Physik - WS 2014/ C. Strassert
Probeklausur - Einführung in die Physik - WS 04/05 - C. Strassert Erdbeschleunigung g= 9.8 m/s ; sin0 = cos 60 = 0.5; sin 60 = cos 0 = 0.866;. 4 ) Ein Turmspringer lässt sich von einem 5 m hohen Sprungturm
Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj
Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3
Klausurvorbereitung Elektrotechnik für Maschinenbau. Thema: Gleichstrom
Klausurvorbereitung Elektrotechnik für Maschinenbau 1. Grundbegriffe / Strom (5 Punkte) Thema: Gleichstrom Auf welchem Bild sind die technische Stromrichtung und die Bewegungsrichtung der geladenen Teilchen
Aufgabenblatt zum Seminar 12 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)
Aufgabenblatt zum Seminar 2 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, ([email protected]) 8. 7. 29 Aufgaben. In der Vorlesung
1. Klausur in K1 am
Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 1. Klausur in K1 am 19. 10. 010 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben:
Das statische elektrische Feld
M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis (6 Std.) (10 Std.) In diesem Abschnitt (6 Std.) (10 Std.) Elektrischer Strom E Elektrischer Strom In Metallen befinden sich frei bewegliche
Aufgabe 1 - Schiefe Ebene - (10 Punkte)
- schriftlich Klasse: 4AW (Profil A) - (HuR) Prüfungsdauer: Erlaubte Hilfsmittel: Bemerkungen: 4h Taschenrechner TI-nspire CAS Der Rechner muss im Press-to-Test-Modus sein. Formelsammlung Beginnen Sie
Klausur, Sommer 2013, Physik II
D-MATH/D-PHYS Prof. R. Wallny Studienjahr FS 2013 ETH Zürich Klausur, Sommer 2013, Physik II Füllen Sie als erstes den untenstehenden Kopf mit Name und Legi-Nummer aus, und kreuzen Sie Ihre Studienrichtung
Übungsblatt 1 zur Vorlesung Atom- und Molekülphysik
Übungsblatt 1 zur Vorlesung Atom- und Molekülphysik Kapitel 1 bis inklusive 2.3 1. Zu Kapitel 1 Wie viele Atome enthält eine Kupfermünze mit einer Masse von 3,4g benutzen Sie eine Masse von 63,5 atomaren
Inhaltsverzeichnis Elektrostatik
Inhaltsverzeichnis 1 Elektrostatik 1 1.1 Grundbegriffe...................................... 1 1.1.1 Elektrische Ladung, Coulomb-Gesetz..................... 1 1.1.2 Das elektrische Feld..............................
