Die Lorentz-Transformation
|
|
|
- Erna Maier
- vor 9 Jahren
- Abrufe
Transkript
1 Bernhard Szallies Die Lorentz-Transformation Die Lorentz-Transformation stellt die rehnerishe Beziehung zwishen den Ortskoordinaten und der Zeitkoordinate eines Ereignisses bezüglih zweier Inertialsysteme her, die sih gegeneinander mit einer Relatigeshwindigkeit om Betrag = konst. bewegen. Sie ersetzt in der speziellen Relatiitätstheorie die Galilei-Transformation der auf Galilei und Newton zurükgehenden klassishen Mehanik. Die Lorentz-Transformation ist die Grundlage für die relatiistishe Kinematik und die relatiistishe Dynamik. Sie führt (u. a.) zu den Formeln für die relatiistishe Addition on Geshwindigkeiten, für die Zeitdilatation, die Längenkontraktion, die relatiistishe Masse und die Äquialenz on Masse und Energie mit der berühmten Formel E = m. Gegeben seien zwei Inertialsysteme mit den kartesishen Koordinatensystemen S und S' (s. Abb.). Ein Ereignis wird in S durh die Koordinaten x, y, z, t festgelegt, in S' durh die Koordinaten x', y', z', t'. Die x'-ahse falle mit der x- Ahse zusammen, y'- und y-ahse sowie z'- und z-ahse seien parallel. Das System S' bewege sih gegenüber dem System S mit der Relatigeshwindigkeit om Betrag > 0 in Rihtung der positien x-ahse. Zur Zeit t = t' = 0 sollen die Ursprünge beider Koordinatensysteme zusammenfallen. In beiden Systemen sollen öllig gleihe Uhren zur Zeitmessung benutzt werden. Die Uhren in einem System seien jeweils untereinander synhronisiert.
2 - - In der klassishen Mehanik werden die Koordinaten eines Ereignisses on einem Inertialsystem in das andere mit Hilfe der Galilei-Transformation umgerehnet. Für den Zusammenhang on x- und x'-koordinate ergibt sih hier: x = x' + t' und x' = x t mit t = t'. Die Galilei-Transformation berüksihtigt das Relatiitätsprinzip der Mehanik wie auh dessen Erweiterung, das Relatiitätsprinzip der Physik, also die Gleihwertigkeit aller Inertialsysteme zur Beshreibung aller physikalishen Vorgänge, niht aber die Konstanz der Lihtgeshwindigkeit. Nah der klassishen Addition der Geshwindigkeiten müssten sih alle im System S gemessenen Geshwindigkeiten um on den jeweils in S' gemessenen untersheiden (u = u' + ). Dies widerspriht aber für u = der Konstanz der Lihtgeshwindigkeit (u = u' = ). Durh Einführung eines Korrekturfaktors γ in die Galilei-Transformation kann diese derart erweitert werden, dass neben dem Relatiitätsprinzip auh die Konstanz der Lihtgeshwindigkeit berüksihtigt wird. Für die Transformation der x- bzw. x'-koordinate, die in der Galilei-Transformation x = x' + t' und x' = x t lautet, wird der Ansatz x = γ (x' + t') und x' = γ (x t) gewählt. Infolge des Relatiitätsprinzips der Physik (die Systeme S und S' sind gleihwertig) muss in beiden Gleihungen der gleihe Korrekturfaktor γ stehen. Einige Vorüberlegungen zum Korrekturfaktor γ : Der Korrekturfaktor γ wird weder on der Orts-, noh on der Zeitkoordinate abhängig sein, da alle Raum- und Zeitpunkte gleihberehtigt sind. Dagegen wird er on der Relatigeshwindigkeit abhängen: γ = γ(). Für 0 muss γ() gehen: γ(0) = (Übergang zur Galilei-Transformation, für = 0 fallen S und S' ständig zusammen). Außerdem muss γ( ) = γ() sein, da wegen der Gleihwertigkeit der Systeme S und S' die Vertaushungsregeln wie bei der Galilei-Transformation gelten müssen. Die Gleihungen zur Umrehnung der Koordinaten on einem System in das andere gehen danah auseinander heror, indem man x durh x', y durh y', z durh z', t durh t', durh ' = ersetzt und umgekehrt. γ( ) = γ() könnte z. B durh γ( ) erfüllt werden. Eine Dimensionsbetrahtung des Korrekturansatzes zeigt zudem (wie shon die betrahteten Sonderfälle), dass γ eine dimensionslose Zahl sein muss, sih die Einheit on also rauskürzen muss. Das könnte z. B. durh γ( / ) erfüllt werden.
3 - 3 - Der Korrekturfaktor γ wird wie folgt bestimmt: Zur Zeit t = t' = 0 (wenn also nah Voraussetzung beide Koordinatensysteme gerade zusammenfallen) werde im Ursprung on S ein Lihtblitz ausgesendet. Das Liht legt im System S entlang der x-ahse bis zu einem Punkt P in der Zeit t den Weg x = t zurük, im System S' den Weg x' = t', denn die Lihtgeshwindigkeit hat in beiden Systemen den selben Wert. Da x x', ist auh t t'. Aus der Konstanz der Lihtgeshwindigkeit folgt also, dass in den Systemen S und S' untershiedlihe Zeitspannen für den gleihen Vorgang gemessen werden. Dies erfordert die Einführung einer jeweils eigenen Systemzeit für die Systeme S und S' und eine Transformationsgleihung zur Umrehnung der Systemzeiten t und t' ineinander. Setzt man t = x/ und t' = x'/ in den obigen Korrekturansatz ein, so folgt: x x x = γ x + und x = γ x x = γ x + und x = γ x. Durh Multiplikation der linken sowie der rehten Seiten beider Gleihungen ergibt sih: x x x x = γ. Daraus folgt γ =. Da γ > 0 sein muss wegen γ(0) =, folgt daraus der Korrekturfaktor γ zu γ = mit <. - Die in den Systemen S und S' untershiedlih ablaufende Zeit (t t') bedingt entsprehende Transformationsgleihungen für die Zeit. Mit t = x/ folgt t x = γ + t.
4 - 4 - Mit t' = x'/ folgt weiter t = γ t + x. Die entsprehende Gleihung für t' erhält man nah dem Relatiitätsprinzip, indem man t durh t', t' durh t, x' durh x und durh ersetzt: t = γ t x. Da die Relatibewegung längs der x-ahse erfolgt, transformieren sih die beiden anderen Ortskoordinaten ohne Änderung: y = y', z = z' und umgekehrt. Als Konsequenz aus dem Relatiitätsprinzip der Physik und der Konstanz der Lihtgeshwindigkeit muss die Galilei-Transformation durh die sogen. Lorentz-Transformation ersetzt werden. Die Gleihungen der Lorentz-Transformation lauten: ( ) γ ( ) x = γ x + t x = x t y = y y = y z = z z = z x x t = γ t + t t = γ mit γ = Die Lorentz-Transformation erfüllt die Vertaushungsregeln. Der relatiistishe (Korrektur-) Faktor γ, der auh als Lorentz-Faktor bezeihnet wird, hat, wie oben gefordert, wegen (-) = in beiden Systemen den gleihen Wert. Ein reeller (und endliher) Wert für γ ergibt sih nur für <. Hierin kommt die Lihtgeshwindigkeit als Grenzgeshwindigkeit zum Ausdruk.
5 - 5 - Der Wert des Lorentz-Faktors γ hängt om Betrag der Relatigeshwindigkeit beider Systeme ab. Stets gilt γ. Für 0 geht γ, die Lorentz- Transformation geht also in die Galilei-Transformation über, wenn die Relatigeshwindigkeit zweier Inertialsysteme klein gegenüber der Lihtgeshwindigkeit ist. Die auf Galilei und Newton zurükgehende klassishe Physik ist als Grenzfall für << (und damit γ ) in der umfassenderen on Albert Einstein begründeten relatiistishen Physik enthalten. Häufig wird / = β gesetzt. Damit ergibt sih der Lorentz-Faktor zu γ = β Merklihe Abweihungen der Lorentz-Transformation on der Galilei- Transformation ergeben sih erst für ergleihsweise hohe Relatigeshwindigkeiten, wie den nahfolgenden Werten für γ zu entnehmen ist: = 3600 km/h = 0 3 m/s γ, = 0,, m/s γ,005 = 0,5, m/s γ,55 = 0,9, m/s γ,94 = 0,99, m/s γ 7,089 = 0,999, m/s γ,37 Für ginge γ und die Lorentz-Transformation damit in die Galilei- Transformation über. Dies zeigt die Rolle der Endlihkeit der Signalgeshwindigkeit für die Beshreibung on Ereignissen bezüglih untershiedliher Inertialsysteme. Albert Einstein ( ) hat bei der Abfassung der speziellen Relatiitätstheorie (905) für obige Transformationsgleihungen die Bezeihnung Lorentz-Transformation benutzt. Der niederländishe Physiker Hendrik Antoon Lorentz (853 98) hatte diese Gleihungen bereits 899 in anderem Zusammenhang aufgestellt. Näheres zur speziellen Relatiitätstheorie in: Szallies, Physik, Auer-Verlag
Relativitätstheorie und philosophische Gegenargumente II
Didaktik der hysik Frühjahrstagung Hannoer 00 Relatiitätstheorie und philosophishe Gegenargumente II J. Brandes* *Danziger Str. 65, D 76307 Karlsbad, e-mail: [email protected] Kurzfassung.) Es werden
1.5 Relativistische Kinematik
1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das
32. Lebensdauer von Myonen 5+5 = 10 Punkte
PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html
Kurzfassung der speziellen Relativitätstheorie
Kurzfassung der speziellen Relatiitätstheorie Olier Passon Raum, Zeit und Bewegungszustände in der klassishen Physik Bereits in der klassishen Mehanik (also der Theorie Newtons) gilt, dass sih keine absolute
Exkurs: Koordinatensysteme
Exkurs: Koordinatensysteme Herleitung der Raum-Zeit-Diagramme Das ist unsere Raumzeit. So mögen wir sie: Ordentlih, gerade und aufgeräumt. Der vertikale Pfeil bildet unsere Zeitlinie t. Der horizontale
6. Aufgaben zur speziellen Relativitätstheorie
6. Aufgaben zur speziellen Relatiitätstheorie Aufgabe : Inertialsysteme Der Ursprung des Koordinatensystems S sitzt am hinteren Ende eines x m langen, unten dunkel gefärbten Zuges, welher mit 7 km/h in
Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Fabian Gundlah 13. Oktober 2010 Die spezielle Relativitätstheorie untersuht die vershiedenen Sihtweisen von Beobahtern in Inertialsystemen. Ein Inertialsystem ist dabei ein
Etwas Relativitätstheorie. 2.3 Relativitätsprinzip, Konstanz der Lichtgeschwindigkeit
Etwas Relatiitätstheorie.3 Relatiitätsprinzip, Konstanz der Lihtgeshwindigkeit 864, Mawell: ereinheitlihte Theorie der elektr. u. magn. Felder (4 Mawell-Gleihungen) Elektromagn. Wellen, Geshw. = = 9979
2. Wellenausbreitung
2. Wellenausbreitung Die Wellengleihung beshreibt die Bewegung des Stabes: 2 u t 2 =2 2 u x 2 Für die eindeutige Festlegung der Lösung müssen zusätzlih Anfangsbedingungen und Randbedingungen angegeben
Planungsblatt Physik für die 8B
Planungsblatt Physik für die 8B Wohe 5 (von 03.10 bis 07.10) Hausaufgaben 1 Bis Freitag 07.10: Lerne die Notizen von Dienstag! Aufgabe zum Nahdenken: Ein Raumshiff fliegt an der Erde vorbei; sein Geshwindigkeit
Relativitätstheorie. Relativitätstheorie 345. Um das Jahr 1600. Um das Jahr 1900. Um das Jahr 2000. Wie wird es im Jahr 2200 aussehen?
Relatiitätstheorie Zeitreisen Reisen in die Vergangenheit oder Zukunft sind beliebte Themen für Siene- Fition-Romane. Darin lassen sih mit Hilfe on Zeitmashinen Personen in beliebige Epohen ersetzen. Man
Ist Zeit relativ? Posten Einleitung
Posten 3 Ist Zeit relati? Sozialform: Bearbeitungszeit: Voraussetzung: Partnerarbeit 30 Minuten Posten 1 Einsteins Postulate 3.1 Einleitung Die Postulate on Einstein so kurz und erständlih sie auh zu sein
Relativistisch kovariante Formulierung der Elektrodynamik
KAPITEL III Relativistish kovariante Formulierung der Elektrodynamik Die Spezielle Relativitätstheorie wurde gerade entwikelt, um die Konstanz der Lihtgeshwindigkeit im Vakuum in allen Inertialsystemen
Schriftliche Abiturprüfung 2005 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)
Shriftlihe Abiturprüfung 5 Sahsen-Anhalt Physik 3 n (Leistungskursnieau) Thea G: Untersuhungen on Bewegungen Betrahtungen zur Relatiität Die Huygens'she Theorie on der Ausbreitung einer Welle erlangt nah
IX.3 Potentiale und Felder einer bewegten Punktladung
N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine
Konsequenzen der Konstanz der Lichtgeschwindigkeit
Konsequenzen der Konstanz der Lichtgeschwindigkeit Wir beginnen mit einer kurzen Zusammenfassung einiger Dinge, die am Ende des vorigen Semesters behandelt wurden. Neben dem Relativitätspostulat Die Gesetze
Ferienkurs Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols
21 Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.
Physik I Übung 11 - Lösungshinweise
Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr
Spezielle Relativitätstheorie * Projekttage im Juli 2016 am EMG
Spezielle Relatiitätstheorie * Projekttage im Juli 06 am EMG. Konstanz der Lihtgeshwindigkeit a) Shallwellen Shallwellen breiten sih in der Luft aus. Die Höhe eines Tons hängt on der Wellenlänge λ bzw.
Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie
Materialien für Unterriht und Studium Zum Zwillingsparadoxon in der Speziellen Relativitätstheorie von Georg Bernhardt 5. Oktober 017 Beshreibt das Zwillingsparadoxon tatsählih eine logishe Inkonsistenz
Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Proseminar: Kosmologie und Teilchenphysik von Evangelos Nagel Physik vor dem 20. Jhd. Newton (Principia Mathematica): Der absolute Raum bleibt vermöge seiner Natur und ohne
VORANSICHT II/D. Das Michelson-Morley-Experiment. Der Beitrag im Überblick. Spiegel. Strahlenteiler. Spiegel. Laser. Schirm. Interferenz- Muster
7. Das Mihelson-Morley-Experiment on 6 Das Mihelson-Morley-Experiment Axel Donges, Isny im Allgäu Mit dem Mihelson-Morley-Experiment sollte die Existenz des Äthers eines hypothetishen Mediums, in dem sih
Senkrechter freier Fall
Senkrehter freier Fall Die Raumzeitkrümmung in der Shwarzshildmetrik [] zeigt sih unter anderem darin, dass die Zeit in der Nähe des Zentralkörpers langsamer läuft Um diesen Effekt zu veranshaulihen, soll
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub 6. Dezember 2004 2 Inhaltsverzeichnis 2 spezielle Relativitätstheorie
Lichtgeschwindigkeit
Lihtgeshwindigkeit Die Lihtgeshwindigkeit beträgt konstant a. 300 000 km/s = 3*0 8 m/s. Für unsere Betrahtung genügt diese Genauigkeit. Nihts kann shneller als die Lihtgeshwindigkeit sein. Der Begriff
Bewegungsgleichung der Speziellen Relativitätstheorie
Ator: Walter islin on 6 walter.bislins.h/blog/.5.3 3:6 ewegngsgleihng der Seiellen Relatiitätstheorie Dienstag, 6. Jni - :4 Ator: wabis Themen: Wissen, Physik, Kosmologie Wenn es m Geshwindigkeiten ab
Theoretische Physik III (Elektrodynamik)
Theoretishe Physik III (Elektrodynamik) Prof. Dr. Th. eldmann. Juni 203 Kurzzusammenfassung Vorlesung 3 vom 28.5.203 5. Zeitabhängige elder, Elektromagnetishe Strahlung Bisher: Elektrostatik und Magnetostatik
Magnetostatik. Ströme und Lorentzkraft
Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme 3. Käfte auf bewegte Ladungen im Magnetfeld i. Käfte im Magnetfeld Loentzkaft ii. Käfte zwishen Leiten iii. Kaft auf eine bewegte Ladungen i.
12. Lagrange-Formalismus III
Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray [email protected] Übung.: Eine Gitarrensaite Wir betrahten
Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand
Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche
7.5 Relativistische Bewegungsgleichung
7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt
Pool für das Jahr 2017
Gemeinsame Abituraufgabenpools der Länder Pool für das Jahr 17 Aufgabe für das Fah Mathematik Kurzbeshreibung Anforderungsniveau Prüfungsteil Sahgebiet digitales Hilfsmittel erhöht B Analysis WTR 1 Aufgabe
ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE
ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Kapitel 9: Relativistishe Elektrodynamik Vorlesung für Studenten der Tehnishen Physik Helmut Nowotny Tehnishe Universität Wien Institut für Theoretishe Physik 7.,
4. Ausbreitung elektromagnetischer Wellenfelder in Hohlleitern
4. Ausbreitung elektromagnetisher Wellenfelder in ohlleitern Weil das Modell Lihtstrahl nur bestimmte Aspekte der Lihtausbreitung korrekt wiedergibt, wurde zur Erklärung der Aberration zusätzlih zur Lihtgeshwindigkeit
Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert.
R. Brinkmann http://brinkmann-du.de Seite.9. Vektoren im kartesishen Koordinatensystem Rehengesetze für Vektoren in Koordinatendarstellung Addition und Subtraktion von Vektoren: Vektoren werden addiert,
Lorentzkraft. 1. Einleitung
Lorentzkraft Einleitung Ein gerader stromführender Draht lenkt eine Kompassnadel ab Wir shreiben diese Wirkung dem Magnetfeld zu, das von ihm ausgeht Streut man Eisenfeilspäne auf eine Unterlage, die vom
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marel Indlekofer, Thomas Lauermann, Vinent Peikert und Raphael Straub 11. Januar 2005 2 Inhaltsverzeihnis 2 Spezielle Relativitätstheorie
Wellen. Wellen treten in der Natur in großer Zahl auf: Wasserwellen, Schallwellen, Lichtwellen, Radiowellen, La Ola im Stadion
Wellen Wellen treten in der Natur in großer Zahl au: Wasserwellen, Shallwellen, Lihtwellen, Radiowellen, La Ola im Stadion Von den oben genannten allen die ersten beiden in die Kategorie mehanishe Wellen,
Spezielle Relativitätstheorie. Die Suche nach dem Äther
Spezielle Relativitätstheorie Die Suhe nah dem Äther Wellennatur des Lihtes Sir Isaa Newton (1643 177) Ihm wird die Korpuskulattheorie des Lihtes zugeshrieben: daß das Liht etwas ist, das sih mit einer
10. Grassmannsche Vektoren und die Drehungen im Raum.
10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen
Der Dopplereffekt in der Astronomie
Bundesgymnasium und Bundesrealgymnasium Waidhoen an der Thaya Der Dopplereekt in der Astronomie Fahbereihsarbeit aus Physik eingereiht bei Pro. Mag. Franz Shneider on Matthias Kühtreiber Waidhoen/Thaya,
Grundlegende Aspekte der speziellen Relativitätstheorie
Grundlegende Aspekte der speziellen Relativitätstheorie Theoretische Physik Universität Ulm 89069 Ulm Kolloquium für Physiklehrende Universität Ulm, 10. Feb. 2009 Inhalt Einleitung Lorentz-Transformation
Mathematik I für MB/ME
Mathematik I für MB/ME Fahbereih Grundlagenwissenshaften Prof. Dr. Viola Weiÿ Wintersemester /6 Übungsaufgaben Serie : Vektorrehnung. Gegeben seien die Vektoren a =, b =, = (a) Berehnen Sie a + b und a
Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac.
Die Reflexion von Elektronen an einem Potentialsprung nah der relativistishen Dynamik von Dira. Von 0. Klein in Kopenhagen. (Eingegangen am 24. Dezember 1928.) Es wird die Reflexion von Elektronen an einem
Erweiterte spezielle Relativitätstheorie
Das Mihelson-Morley-Experiment als Shlüssel zur Vereinheitlihung von spezieller Relativitätstheorie und Äthertheorie von Andreas Varesi Münhen, 7. Februar 2005 von 30 Abstrat Mit Hilfe des Mihelson-Morley-Experiments
114 Lösungen der Aufgaben des Lehrbuchs
4 Lösungen der Aufgaben des Lehrbuhs stern zwei synhronisierte Uhren angebraht sind, an denen das Raumshiff jeweils orbeifliegt. Die Abbrems- und Beshleunigungsphasen lassen wir unberüksihtigt. Die Eigenzeiten
Bewegungsgleichung einer gleichförmig beschleunigten Rakete (1)
Autor: Wlter islin on 7 wlter.bislins.h/blog/.5.3 3:3 ewegungsgleihung einer gleihförmig beshleunigten Rkete () Dienstg, 6. Juni - :4 Autor: wbis hemen: Wissen, Physik, osmologie Ds Lösen der reltiistishen
Die Koeffizienten sollen in einer Matrix, die Unbekannten und die rechte Seite zu Vektoren zusammengefaßt werden: { x}
Matrizen: Einleitung Mit Matrizen können Zusammenhänge übersihtliher und kompakter dargestellt werden. Dazu werden Größen zu einer Matri zusammengefaßt, die in einem logishen Zusammenhang stehen. Zur Erläuterung
Achtung: Im Nenner eines Bruches darf nie die Null stehen!!
Grundwissen 6. Jahrgangsstufe Im Folgenden werden wir an Hand von einigen uns selbst gestellten Fragen, die wir auh gleih beantworten wollen, die wihtigsten Grundbegriffe zu Brühen wiederholen, die du
Theoretische Physik III (Elektrodynamik)
Theoretishe Physik III (Elektrodynamik) Prof. Dr. Th. Feldmann 8. Juni 03 Kurzzusammenfassung Vorlesung 6 vom.6.03 Impulserhaltung Analog zur Energieerhaltung leiten wir nun Kontinuitätsgleihung für Impulsdihte
2.3 Der Fluss eines Vektorfeldes
32 Kapitel 2. Gewöhnlihe Differentialgleihungen 2.3 Der Fluss eines Vektorfeldes Sei F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes.
ADIABATENKOEFFIZIENT. Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES VERSUCH 1. Grundlagen. Literatur. Theorie und Methode
VESUCH 1 ADIABATENKOEFFIZIENT Thema Messung der Adiabatenkoeffizienten nah CLEMENT-DESOMES Grundlagen ideales und reales Gasgesetz 1. Hauptsatz der Thermodynamik Zustandsgleihungen, Guggenheim-Shema isohore,
5 Relativistische Mechanik
5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt
Das Eichprinzip in der Elektrodynamik
Das Eihprinzip in der Elektrodynamik Seminarvortrag von Florian Niolai Die Maxwellgleihungen (mikroskopish) E + 1 B = 0 B = 0 B = 4π j + 1 E E = 4πϱ Direkt aus den MWG folgt, dass sih die elektrishen und
Ferienkurs Experimentalphysik Musterlösung Probeklausur
Ferienkurs Experimentalphysik 1 2012 Musterlösung Probeklausur 1. Atwoodshe Fallmashine Betrahten Sie die abgebildete Atwoodshe Fallmashine. Der die Massen m 1 und m 2 Abbildung 1: Atwoodshe Fallmashine
Spezielle Relativität
Spezielle Relativität Gleichzeitigkeit und Bezugssysteme Thomas Schwarz 31. Mai 2007 Inhalt 1 Einführung 2 Raum und Zeit Bezugssysteme 3 Relativitätstheorie Beginn der Entwicklung Relativitätsprinzip Lichtausbreitung
Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.
II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit
IX Relativistische Mechanik
IX Relativistische Mechanik 34 Relativitätsprinzip Die bisher behandelte Newtonsche Mechanik gilt nur für Geschwindigkeiten, die klein gegenüber der Lichtgeschwindigkeit sind. Im Teil IX stellen wir die
Lichtgeschwindigkeit
Vorbereitung Lihtgeshwindigkeit Carsten Röttele 2. Dezember 20 Inhaltsverzeihnis Drehspiegelmethode 2. Vorbereitung auf den Versuh......................... 2.2 Justierung der Apparatur und Messung...................
Hans Sillescu. Das Zwillingsparadoxon
Hans Sillesu Das Zwillingsparadoxon Irgendwann erfahren die meisten Zwillinge in unserer zivilisierten Welt von dem sogenannten Zwillingsparadoxon. Ih will hier versuhen, mit einfahen Worten zu erklären,
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze
Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der
Die Relativität elektrischer und magnetischer
Die Relativität elektrisher und magnetisher Felder Beitrag von Norbert H. L. Koster zum Postgrade Leture Advanes (and Surprises) in Eletrodynamis - Fortshritte (und Überrashendes) in der Elektrodynamik,
Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler
Quantenmehanikvorlesung, Prof. Lang, SS04 Comptoneffekt Christine Krasser - Tanja Sinkovi - Sibylle Gratt - Stefan Shausberger - Klaus Passler Einleitung Unter dem Comptoneffekt versteht man die Streuung
Doppler-Effekt in Luft. c: Schallgeschwindigkeit (1)
M24 Physikalishes Praktikum Doppler-ekt in Lut Im Jahre 1842 mahte Christian Johann Doppler (183 1853) ür autretende Wellenbewegungen eine ntdekung von großer Bedeutung. ie besagt: Die hwingungszahl einer
Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a...
Mathematikskript: Steven Passmore Potenzgesetze Einleitung Einen Ausdruk mit einer Hohzahl nennt man Potenz Beispiele: 3 5,9 x, a n ). Zunähst ist eine Potenz eine vereinfahte Shreibweise für die vielfahe
Eine kurze Einführung in die spezielle und allgemeine Relativitätstheorie
Eine kurze Einführung in die spezielle und allgemeine Relativitätstheorie Inhaltsverzeihnis 16.1 Das Newtonshe Relativitätsprinzip / Galilei Transformation... 3 16. Die Lihtgeshwindigkeit... 3 16..1 Galileo
Messung der Adiabatenkoeffizienten nach CLEMENT-DESORMES
VESUCH 1 ADIABATENKOEFFIZIENT Thema Messung der Adiabatenkoeffizienten nah CLEMENT-DESOMES Grundlagen ideale und reale Gase (Gasgesetze, Van-der-Waals Gleihung, Koolu- men, Van-der-Waals Shleifen, Maxwell-Konstruktion,
Michelson-Versuche ohne Lorentz-Kontraktion
Miheson-Versuhe ohne Lorentz-Kontraktion Horst P. H. Meher, Potsdam Zusammenfassung Der Miheson-Versuh (MV) und seine zahreihen Wiederhoungen sowie Varianten und Modifikationen iefern mit ihren Nuresutaten
Logarithmen und Logarithmengesetze
R. Brinkmnn http://brinkmnn-du.de Seite 9.. Logrithmen und Logrithmengesetze Wir betrhten die Gleihung 5 = 5 Auf der linken Seite steht eine Potenz mit der Bsis 5 und dem Eponenten. Auf der rehten Seite
Die Einweg-Lichtgeschwindigkeit auf der rotierenden Erde und die Definition des Meters
Lihtgeshwindigkeit u. Meterdefinition P. Ostermann - 19. August 00 Die Einweg-Lihtgeshwindigkeit auf der rotierenden Erde und die Definition des Meters Peter Ostermann Seit 1983 ist das Meter definiert
Ein Flug durchs Universum... Martin Heinold
Ein Flug durhs Universum... Martin Heinold 27 1 1 1 Einführung Der Weltraum, unendlihe Weiten..., so beginnen viele bekannte Siene-Fition Serien und Filme. Dabei enthalten sie ungeahnte Tehnologien und
Wiederholung: Spezielle Relativitätstheorie
Physik I TU Dortmund WS017/18 Gudrun Hiller Shaukat Khan Kapitel 7 Wiederholung: Spezielle Relativitätstheorie Ausgangspunkt Konstanz der Lichtgeschwindigkeit in jedem gleichförmig bewegten Bezugssystem
Spezielle Relativitätstheorie * Projekttage am EMG * Lösungen zu den Aufgaben
Spezielle elatiitätstheorie * Projekttage am EMG * Lösungen zu den Aufgaben. Minkowski-Diagramme Geradengleihungen: () x Ls s () x t () x s t (für s t s ) () x 0, t () x 0, t s () x s 0, t () und () gehören
4.4 Spezielle Relativitätstheorie
perientalphsik I TU Dortnd WS Shakat Khan @ TU - Dortnd. de Kapitel. Spezielle Relatiitätstheorie Asanspnkt: periente on Mihelson nd Morle Lihteshwindikeit ist on der Relatieshwindikeit nabhäni nd in allen
MWG. 1. Massenwirkungsgesetz
MWG 1. Massenwirkungsgesetz Betrahten wir den Ablauf einer hemishen Reaktion, so stellen wir fest, dass bestimmte Reaktionsgeshwindigkeiten den Vorgang beeinflussen. Wir wissen, dass formal ähnlihe Umsetzungen
Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12. Präsenzübungen
Prof. C. Greiner, Dr. H. van Hees Wintersemester 2012/201 Übungen zur Theoretischen Physik 1 Lösungen zu Blatt 12 (P0) Das Garagen-Paradoxon Präsenzübungen Es kann selbstverständlich mit der Beschreibung
2. Kinematik. Inhalt. 2. Kinematik
2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung
Kapitel 2. Lorentz-Transformation
Kapitel 2 Lorentz-Transformation Die Galilei-Transformation aus Abschnitt 1.7 wurde durch eine Vielzahl von Experimenten erfolgreich überprüft und gehört zu den Grundlagen der klassischen Mechanik. Die
Fit in Mathe. Musterlösungen. Dezember Klassenstufe 10 Trigonometrie (Taschenrechner erlaubt)
Thema Trigonometrie (Tashenrehner erlaubt) Drei Bestimmungsstüke sind gegeben. Bestimme die fehlenden Seiten. a) γ = 60, b = 10, = 10 b) γ = 90, b = 3, = 5 ) γ = 10, a, b d) γ = 30 β = 60, = 5 Zu a) Aus
Lösung der Zusatzaufgabe von Blatt 13
Lösung der Zusatzaufgabe von Blatt 13 (1) Freier Fall (Fall eines Körpers i Vakuu, d.h. ohne Reibungswiderstand): (i) s = g. (a) Lösung von (i) it den Anfangsbedingungen s(0) = h und v(0) = ṡ(0) = 0: Integrieren
Kompressionsfaktor. Der Kompressionsfaktor (Realgasfaktor) beschreibt die Abweichung eines realen Gases vom idealen Verhalten:
Kompressionsfaktor Der Kompressionsfaktor (Realgasfaktor) beshreibt die Abweihung eines realen Gases om idealen Verhalten: pv m ZRT Z pvm RT kleine Drüke: nahezu keine zwishenmolekulare Kräfte pv m ~ RT
