Diagnostik, Simulation und Visualisierung eines ECR-Plasmas

Größe: px
Ab Seite anzeigen:

Download "Diagnostik, Simulation und Visualisierung eines ECR-Plasmas"

Transkript

1 Institut für Experimentelle und Angewandte Physik Diagnostik, Simulation und Visualisierung eines ECR-Plasmas T. Brandt, T. Trottenberg und H. Kersten Institut für Experimentelle und Angewandte Physik Christian-Albrechts-Universität Kiel XIX. Erfahrungsaustausch Oberflächentechnologie mit Plasma- und Ionenstrahlprozessen Mühlleithen / Vogtland, März 2012 Tim Brandt 7. März

2 Die MW-125: eine industrielle Elektron-Zyklotron-Resonanz (ECR) Ionenquelle Ziel der Untersuchung: Besseres Verständnis der Funktionsweise dieser Ionenquelle und des ECR-Prozesses im Allgemeinen Plasma Messpositionen der Sondendiagnostik Untersuchungsmethoden: Räumlich aufgelöste Messung der Plasmaparameter mit Langmuirsonden Antennenkappe Stabantenne Computersimulation des ECR Plasmas Vergleich mit Messdaten Einblick in Parameter, welche nicht direkt gemessen werden, z.b. Mikrowellenfeld und Energieaufnahme Messung (mit Hallsonden) und Computersimulation des statischen Magnetfeldes 2,45 Ghz Permanentmagnete Weicheisen-Bügel Tim Brandt 7. März

3 Elektron gyriert im statischen Magnetfeld, Gyrationsfrequenz abhängig von der Feldstärke Mikrowellen-Feld = Gyrationsfrequenz Elektronen nehmen resonant Energie aus dem EM-Feld auf Energie wird durch Stöße auf Neutralteilchen übertragen, diese werden ionisiert Magnetfeldstärke räumlich nicht homogen Nur in kleinem Raumbereich (Resonanzregion) gilt Mikrowellenfrequenz = Gyrationsfrequenz Funktionsprinzip ECR Tim Brandt Elektron B-Feld / Neutralteilchen / Ion E-Feld Tim Brandt 7. März

4 Magnetfeld Messung und Simulation: Motivation Magnetfeldsimulation ist Bestandteil der ECR-Simulation Magnetfeldmessung: Magnetfeldsimulation soll durch Messung mit der Realität in Übereinstimmung gebracht werden können Magnetfeld stört Sonden-Diagnostik Kenntnis von Betrag und Richtung wichtig für Interpretation der Messdaten Magnetfeldsimulation: Unendlichkeits-Randgebiete Raumbereich der Quelle Magnet Eisenbügel Tim Brandt 7. März

5 Magnetfeld Messung und Simulation: Verlauf Messung Simulation Gemessener Feldverlauf lässt sich in Simulation reproduzieren. Tim Brandt 7. März

6 Magnetfeld Messung und Simulation: Betrag Messung mt Simulation log(t) Ergebnis der Messung: Resonanzregion befindet sich nur ca. 15 mm über Boden der Quelle ,5 0-1 Simulation lässt sich mit Magnetisierung der Magneten 750 ka/m und Permeabilitätszahl von µ r = 4000 des Weicheisens gut mit Messungen in Übereinstimmung bringen 0-2 Tim Brandt 7. März

7 ECR-Plasma Theorie und Simulation: Elektrodynamik, Leitfähigkeit ECR-Simulation berechnet Mikrowellenfeld mittels Maxwell-Gleichungen Gyrierende Elektronen werden als oszillierender Plasmastrom J pl angesehen Verknüpfung des oszillierenden Plasmastroms mit dem elektrischen Wechselfeld über das Ohmsche Gesetz: J pl = σ E Bei Magnetfeld wird σ zu einem vollen Tensor: σ = en e α α 2 + B x 2 + B y 2 + B z 2 α B x αb z + B y B z B z B x αb y αb z + B y B x α B y αb x + B z B y B z B x + αb y αb x + B z B y α B z Mit α = m e e iω + ν m ω = Mikrowellenfrequenz ν m = Stoßfrequenz Tim Brandt 7. März

8 ECR-Plasma Theorie und Simulation: Leitfähigkeit Simulation S/m Spur ( Betrag ) des Leitfähigkeitstensors σ : σ xx + σ yy + σ zz Leitfähigkeit im Bereich der Resonanzfeldstärke stark erhöht Tim Brandt 7. März

9 ECR-Plasma Theorie und Simulation: Elektrisches Wechselfeld Leitfähigkeitstensor bestimmt, o E -Feld benötigt, um Strom zu berechnen (Berechnung des E -Feldes mittels Maxwell- Gleichungen) V/m Betrag des E -Feldes Verlauf des E -Feldes bei Phase 0 Tim Brandt 7. März

10 ECR-Plasma Theorie und Simulation: Plasmaströme Plasmastromdichte J φ J z J r A/m² Plasmastromdichte elektrisches Feld vom Plasma absorbierte Leistungsdichte Q(r) Tim Brandt 7. März

11 ECR-Plasma Theorie und Simulation: Leistungsdichte / Modellschema W/m³ Ortsabhängige absorbierte Leistungsdichte Q(r) Mikrowellen Modell Plasma Modell Elektrodynamik in Materie Driftdiffusions- Gleichungen, Reaktionen Plasma Parameter Aktualisierung Q(r) Simulierte Zeit Tim Brandt 7. März

12 ECR-Plasma Vergleich Simulation und Messung: Messaufbau Plasmadiagnostik Langmuirsonde Sondenhalterung Messung Bewegungsmöglichkeiten Tim Brandt 7. März

13 ECR-Plasma Vergleich Simulation und Messung: Potentiale Diagnostik Simulation Floating-Potential (V) Plasmapotential (V) Plasmapotential (V) Tim Brandt 7. März

14 ECR-Plasma Vergleich Simulation und Messung: Elektronentemperatur Diagnostik Elektronentemperatur (ev) Messung Richtung des Magnetfeldes Simulation Elektronentemperatur (ev) ,5 Flacher Temperaturgradient in Richtung des Magnetfeldes Hoher Temperaturgradient senkrecht zum Magnetfeld Wie erwartet, da Bewegung der Elektronen senkrecht zum Magnetfeld eingeschränkt Temperaturungleichgewicht senkrecht zum Magnetfeld kann bestehen bleiben Tim Brandt 7. März

15 ECR-Plasma Vergleich Simulation und Messung: Plasmadichte Ionen bei vorherrschenden Feldstärken nicht vom Magnetfeld beeinflusst Auswertung der Plasmadichte über Ionenstrom Diagnostik Simulation 1, /m³ 1, /m³ Profil der gemessenen Plasmadichte stimmt grob mit dem Profil des simulierten Plasmas überein Tim Brandt 7. März

16 Statisches Magnetfeld wurde vermessen Magnetfeld konnte in Simulation reproduziert werden Zum ersten Mal konnte für diese Ionenquelle mittels Diagnostik die räumliche Struktur der Plasmaparameter erfasst werden Unter Verwendung einer Simulationsmethodik von COMSOL Multiphysics konnte das Profil der Plasmadichte reproduziert werden Diese Simulation zeigt auch das Profil von Parametern die nicht gemessen wurden, z.b. Energieaufnahme Zusammenfassung / Ausblick Tim Brandt 7. März

17 Tim Brandt 7. März

18 Anhang Mikrowellenfeld beschrieben durch Maxwell-Gleichungen: E = B E B = J ε t μ t J pl J = J pl + J ext J ext = oszillierender Strom der Antenne J pl = oszillierender Anteil des Plasmastroms J ext Verknüpfung des oszillierenden Plasmastroms mit dem elektrischen Wechselfeld über das Ohmsche Gesetz: J pl = σ E Bei Magnetfeld wird σ zu einem vollen Tensor: σ = en e α α 2 + B x 2 + B y 2 + B z 2 α B x αb z + B y B z B z B x αb y αb z + B y B x α B y αb x + B z B y B z B x + αb y αb x + B z B y α B z Mit α = m e e iω + ν m ω = Mikrowellenfrequenz ν m = Stoßfrequenz Tim Brandt 7. März

19 Anhang Es ist z.b. bei statischem Magnetfeld in z Richtung, B = yy-komponente des Leitfähigkeitstensors: 0,0, B z, die Der Realteil ist: Re σ yy σ yy = en e α α 2 + B z 2 α2 = n ee 2 υ m 2m e υ m ² ω Ω ² + υ m ² + υ m ² ω + Ω ² + υ m ² Ω = Gyrationsfrequenz der Elektronen Dies ist eine Resonanzfunktion Re σ yy => Bei räumlich variablem Magnetfeld: Resonanzregion stark räumlich begrenzt ω / Ω Tim Brandt 7. März

20 Anhang Berechnung des oszillierenden Plasmastroms über Ohmsches Gesetz: J = σ E Im Fall elektrisches Wechselfeld (der Mikrowelle) E = 0 E y 0 und statisches Magnetfeld B = 0 0 B z gilt: J x J y J z = en e α α 2 + B z 2 α 2 αb z 0 αb z α α B z 0 E y 0 Mit α = m e e iω + υ m ω = Mikrowellenfrequenz υ m = Stoßfrequenz Berechnung des Realteils von J y : Re(J y ) = n ee 2 υ m E y 2m e υ m ² ω Ω ² + υ m ² + υ m ² ω + Ω ² + υ m ² Tim Brandt 7. März

21 Anhang Resonanz des oszillierenden Plasmastroms bei Gyrationsfrequenz Ω => Resonanz bei der Leistungsaufnahme Ω Tim Brandt 7. März

22 Problem: Falls Magnetfeld parallel zur Sonde, können sich Elektronen nur durch Diffusion auf die Sonde zubewegen => bei hohen positiven Sondenspannungen wird der Einzugsbereich der Sonde entleert => Elektronensättigungsstrom stark reduziert, Bestimmung der Plasmadichte über Elektronensättigungsstrom nicht möglich Lösung: Ionen bei Magnetfeldstärken von um die 100 mt noch nicht beeinflusst = > Bestimmung der Plasmadichte über Ionenstrom Anhang Bohm-Formel I i = 0.61A s n i e T ek B m i 1/2 Schichtbreite: X S = 1,02 e p k B T e /2 e p k B T e λ D Schichtoberfläche: A S = 2πr p l 1 + X S r p Tim Brandt 7. März

23 Anhang Elektronentemperatur und Plasmapotential werden aus Elektronenstrom gewonnen und in Bohm-Formel Funktion (nur schwach von Elektronentemperatur abhängig) eingesetzt. Bohm-Formel Funktion wird im stark negativen Bereich an Sondenstrom gefittet, mit Plasmadichte als Variable Tim Brandt 7. März

24 Problem: Debye-Länge geht fast linear in die berechnete Plasmadichte ein. Genaue Kenntnis der Debyelänge ist nötig Debye-Länge zusammengesetzt aus Elektronen-Debyelänge und Ionen-Debyelänge 1 = n ee = λ ² D ε 0 k B T e k B T i λ ² De λ ² Di Ionentemperatur wird auf Temperatur der Quelle geschätzt, ca. 400 K Wegen der viel höheren Elektronen-Temperatur (um K)sollte mathematisch die Ionen-Debyelänge völlig dominieren Test: Bestimmung von Plasmadichte, Elektronen-Temperatur und Plasmapotential aus dem Elektronenstrom an dem Punkt mit der geringsten Feldstärke: größte Höhe, größte radiale Entfernung Berechne Debyelänge, berechne Ionenstrom Vergleiche mit realem Ionenstrom Anhang Tim Brandt 7. März

25 Anhang Weder mit Elektronen-Debyelänge (rot) noch mit Ionen-Debyelänge (schwarz) stimmt der berechnete Ionenstrom mit dem realen Ionenstrom überein! Tim Brandt 7. März

26 Lösung: Anstelle von Debyelänge verwende angepasste Abschirmlänge : Angepasste Abschirmlänge wird variiert, bis berechneter Ionenstrom mit gemessenem Ionenstrom übereinstimmt Anpassung wird an dem Punkt mit geringster magnetischer Feldstärke vorgenommen LamdaD = E-5 m Ein Wert für alle Orte Anhang Variationen von Plasmadichte und Elektronentemperatur werden nicht berücksichtigt Plasmadichte und Elektronentemperatur gehen nur als Wurzelfunktionen in die Debyelänge ein. Tim Brandt 7. März

Fortgeschrittenen Praktikum I Teil A. Langmuir-Sonde. Nils Thielke und Robert Brauer. 8. November 2012

Fortgeschrittenen Praktikum I Teil A. Langmuir-Sonde. Nils Thielke und Robert Brauer. 8. November 2012 Fortgeschrittenen Praktikum I Teil A Langmuir-Sonde Nils Thielke und Robert Brauer 8. November 2012 Wir erklären, dass wir dieses Protokoll eigenhändig anhand des angehängten Messprotokolls und der angegebenen

Mehr

Physik der Halbleitertechnologie

Physik der Halbleitertechnologie Physik der Halbleitertechnologie III: DC-Plasmen Gerhard Franz ISBN 978-3-943872-03-3 Kompetenzzentrum Nanostrukturtechnik Hochschule München http://www.gerhard-franz.org Gerhard Franz: Plasmakurs WS 2013/14

Mehr

Wechselwirkung von Ionenstrahlen mit mikro-dispersen Teilchen im Plasma

Wechselwirkung von Ionenstrahlen mit mikro-dispersen Teilchen im Plasma Institut für Experimentelle und Angewandte Physik Wechselwirkung von Ionenstrahlen mit mikro-dispersen Teilchen im Plasma H. Kersten, R. Wiese *, F. Scholze **, H. Neumann ** IEAP Universität Kiel, * INP

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer

1 Elektrostatik TUM EM-Tutorübung SS 10. Formelsammlung EM SS Fabian Steiner, Paskal Kiefer TUM EM-Tutorübung SS 1 1.5.21 Formelsammlung EM SS 21 Diese Formelsammlung dient nur zur Orientierung und stellt keinen nspruch auf ollständigkeit. Zudem darf sie während der Prüfung nicht benutzt werden,

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft

10. Elektrodynamik Das elektrische Potential. ti 10.5 Magnetische Kraft und Felder 1051M Magnetische Kraft Inhalt 10. Elektrodynamik 10.3 Das elektrische Potential 10.4 Elektrisches Feld und Potential ti 10.5 Magnetische Kraft und Felder 1051M 10.5.1 Magnetische Kraft 10.3 Das elektrische Potential ti Wir hatten

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 2 Thema: Elektrischer Strom und Magnetostatik I Technische Universität München 1 Fakultät für Physik Inhaltsverzeichnis 2 Elektrischer Strom 3 2.1

Mehr

Räumlich aufgelöste optische Emissionsspektroskopie in einer Magnetronentladung

Räumlich aufgelöste optische Emissionsspektroskopie in einer Magnetronentladung Räumlich aufgelöste optische Emissionsspektroskopie in einer Magnetronentladung B. Liebig, T. Dunger, T. Welzel, F. Richter Mühlleithen, 05.03.2008 Workshop Oberflächentechnologie mit Plasma- und Ionenprozessen

Mehr

Technische Plasmen HF-Plasmen

Technische Plasmen HF-Plasmen Technische Plasmen HF-Plasmen Technische Plasmen HF-Plasmen Wolfgang Suttrop, Max-Planck-Institut für Plasmaphysik, Garching Quelle: NIRE (JP) http://www.nire.go.jp/ silica/si/plasma/job/resactiv.htm Technische

Mehr

Plasmadiagnostik. 2 - Elektrische Messungen

Plasmadiagnostik. 2 - Elektrische Messungen Plasmadiagnostik 2 - Elektrische Messungen Volker Schulz-von der Gathen 1 Elektrische Messungen Sehr vage Formulierung Äußere Ströme und Spannungen Global Sonden Lokal DC und RF Entladungen 2 2.1 Globale

Mehr

Konzept für einen induktiv gekoppelten HF-Plasmabrückenneutralisator

Konzept für einen induktiv gekoppelten HF-Plasmabrückenneutralisator Konzept für einen induktiv gekoppelten HF-Plasmabrückenneutralisator Frank Scholze, Horst Neumann Leibniz-Institut für Oberflächenmodifizierung e.v.; Permoserstr.5; 438 Leipzig Konstruktion und Design

Mehr

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel

Das Amperesche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenzsche Regel 11. Elektrodynamik 11.5.4 Das Amperesche Gesetz 11.5.5 Der Maxwellsche Verschiebungsstrom 11.5.6 Magnetische Induktion 11.5.7 Lenzsche Regel 11.6 Maxwellsche Gleichungen 11.7 Elektromagnetische Wellen

Mehr

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt)

Übungsblatt 05 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Übungsblatt 05 PHYS300 Grundkurs IIIb Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, othmar.marti@physik.uni-ulm.de) 5. 2. 2003 oder 2.. 2004 Aufgaben. In einer Leitung, die parallel zur x-achse

Mehr

Hall-Effekt und Magnetfeldmessung

Hall-Effekt und Magnetfeldmessung Hall-Effekt und Magnetfeldmessung erweitert aus Studiengebühren Vorbereitung: Halbleiter, Bändermodell: n-leitung, p-leitung, Kraft auf Ladungsträger in elektrischen und magnetischen Feldern, Hall-Effekt,

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name: Vorname: Matrikelnummer: Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Aufgabe 12:

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Versuch IC Plasmadiagnostik mit einer (kalten) Langmuirsonde

Versuch IC Plasmadiagnostik mit einer (kalten) Langmuirsonde : Tag der Versuchsdurchführung: 16.6.2008 Spee Cornelia csaf2828@uibk.ac.at Klaus Reitberger csaf@8510@uibk.ac.at Versuch IC Plasmadiagnostik mit einer (kalten) Langmuirsonde 1. Zusammenfassung Plasmen

Mehr

Bodenreflektometrie mit POSTFEKO

Bodenreflektometrie mit POSTFEKO Bodenreflektometrie mit POSTFEKO XV. German FEKO 1 User Meeting 4.11.2013 Dr. Peter Hahne Ingenieurbüro 1 FEKO is a trademark of ALTAIR DEVELOPMENT S.A. (PTY) LTD Problemstellung: Reichweitenmessung Funkschließung

Mehr

METHODE ZUR BESTIMMUNG DER STRAHLDIVERGENZ VON IONENQUELLEN UND ELEKTRISCHEN TRIEBWERKEN

METHODE ZUR BESTIMMUNG DER STRAHLDIVERGENZ VON IONENQUELLEN UND ELEKTRISCHEN TRIEBWERKEN METHODE ZUR BESTIMMUNG DER STRAHLDIVERGENZ VON IONENQUELLEN UND ELEKTRISCHEN TRIEBWERKEN F. Scholze, C. Eichhorn, C. Bundesmann, D. Spemann IOM Leipzig Oberflächentechnologien mit Plasma- und Ionenstrahlprozessen

Mehr

2. Musterklausur in K1

2. Musterklausur in K1 Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur in K Die Klausur stellt nur eine kleine Auswahl der möglichen Themen dar. Inhalt der Klausur kann aber der gesamte

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1

Institut für Angewandte Physik LINAC AG. Prof. Dr. H. Podlech 1 Hochfrequenz-Resonatoren Prof. Dr. H. Podlech 1 Maxwellgleichungen Bedeutung?? Prof. Dr. H. Podlech 2 Maxwellgleichungen im Vakuum Prof. Dr. H. Podlech 3 Wellengleichungen 2. Maxwell-Gl. Wellengleichung

Mehr

Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung

Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung Numerisches Verfahren für Eigenwert-Probleme aus der Instabilitätstheorie der Plasma-Rand-Wechselwirkung D. Löchel Betreuer: M. Hochbruck und M. Tokar Mathematisches Institut Heinrich-Heine-Universität

Mehr

Ferienkurs Experimentalphysik Übung 4 - Musterlösung

Ferienkurs Experimentalphysik Übung 4 - Musterlösung Ferienkurs Experimentalphysik Übung 4 - Musterlösung a) Berechnung mit dem Ampèreschen Gesetz: Mit der Rechten-Hand-Regel ermittelt man die Richtung des Magnetfeldes. Also entlang den Strecken und 4 (s.

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 08.03. bzw. 12.03.2019 Elektromagnetische Felder & Wellen Frühjahrssemester 2019 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Induktion, Polarisierung und Magnetisierung

Induktion, Polarisierung und Magnetisierung Übung 2 Abgabe: 11.03. bzw. 15.03.2016 Elektromagnetische Felder & Wellen Frühjahrssemester 2016 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Induktion, Polarisierung und Magnetisierung In dieser

Mehr

Physik VI Plasmaphysik

Physik VI Plasmaphysik Physik VI Plasmaphysik Physik VI Plasmaphysik Inhaltsübersicht 1. Charakteristik des Plasmazustandes 2. Experimentelle Grundlagen der Plasmaphysik 3. Thermodynamische Gleichgewichtsplasmen 4. Plasmen im

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #23 am 06.06.2007 Vladimir Dyakonov (Klausur-)Frage des Tages Zeigen Sie mithilfe des Ampere

Mehr

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale

Virialentwicklung. Janek Landsberg Fakultät für Physik, LMU München. Janek Landsberg. Die Virialentwicklung. Verschiedene Potentiale Die Warum Fakultät für Physik, LMU München 14.06.2006 Die Warum 1 Die Der zweite Virialkoeffizient 2 Hard-Sphere-Potential Lennard-Jones-Potential 3 Warum 4 Bsp. Hard-Sphere-Potential Asakura-Oosawa-Potential

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 06. 07. 2009 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Elektrizitätslehre und Magnetismus 06. 07. 2009

Mehr

Einführung in die Plasmaphysik. Hochfrequenz-geheizte Niedertemperaturplasmen. Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik D Garching

Einführung in die Plasmaphysik. Hochfrequenz-geheizte Niedertemperaturplasmen. Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik D Garching Einführung Plasmaphysik HF-Niedertemperaturplasmen Einführung in die Plasmaphysik Hochfrequenz-geheizte Niedertemperaturplasmen Wolfgang Suttrop Max-Planck-Institut für Plasmaphysik D-85740 Garching Einführung

Mehr

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007)

Physik II für Bauingenieure. Vorlesung 03 (08. Mai 2007) Physik II für Bauingenieure Vorlesung 03 (08. Mai 2007) http://homepage.rub.de/daniel.haegele Prof. D. Hägele Vorlesung Stoff umfangreich, Zeit knapp. Probleme beim Verständnis der Vorlesung Übungen. Schulgrundlagen

Mehr

6.4.4 Elihu-Thomson ****** 1 Motivation

6.4.4 Elihu-Thomson ****** 1 Motivation V644 6.4.4 ****** 1 Motivation Ein als Sekundärspule dienender geschlossener Aluminiumring wird durch Selbstinduktion von der Primärspule abgestossen und in die Höhe geschleudert. Ein offener Aluminiumring

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektrizität und Magnetismus IV.5 Elektromagnetische Wellen Physik für Mediziner 1 Elektromagnetische Wellen Physik für Mediziner 2 Wiederholung: Schwingkreis elektrische Feld im Kondensator wird periodisch

Mehr

REPORT. Untersuchungen von Arbeitsplätzen in hochfrequenten Feldern. Allgemeine Unfallversicherungsanstalt. Nummer 1

REPORT. Untersuchungen von Arbeitsplätzen in hochfrequenten Feldern. Allgemeine Unfallversicherungsanstalt. Nummer 1 REPORT Untersuchungen von Arbeitsplätzen in hochfrequenten Feldern Nummer 1 Allgemeine Unfallversicherungsanstalt Forschungsbericht Untersuchungen von Arbeitsplätzen in hochfrequenten Feldern Untersuchungsmethoden

Mehr

Aufgabe I: Fusionsreaktor und Sonne

Aufgabe I: Fusionsreaktor und Sonne Europa-Gymnasium Wörth Abiturprüfung 2012 Leistungskurs Physik LK2 Aufgabe I: Fusionsreaktor und Sonne Leistungsfachanforderungen Hilfsmittel Formelsammlung (war im Unterricht erstellt worden) Tabelle

Mehr

Experimentalphysik 2

Experimentalphysik 2 Repetitorium zu Experimentalphysik 2 Ferienkurs am Physik-Department der Technischen Universität München Gerd Meisl 5. August 2008 Inhaltsverzeichnis 1 Übungsaufgaben 2 1.1 Übungsaufgaben....................................

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Glanz und Farbe der Metalle

Glanz und Farbe der Metalle https://www.itp.uni-hannover.de/zawischa.html Glanz und Farbe der Metalle Dietrich Zawischa ITP, Leibniz University Hannover, Germany Ausgehend von den Maxwellgleichungen soll das Reflexionsvermögen von

Mehr

Elektrostaitische Felder

Elektrostaitische Felder Elektrostaitische Felder Grundlagen zu den elektrischen Felder 1 homogenes Feld des Plattenkondensators inhomogenes Feld einer Punktladung Bei einem Plattenkondensator verlaufen die Feldlinien parallel

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Höhere Experimentalphysik 1

Höhere Experimentalphysik 1 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 3. Vorlesung 10.11.2017 Zusammenfassung der letzten Vorlesung Ladungen können auch bewegt werden dann aber gilt eine gänzlich andere

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 4. Vorlesung 9.5.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Höhere Experimentalphysik 2

Höhere Experimentalphysik 2 Höhere Experimentalphysik 2 Institut für Angewandte Physik Goethe-Universität Frankfurt am Main 2. Vorlesung 24.04.2015 Organisatorisches Um die Creditpoints für die Veranstaltung zu erhalten müssen die

Mehr

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

LK Lorentzkraft. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2 LK Lorentzkraft Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfeld dünner Leiter und Spulen......... 2 2.2 Lorentzkraft........................

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen

Abiturprüfung Physik, Grundkurs. Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Seite 1 von 6 Abiturprüfung 2012 Physik, Grundkurs Aufgabenstellung: Aufgabe: Die Helmholtzspule, die Messung des Erdmagnetfeldes sowie seine Wirkung auf geladene Teilchen Ein homogenes Magnetfeld in einem

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

Plasmatechnologie für Medizin und Pharmazie

Plasmatechnologie für Medizin und Pharmazie Powered by Seiten-Adresse: https://www.gesundheitsindustriebw.de/de/fachbeitrag/aktuell/plasmatechnologie-fuermedizin-und-pharmazie/ Plasmatechnologie für Medizin und Pharmazie In der Medizin kommen häufig

Mehr

Plasmaphysik X. Plasmadiagnostik. Gerhard Franz ISBN

Plasmaphysik X. Plasmadiagnostik. Gerhard Franz ISBN Plasmaphysik X Plasmadiagnostik Gerhard Franz ISBN 978-3-94387-03-3 3. Oktober 014 Inhaltsverzeichnis 1 Plasma-Analytik 3 1.1 Langmuir-Sonde.............................. 4 1. Optische Emissions-Spektroskopie

Mehr

6.4.2 Induktion erzeugt Gegenkraft ******

6.4.2 Induktion erzeugt Gegenkraft ****** V642 6.4.2 ****** Motivation Ein permanenter Stabmagnet wird durch einen luminiumring bewegt. Der dabei im Ring fliessende Induktionsstrom bewirkt, dass der Ring der Bewegung des Stabmagneten folgt. 2

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um

Mehr

ÜBUNGEN UR THEORETISCHEN PHYSIK C Bewertungsschema für Bachelor Punkte Note < 6 5. 6-7.5 4.7 8-9.5 4. -.5 3.7-3.5 3.3 4-5.5 3. 6-7.5.7 8-9.5.3 3-3.5. 3-33.5.7 34-35.5.3 36-4. nicht bestanden bestanden

Mehr

Versuchsvorbereitung P1-80: Magnetfeldmessung

Versuchsvorbereitung P1-80: Magnetfeldmessung Versuchsvorbereitung P1-80: Magnetfeldmessung Kathrin Ender Gruppe 10 5. Januar 2008 Inhaltsverzeichnis 1 Induktivität einer Spule 2 1.1 Entmagnetisieren des Kerns............................ 2 1.2 Induktiver

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 311 Hall-Effekt und Elektrizitätsleitung bei Metallen und Durchgeführt am: 13 Februar 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 Hall-Effekt.............................

Mehr

Physikalisches Anfängerpraktikum Teil 1 Versuch 1 73: Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll

Physikalisches Anfängerpraktikum Teil 1 Versuch 1 73: Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll Physikalisches Anfängerpraktikum eil 1 Versuch 1 73: Stromdurchflossene Leiter im Magnetfeld, Halleffekt Protokoll Gruppe 13: Marc A. Donges , 1060028 Michael Schüssler, 1228119 2004 09

Mehr

11. Elektronen im Festkörper

11. Elektronen im Festkörper 11. Elektronen im Festkörper 11.1 Elektrische Leitung in Festkörpern Ohmsches Gesetz Wiedemann-Franz-Gesetz Drude-Modell und Erweiterungen WS 2013/14 1 Theorien zur elektrischen Leitung in Metallen Um

Mehr

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13.

Teil VI. Das elektromagnetische Feld in Materie. 13. Makroskopische Felder. f( x, t) = d 3 ξ dτ f( x + ξ, t + τ) (13.1) E + B t = 0 (13. 13. Makroskopische Felder Teil VI Das elektromagnetische Feld in Materie Im Prinzip erlauben die Maxwell-Gleichungen von Teil III das elektromagnetische Feld beliebiger Materieanordnungen zu berechnen,

Mehr

LernJob Naturwissenschaften - Physik Funktion einer Magnetfeldsensors

LernJob Naturwissenschaften - Physik Funktion einer Magnetfeldsensors LernJob Naturwissenschaften - Physik Funktion einer Magnetfeldsensors Lernbereich: 5. Felder als Modell zur Beschreibung elektromagnetischer Phänomene nutzen Zeitrichtwert: 90 Minuten Index: BGY PH 5.3.2c

Mehr

Lösung der Problemstellung 1

Lösung der Problemstellung 1 Lösung der Problemstellung 1 1. Zunächst untersuchen wir die Wechselwirkung nach dem Thomson-Modell: Da das α Teilchen sehr viel kleiner als das Goldatom ist, sehen wir es als punktförmig an. Das Goldatom

Mehr

Elektromagnetische Feldtheorie 1

Elektromagnetische Feldtheorie 1 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 09 Elektromagnetische Feldtheorie 1 Donnerstag, 17. 09. 2009, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 05. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 05. 06.

Mehr

Mit 184 Bildern und 9 Tabellen

Mit 184 Bildern und 9 Tabellen Physik II Elektrodynamik Einfuhrungskurs für Studierende der Naturwissenschaften und Elektrotechnik von Klaus Dransfeld und Paul Kienle Bearbeitet von Paul Berberich 5., verbesserte Auflage Mit 184 Bildern

Mehr

5 Quasistationäre Felder. 5.1 Poyntingvektor

5 Quasistationäre Felder. 5.1 Poyntingvektor Das quasistationäre Feld 3 5 Quasistationäre Felder 5.1 Poyntingvektor 5.1 Für ein Koaxialkabel mit gegebenen Radien soll mit Hilfe des Poynting schen Vektors der Nachweis geführt werden, dass a) die transportierte

Mehr

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2

Wechselstromwiderstände (Impedanzen) Parallel- und Reihenschaltungen. RGes = R1 + R2 LGes = L1 + L2 Wechselstromwiderstände (Impedanzen) Ohm'scher Widerstand R: Kondensator mit Kapazität C: Spule mit Induktivität L: RwR = R RwC = 1/(ωC) RwL = ωl Parallel- und Reihenschaltungen bei der Reihenschaltung

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

Klausur 2 Kurs 11Ph1e Physik

Klausur 2 Kurs 11Ph1e Physik 2-2-06 Klausur 2 Kurs Phe Physik Lösung Ein stromdurchflossener Leiter ist so in einem Magnetfeld mit konstanter Feldstärke B aufgehängt, dass der Strom überall senkrecht zu den magnetischen Feldlinien

Mehr

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld

Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung. 1. Elektrisches Feld Ziel: Kennenlernen von Feldverläufen und Methoden der Feldmessung 1. Elektrisches Feld 1.1 Nehmen Sie den Potentialverlauf einer der folgenden Elektrodenanordnungen auf: - Plattenkondensator mit Störung

Mehr

3. Klausur in K1 am

3. Klausur in K1 am Name: Punkte: Note: Ø: Kernfach Physik Abzüge für Darstellung: Rundung: 3. Klausur in K am.. 0 Achte auf gute Darstellung und vergiss nicht Geg., Ges., Formeln herleiten, Einheiten, Rundung...! 9 Elementarladung:

Mehr

Lösungen I km/h. 2. (a) Energieerhaltung (b) Impulserhaltung

Lösungen I km/h. 2. (a) Energieerhaltung (b) Impulserhaltung Lösungen I.1 1. 33 km/h. (a) Energieerhaltung (b) Impulserhaltung Lösungen II.1 1.1 T ~ a 3 T nimmt mit a streng monoton zu; wenn a zwischen den Werten für Mars und Jupiter liegt, dann muss also auch T

Mehr

Verteidigung der Diplomarbeit. Mathias Magdowski

Verteidigung der Diplomarbeit. Mathias Magdowski Verteidigung der Diplomarbeit Entwicklung und Validierung eines Werkzeugs zur Berechnung der elektromagnetischen Einkopplung von stochastischen Feldern in Leitungsstrukturen Mathias Magdowski Otto-von-Guericke

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11

Elektromagnetische Felder und Wellen. Klausur Frühjahr Aufgabe 1 (3 Punkte) Aufgabe 2 (5 Punkte) k 21. k 11 H 11 Elektromagnetische Felder und Wellen: Klausur Frühjahr 2006 1 Elektromagnetische Felder und Wellen Klausur Frühjahr 2006 Aufgabe 1 (3 Punkte) Eine Leiterschleife mit dem Mittelpunkt r L = 2a e z und Radius

Mehr

Elektrisches Potenzial Kapitel 25

Elektrisches Potenzial Kapitel 25 Elektrisches Potenzial Kapitel 25 Zusammenfassung Coulomb (22) gleiche Ladungen stoßen sich ab ungleiche Ladungen ziehen sich an Das elektrische Feld (23) Ein geladener Körper beeinflusst einen anderen

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

Übung zu Drahtlose Kommunikation. 4. Übung

Übung zu Drahtlose Kommunikation. 4. Übung Übung zu Drahtlose Kommunikation 4. Übung 12.11.2012 Aufgabe 1 Erläutern Sie die Begriffe Nah- und Fernfeld! Nahfeld und Fernfeld beschreiben die elektrischen und magnetischen Felder und deren Wechselwirkungen

Mehr

d. h. die Summe der positiven und negativen Ladungsträger, welche in einer Zeit t durch eine senkrecht stehende Fläche A treten: I = I +

d. h. die Summe der positiven und negativen Ladungsträger, welche in einer Zeit t durch eine senkrecht stehende Fläche A treten: I = I + Elektrolyte Teil II Solvatation, elektrische Leitfähigkeit, starke und schwache Elektrolyte, Ionenstärke, Debye Hückeltheorie, Migration, Diffusion, Festelektrolyte Wie hängt der Strom von der Geschwindigkeit

Mehr

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern

TP2: Elektrodynamik WS Arbeitsblatt 10 21/ Dipole und Multipole in stationären Feldern TP2: Elektrodynamik WS 2017-2018 Arbeitsblatt 10 21/22.12. 2017 Dipole und Multipole in stationären Feldern Die Multipolentwicklung ist eine hilfreiche Näherung zur Lösung der Poisson Gleichung, wenn eine

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #5 am 27.04.2007 Vladimir Dyakonov Frage des Tages Kupfermünze hat die Masse 0.003 kg Atomzahl

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 3.November 004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Feldmessung - 1 Aufgaben: 1. Elektrisches Feld 1.1 Nehmen Sie den Potenziallinienverlauf einer der

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen

Aufbau von Atomen Anzahl der Protonen = Anzahl der Elektronen Aufbau von Atomen Ein Atom besteht aus einem positiv geladenen Atomkern und einer negativ geladenen Atomhülle. Träger der positiven Ladung sind Protonen, Träger der negativen Ladung sind Elektronen. Atomhülle

Mehr

3ω Messung an dünnen Schichten Eine Unsicherheitsanalyse

3ω Messung an dünnen Schichten Eine Unsicherheitsanalyse Bayerisches Zentrum für Angewandte Energieforschung e.v. 3ω Messung an dünnen Schichten Eine Unsicherheitsanalyse S. Rausch AK Thermophysik, Graz 2012 3ω METHODE - PRINZIP Messverfahren zur Bestimmung

Mehr

Spulenanordnung nach Helmholtz, zur dynamischen Untersuchung von Magnetfeldsensoren bei veränderlicher Umgebungstemperatur

Spulenanordnung nach Helmholtz, zur dynamischen Untersuchung von Magnetfeldsensoren bei veränderlicher Umgebungstemperatur Spulenanordnung nach Helmholtz, zur dynamischen Untersuchung von Magnetfeldsensoren bei veränderlicher Umgebungstemperatur Magnetics 4 Freaks Präsentation 20. Mai 2015 Autoren: Dipl.-Ing. (FH) Ralph Wystup

Mehr

Magnetismus. Prof. DI Michael Steiner

Magnetismus. Prof. DI Michael Steiner Magnetismus Prof. DI Michael Steiner www.htl1-klagenfurt.at Magnetismus Natürlicher Künstlicher Magneteisenstein Magnetit Permanentmagnete Stabmagnet Ringmagnet Hufeisenmagnet Magnetnadel Temporäre Magnete

Mehr

Schriftliche Prüfung zur Feststellung der Hochschuleignung

Schriftliche Prüfung zur Feststellung der Hochschuleignung Freie Universität Berlin Schriftliche Prüfung zur Feststellung der Hochschuleignung T-Kurs Fach Physik (Musterklausur) Von den vier Aufgabenvorschlägen sind drei vollständig zu bearbeiten. Bearbeitungszeit:

Mehr

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur

Aufgabe 1 ( 5 Punkte) Aufgabe 2 ( 6 Punkte) Aufgabe 3 ( 12 Punkte) Lösung. Lösung. Elektromagnetische Felder und Wellen: Lösung zur Klausur Elektromagnetische Felder und Wellen: zur Klausur 2015-1 1 Aufgabe 1 ( 5 Punkte) Ein Elektronenstrahl ist entlang der z-achse gerichtet. Bei z = 0 und bei z = L befindet sich jeweils eine Lochblende, welche

Mehr

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel

Das Ampere sche Gesetz Der Maxwellsche Verschiebungsstrom Magnetische Induktion Lenz sche Regel 10. Elektrodynamik 10.5.4 Das Ampere sche Gesetz 10.5.5 Der Maxwellsche Verschiebungsstrom 10.5.6 Magnetische Induktion 10.5.7 Lenz sche Regel 10.6 Maxwell sche Gleichungen 10.7 Elektromagnetische Wellen

Mehr

Rechnerische Ermittlung des Zusammenhangs zwischen Sendeleistung und SAR-Wert. M. Schick. EM Software & Systems GmbH, Böblingen, Germany

Rechnerische Ermittlung des Zusammenhangs zwischen Sendeleistung und SAR-Wert. M. Schick. EM Software & Systems GmbH, Böblingen, Germany Rechnerische Ermittlung des Zusammenhangs zwischen Sendeleistung und SAR-Wert M. Schick EM Software & Systems GmbH, Böblingen, Germany, Neuherberg, Übersicht Anwendungsbeispiele aus der Praxis Voruntersuchung

Mehr

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt

Chern-Simons Theorie. Thomas Unden, Sabrina Kröner 01. Feb Theorie der kondensierten Materie. Fraktionaler Quanten-Hall-Effekt Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012 Theorie der kondensierten Materie Fraktionaler Quanten-Hall-Effekt Seite 2 Chern-Simons Theorie Thomas Unden, Sabrina Kröner 01. Feb. 2012

Mehr

A. El Ouardi, T. Reinhardt, J. Streckert, A. Bitz, V. Hansen Lehrstuhl für Theoretische Elektrotechnik Universität Wuppertal, Deutschland

A. El Ouardi, T. Reinhardt, J. Streckert, A. Bitz, V. Hansen Lehrstuhl für Theoretische Elektrotechnik Universität Wuppertal, Deutschland Expositionseinrichtung zur Untersuchung des Einflusses hochfrequenter elektromagnetischer Felder der Mobilfunkkommunikation auf Haarzellen im Hörsystem. A. El Ouardi, T. Reinhardt, J. Streckert, A. Bitz,

Mehr

Ohmscher Spannungsteiler

Ohmscher Spannungsteiler Fakultät Technik Bereich Informationstechnik Ohmscher Spannungsteiler Beispielbericht Blockveranstaltung im SS2006 Technische Dokumentation von M. Mustermann Fakultät Technik Bereich Informationstechnik

Mehr

Spezifische Ladung des Elektrons

Spezifische Ladung des Elektrons Spezifische Ladung des Elektrons 1. Aufgaben 1. Die von einer Spule (a) und von einer Helmholtz-Spulenanordnung (b) erzeugte magnetische Flußdichte ist längs der Rotationssymmetrieachse zu messen und grafisch

Mehr