Ferienkurs Experimentalphysik 2
|
|
|
- Klaudia Auttenberg
- vor 9 Jahren
- Abrufe
Transkript
1 Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols In Kugelkoordinaten stellt die sphärishe Welle E t, r) = α r sin θ os ωt kr) e θ B t, r) = β r sin θ os ωt kr) e φ ) mit α = β das Fernfeld eines Hertzshen Dipols dar. Berehnen Sie die mittlere Leistung, die von diesem Dipol durh die Halbsphäre θ π 2 mit r = km gestrahlt wird, wenn α den Wert V hat. Die elektrishe Feldkonstante ist ɛ = 8, 85 2 C 2 /Jm. Hinweis: π/2 dθ sin 3 θ = 2/3 Die momentane Strahlungsintensität an einem bestimmten Ort ist durh den Poynting-Vektor gegeben. Im vorliegenden Fall sieht er wie folgt aus: S = ɛ 2 E B 2) S t, r) = ɛ 2 αβ r 2 sin2 θ os 2 ωt kr) e r = ɛ α2 r 2 sin2 θ os 2 ωt kr) e r 3) Er zeigt also in radialer Rihtung vom Ursprung weg und sein Betrag oszilliert zwishen und dem ortsabhängigen Maximalwert ɛ α2 r sin 2 θ. Die momentane Strahlungsleistung durh die Halbsphäre 2 ist das Oberflähenintegral Man erhält: P = HS d A S = P t) = 2πɛ α 2 os 2 ωt kr) π/2 π/2 dθ 2π dφ r 2 sin θ e r S. 4) dθ sin 3 θ = 4π 3 ɛ α 2 os 2 ωt kr). 5) Dies ist die momentane Strahlungsleistung zur Zeit t durh die Halbsphäre mit Radius r. Das zeitlihe Mittel davon ist P = T dt P t), 6) T
2 also im Wesentlihen durh das Zeitmittel des os 2 -Terms gegeben, welhes bekanntlih den Wert /2 besitzt. Man erhält also P = 2π 3 ɛ α 2, 7) unabhängig von r. Als Zahlenwert ergibt sih dann P = 55, 6 W. 8) Aufgabe 2: Polarisation elektromagnetisher Wellen Beshreiben Sie die Art der Polarisation für die ebenen elektromagnetishen Wellen, die durh die folgenden Gleihungen für das E-Feld beshrieben werden: a) E y = E sin kx ωt), E z = 4E sin kx ωt) b) E y = E os kx + ωt), E z = E sin kx + ωt) ) E y = 2E os kx ωt + π/2), E z = 2E sin kx ωt) Für x = ist die Art der Polarisation leiht zu erkennen: a) E y = E sin ωt), E z = 4E sin ωt) b) E y = E os ωt), E z = E sin ωt) ) E y = 2E sin ωt), E z = 2E sin ωt) Dann kann das E-Feld als eine Funktion der Zeit skizziert werden und die Polarisation einfah abgelesen werden: a) linear b) zirkular ) linear Aufgabe 3: Supernovaexplosion Ein Raumshiff fliegt mit 6% der Lihtgeshwindigkeit an einem Stern vorbei. Nahdem das Raumshiff den Stern passiert und sih vom Intertialsystem des Sterns betrahtet) 6 Lihtminuten entfernt hat, briht eine Supernovaexplosion aus. a) Zeihnen und beshriften Sie ein Minkowski-Diagramm, das die Situation bezüglih des Inertialsystems des Sterns darstellt. Im Nullpunkt des Diagramms soll sih dabei das Ereignis Das Raumshiff passiert den Stern befinden. b) Welhe Koordinaten hat die Supernovaexplosion im Inertialsystem des Sterns? ) Berehnen Sie mit Hilfe der Lorentz-Transformation, welhe Zeit auf der Raumshiffsuhr zwishen dem Vorbeiflug am Stern und dessen Explosion verstreiht. d) In welher Entfernung ereignet sih die Supernova vom Raumshiff aus betrahtet? 2
3 a) E : Das Raumshiff passiert den Stern E 2 : Das Raumshiff ist im Inertialsystem des Sterns) 6 lmin vom Stern entfernt E 3 : Die Supernova briht aus b) Die Ortskoordinate von E 3 im Inertialsystem des Sterns ist x 3 = 9) E 3 ist laut Angabe im Inertialsystem des Sterns gleihzeitig mit E 2. Da sih das Raumshiff mit v =.6 bewegt, ist die Zeitkoordinate von E 2 t 2 = x 2 v = 6 lmin = min ), 6 also t 3 = min ) ) Gefragt ist nah der Zeitkoordinate von E 3 bezüglih dem bewegten System des Raumshiffs. Die Lorentz-Transformation t 3 = γ t 3 v ) 2 x 3 2) liefert mit den Koordinaten aus b): t 3 = 2, 5 min 3) d) Gefragt ist nah der Ortskoordinate von E 3 bezüglih dem bewegten System des Raumshiffs. Die Lorentz-Transformation x 3 = γx 3 vt 3 ) = γ x 3 v ) t 3 4) liefert mit den Koordinaten aus b) Die Entfernung ist also x 3 = 7, 5 lmin. x 3 = 7.5 lmin 5) 3
4 Aufgabe 4: Bewegte Teilhen In einem Raumshiff, dass sih mit 5 3 von der Erde weg bewegt werden vershiedene Experimente durhgeführt. In einem ersten Experiment wird der Zerfall eines π + -Mesons untersuht. Ein ruhendes π + -Meson zerfällt innerhalb von 2, 5 8 s in ein µ + -Meson und ein Neutrino. Die kinetishe Energie des π + -Mesons sei gleih 2/3 seiner Ruheenergie. a) Geben Sie die Geshwindigkeit des π + -Mesongs bezüglih des Raumshiffs an. b) Berehnen Sie die Streke, welhe das Meson im Raumshiff zurüklegt, bevor es zerfällt. In einem zweiten Experiment werden in einem elektrishen Feld Elektronen Ruheenergie E = 5keV) aus der Ruhe auf v = 5 3 relativ zum Raumshiff entgegen der Flugrihtung beshleunigt. ) Berehnen Sie die Spannung, welhe zum Beshleunigen der Elektronen notwendig ist. a) Gesamtenergie des π + -Mesons: E = E + E kin = Vergleih mit der relativistishen Energie: + 2 ) E = E 6) E = m 2 v2 / 2 = γe γ = 5 3 7) Berehnung von v aus γ: γ = v = v2 / 2 γ 2 = 4 5 8) b) Ein ruhendes Meson hat eine Lebenszeit von T = 2, 5 8 s. Bewegt sih dieses jedoh mit der oben berehneten Geshwindigkeit von v = 4 5 bezüglih des Raumshiffes, so ist seine Lebenszeit für einen im Bezugsystem des Raumshiffes ruhenden Beobahter um einen Faktor γ = 5 3 länger. T R = γt = 4, 7 8 s 9) Die zurükgelegte Streke ist also: ) Gesamtenergie eines Elektrons: Berehnung von γ: Berehnung von U: x R = v T R = T = m 2) 3 E = E + E kin = E + eu = γe U = γ E 2) e γ = = v ) 2 = ) U = γ E = 42, 6kV 23) e 4
5 Aufgabe 5: Nahriht an bewegtes Raumshiff Zum Zeitpunkt t = startet von der Erde Ursprung des Bezugssystems S) ein Raumshiff mit der Geshwindigkeit v = 3 5. Die Erde funkt zum Zeitpunkt τ = d eine Nahriht an das Shiff. a) Zeigen Sie: Wenn der Funkspruh empfangen wird, hat das Raumshiff im System S den Ort erreiht und es ist die Zeit auf der Erde vergangen. x = vτ v t = τ v b) Bestimmen sie die Ankunftszeit des Funkspruhs, die von einer Uhr an Board des Shiffs gemessen wird. 24) 25) a) Im System S hat das Raumshiff den Ort Der Funkspruh hat dagegen den Ort natürlih nur für t > τ): x R = vt 26) x F = t τ) 27) Damit der Funkspruh das Shiff erreiht, muss x R = x F gelten. Gleihsetzen der beiden Ausdrüken und auflösen nah t liefert: Einsetzen in der ersten Gleihung liefert: t = τ v = 5 2 d 28) x = vτ v = 3, m 29) b) Die Ankunftszeit t ist gemäß der Lorentz-Transformation t = γ t v ) 2 x 3) τ v 2 ) τ = γ v 2 v ) 3) = γτ v 2 2 v 32) = γτ + v ) = 5 8 τ = 2τ = 2d 33) 4 5 Aufgabe 6: Erde, Rakete, Meteor Die Erde, eine bemannte Rakete und ein Meteor bewegen sih zufallig in die gleihe Rihtung. An der Erde fliegt die Rakete mit einer von der Erde beobahteten Geshwindigkeit von v E,R = 3 4 vorbei. An der Rakete fliegt der Meteor mit einer von der Raketenmannshaft beobahteten Geshwindigkeit von v R,M = 2 vorbei. a) Welhe Geshwindigkeit hat der Meteor von der Erde aus beobahtet? b) Zeihnen Sie ein Minkowski-Diagramm für diese Situation aus der Siht der Raketenbesatzung. 5
6 a) Die Geshwindigkeiten v E,R und v R,M müssen relativistish) addiert werden, da die jeweiligen Beobahter positive Geshwindigkeiten sehen, also v E,M = v E,R + v R,M + v E,Rv R,M = 34) 2 b) Die Winkel im Minkowski-Diagramm ergeben sih zu vr,m ) α M = artan = 26, 6 und α E = artan v ) E,R = 36, 9 35) Da v für den Meteor positiv und für die Erde negativ ist, bewegen sih die Ahsen auf die Winkelhalbierende zu, bzw. von ihr weg. 6
Ferienkurs der Experimentalphysik II Musterlösung Übung 4
Ferienkurs der Experimentalphysik II Musterlösung Übung 4 Michael Mittermair 9. August 013 1 Aufgabe 1 Ein Elektron hat die Ruhemasse m 0 = 9, 11 10 31 kg. a) Berechnen Sie die Ruheenergie in Elektronenvolt
Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Fabian Gundlah 13. Oktober 2010 Die spezielle Relativitätstheorie untersuht die vershiedenen Sihtweisen von Beobahtern in Inertialsystemen. Ein Inertialsystem ist dabei ein
Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und
Übungsblatt 11 PHYS11 Grundkurs I Physik, Wirtshaftsphysik, Physik Lehramt Othmar Marti, [email protected]. 1. 6 und 3. 1. 6 1 Aufgaben 1. In Röhrenfernsehgeräten werden Elektronen typisherweise
Ferienkurs Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommersemester 2015 Gabriele Semino, Alexander Wolf, Thomas Maier Probeklausur Aufgabe 1: Kupfermünze 4 Punkte) Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA
IX.3 Potentiale und Felder einer bewegten Punktladung
N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine
32. Lebensdauer von Myonen 5+5 = 10 Punkte
PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html
7.5 Relativistische Bewegungsgleichung
7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt
1.5 Relativistische Kinematik
1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das
Wellen und Dipolstrahlung
Wellen und Dipolstrahlung Florian Hrubesh 7. März 200 Inhaltsverzeihnis Wellen. Wellen im Vakuum........................... 2.. Lösung der Wellengleihung................. 2..2 Energietransport / Impuls
Musterlösung Nachholsemestrale Ex
Musterlösung Nahholsemestrale Ex 2.4.2008 Musterlösung Nahholsemestrale Ex 2.4.2008 2 Aufgabe Wir berehnen zuerst den Ort des abarishen Punktes, d.h. seinen Abstand r a vom Erdmittelpunkt. Das von Erde
21 Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.
5 Relativistische Mechanik
5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt
Senkrechter freier Fall
Senkrehter freier Fall Die Raumzeitkrümmung in der Shwarzshildmetrik [] zeigt sih unter anderem darin, dass die Zeit in der Nähe des Zentralkörpers langsamer läuft Um diesen Effekt zu veranshaulihen, soll
6. Aufgaben zur speziellen Relativitätstheorie
6. Aufgaben zur speziellen Relatiitätstheorie Aufgabe : Inertialsysteme Der Ursprung des Koordinatensystems S sitzt am hinteren Ende eines x m langen, unten dunkel gefärbten Zuges, welher mit 7 km/h in
Ferienkurs Experimentalphysik Musterlösung Probeklausur
Ferienkurs Experimentalphysik 1 2012 Musterlösung Probeklausur 1. Atwoodshe Fallmashine Betrahten Sie die abgebildete Atwoodshe Fallmashine. Der die Massen m 1 und m 2 Abbildung 1: Atwoodshe Fallmashine
Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2
Klasse STa FrSe 4 ungr MAE Serie 6 Potenz und Taylorreihen Aufgabe a Bestimmen Sie die Grenzen des Konvergenzbereihs der Potenzreihe: p b Entwikeln Sie die Funktion f vier Summanden. k k 4 k k k in eine
Mathematik - Oberstufe
Mathematik - Oberstufe Aufgaben und Musterlösungen zu linearen Funktionen Zielgruppe: Oberstufe Gmnasium Shwerpunkt: Geraden, Streken und Dreieke im Koordinatensstem Aleander Shwarz www.mathe-aufgaben.om
Darstellungstheorie der Lorentz-Gruppe
Kai Walter 29. Juli 2008 Inhaltsverzeihnis 1 Einführung 2 2 Lie-Algebra der Lorentz-Gruppe 2 2.1 Minkowski-Raum............................. 2 2.2 Lorentz-Transformation......................... 3 2.3
Die Relativität elektrischer und magnetischer
Die Relativität elektrisher und magnetisher Felder Beitrag von Norbert H. L. Koster zum Postgrade Leture Advanes (and Surprises) in Eletrodynamis - Fortshritte (und Überrashendes) in der Elektrodynamik,
Lichtgeschwindigkeit
Vorbereitung Lihtgeshwindigkeit Carsten Röttele 2. Dezember 20 Inhaltsverzeihnis Drehspiegelmethode 2. Vorbereitung auf den Versuh......................... 2.2 Justierung der Apparatur und Messung...................
Spezielle Relativitätstheorie. Die Suche nach dem Äther
Spezielle Relativitätstheorie Die Suhe nah dem Äther Wellennatur des Lihtes Sir Isaa Newton (1643 177) Ihm wird die Korpuskulattheorie des Lihtes zugeshrieben: daß das Liht etwas ist, das sih mit einer
1. Klausur LK Physik 13/1 Sporenberg 13. Oktober 2011
1. Klausur LK Physik 13/1 Sporenberg 13. Oktober 011 1.Aufgabe: a) Erklären Sie die wesentlihen Vorgänge beim Comptoneffekt. Stellen Sie die Impulsvektoren in einer Skizze dar. Erläutern Sie die Untershiede
ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE
ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Kapitel 9: Relativistishe Elektrodynamik Vorlesung für Studenten der Tehnishen Physik Helmut Nowotny Tehnishe Universität Wien Institut für Theoretishe Physik 7.,
12. Lagrange-Formalismus III
Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray [email protected] Übung.: Eine Gitarrensaite Wir betrahten
Ein Flug durchs Universum... Martin Heinold
Ein Flug durhs Universum... Martin Heinold 27 1 1 1 Einführung Der Weltraum, unendlihe Weiten..., so beginnen viele bekannte Siene-Fition Serien und Filme. Dabei enthalten sie ungeahnte Tehnologien und
Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie
Ferienkurs der Experimentalphysik II Teil IV Spezielle Relativitätstheorie Michael Mittermair 29. August 2013 1 Inhaltsverzeichnis 1 Spezielle Relativitätstheorie 3 1.1 Warum heißt das so?.......................
Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler
Quantenmehanikvorlesung, Prof. Lang, SS04 Comptoneffekt Christine Krasser - Tanja Sinkovi - Sibylle Gratt - Stefan Shausberger - Klaus Passler Einleitung Unter dem Comptoneffekt versteht man die Streuung
Lorentzkraft. 1. Einleitung
Lorentzkraft Einleitung Ein gerader stromführender Draht lenkt eine Kompassnadel ab Wir shreiben diese Wirkung dem Magnetfeld zu, das von ihm ausgeht Streut man Eisenfeilspäne auf eine Unterlage, die vom
Städtisches Gymnasium Wermelskirchen, Fachkonferenz Physik Leistungsbewertung
Städtishes Gymnasium Wermelskirhen, Fahkonferenz Physik C Beispiel einer Klausur SEK II inl. Erwartungshorizont Q Physik Grundkurs. Klausur 0.0.04 Thema: Dopplereffekt, Shwingkreis Name: Aufgabe : Doppler-Effekt
Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)
Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?
VORANSICHT II/D. Das Michelson-Morley-Experiment. Der Beitrag im Überblick. Spiegel. Strahlenteiler. Spiegel. Laser. Schirm. Interferenz- Muster
7. Das Mihelson-Morley-Experiment on 6 Das Mihelson-Morley-Experiment Axel Donges, Isny im Allgäu Mit dem Mihelson-Morley-Experiment sollte die Existenz des Äthers eines hypothetishen Mediums, in dem sih
Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac.
Die Reflexion von Elektronen an einem Potentialsprung nah der relativistishen Dynamik von Dira. Von 0. Klein in Kopenhagen. (Eingegangen am 24. Dezember 1928.) Es wird die Reflexion von Elektronen an einem
112 C.1 Aufbau der Blasenkammer. ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die Aufgaben der einzelnen Bestandteile.
112 C.1 Aufbau der Blasenkammer C Arbeitsblätter C.1 Aufbau der Blasenkammer Der Aufbau der Blasenkammer Abbildung 1: Aufbau der Blasenkammer ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die
Kurzfassung der speziellen Relativitätstheorie
Kurzfassung der speziellen Relatiitätstheorie Olier Passon Raum, Zeit und Bewegungszustände in der klassishen Physik Bereits in der klassishen Mehanik (also der Theorie Newtons) gilt, dass sih keine absolute
PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen. 7. Vorlesung Nadja Regner, Thomas Schmierer, Gunnar Spieß, Peter Gilch
PN Einführung in die Eperimentalphsik für Chemiker und Biologen 7. Vorlesung.6.7 Nadja Regner, Thomas Shmierer, Gunnar Spieß, Peter Gilh Lehrstuhl für BioMolekulare Optik Department für Phsik Ludwig-Maimilians-Universität
Grundlagen der Physik 1 Lösung zu Übungsblatt 5
Grundlagen der Physik Lösung zu Übungsblatt 5 Daniel Weiss 8. November 2009 Inhaltsverzeichnis Aufgabe - Aberation des Lichtes a) Winkelbeziehungen................................ b) Winkeldierenz für
Physik I Übung 11 - Lösungshinweise
Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr
Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Skript zur Vorlesung von Apl. Prof. Jörg Main Berbeitung von Sebastian Boblest Vorläufige Version SS 2011 1. Institut für Theoretishe Physik Universität Stuttgart Pfaffenwaldring
Die Lorentz-Transformation
Bernhard Szallies Die Lorentz-Transformation Die Lorentz-Transformation stellt die rehnerishe Beziehung zwishen den Ortskoordinaten und der Zeitkoordinate eines Ereignisses bezüglih zweier Inertialsysteme
Schriftliche Abiturprüfung 2005 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)
Shriftlihe Abiturprüfung 5 Sahsen-Anhalt Physik 3 n (Leistungskursnieau) Thea G: Untersuhungen on Bewegungen Betrahtungen zur Relatiität Die Huygens'she Theorie on der Ausbreitung einer Welle erlangt nah
Hans Sillescu. Das Zwillingsparadoxon
Hans Sillesu Das Zwillingsparadoxon Irgendwann erfahren die meisten Zwillinge in unserer zivilisierten Welt von dem sogenannten Zwillingsparadoxon. Ih will hier versuhen, mit einfahen Worten zu erklären,
Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für
Lichtgeschwindigkeit
Lihtgeshwindigkeit Die Lihtgeshwindigkeit beträgt konstant a. 300 000 km/s = 3*0 8 m/s. Für unsere Betrahtung genügt diese Genauigkeit. Nihts kann shneller als die Lihtgeshwindigkeit sein. Der Begriff
Das gefaltete Quadrat
=.? @ / - + Das gefaltete Quadrat Eine Aufgabe aus der Japanishen Tempelgeometrie 21. September 2004 Gegeben sei das Quadrat ABCD mit der Seitenlänge a. Entlang der Linie EF wird das Quadrat gefaltet,
3. Erhaltungsgrößen und die Newton schen Axiome
Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray [email protected] 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:
6. Prüfungsaufgaben zur Relativitätstheorie
6. Prüfungsaufgaben zur Relaiiäsheorie Aufgabe : Minkowski-Diagramm und Uhrenabgleih S sehe in seinem Zug und sende zur Zei = ein Zeisignal in beide Rihungen aus. Vom hineren Ende komm die Anwor nah 4
10. Grassmannsche Vektoren und die Drehungen im Raum.
10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen
Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung
Ferienkurs Experimentalphysik II Elektrodynamik - Lösungen
Ferienkurs Experimentalphysik II Elektrodynamik - Lösungen Lennart Schmidt, Steffen Maurus 07.09.20 Aufgabe : Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, ()
Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik
Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder
Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht
Physik: Stundenprotokoll vom Max Pätzold
Physik: Stundenprotokoll vo 25.11.2011 Max Pätzold Inhalt: Lösen von Übungsaufgaben S.361 Lösen von Übungsaufgaben S.363 Rot- und Blauvershiebung Der optishe Dopplereffekt, Aufgabe 1 S.359 Gedankenexperient:
Kapitel 2 Kovariante vierdimensionale Formulierungen
Kapitel Kovariante vierdimensionale Formulierungen Kovariante vierdimensionale Formulierungen.1 Ko- und kontravariante Tensoren... 39.1.1 Definitionen... 39.1. Rehenregeln... 43.1.3 Differentialoperatoren...
Messungen im Objektkoordinatensystem aus Kamerabildern
Einbildorientierung Orientierung Ziel der Photogrammetrie Messungen im Objektkoordinatensystem aus Kamerabildern Dazu müssen bekannt sein die Abbildungsgeometrie der Kameras, d.h. die Parameter der inneren
Physik 2 (GPh2) am
Name, Matrikelnummer: Physik 2 (GPh2) am 18.3.11 Fahbereih Elektrotehnik und Informatik, Fahbereih Mehatronik und Mashinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 2 ab WS 10/11 (Prof.
Magnetostatik. Ströme und Lorentzkraft
Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme 3. Käfte auf bewegte Ladungen im Magnetfeld i. Käfte im Magnetfeld Loentzkaft ii. Käfte zwishen Leiten iii. Kaft auf eine bewegte Ladungen i.
Erweiterte spezielle Relativitätstheorie
Das Mihelson-Morley-Experiment als Shlüssel zur Vereinheitlihung von spezieller Relativitätstheorie und Äthertheorie von Andreas Varesi Münhen, 7. Februar 2005 von 30 Abstrat Mit Hilfe des Mihelson-Morley-Experiments
7. Grassmannsche Vektoren und die Drehungen im Raum.
7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen
Relativitätstheorie. Relativitätstheorie 345. Um das Jahr 1600. Um das Jahr 1900. Um das Jahr 2000. Wie wird es im Jahr 2200 aussehen?
Relatiitätstheorie Zeitreisen Reisen in die Vergangenheit oder Zukunft sind beliebte Themen für Siene- Fition-Romane. Darin lassen sih mit Hilfe on Zeitmashinen Personen in beliebige Epohen ersetzen. Man
Physik. Lichtgeschwindigkeit
hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit
Examensaufgaben RELATIVITÄTSTHEORIE
Examensaufgaben RELATIVITÄTSTHEORIE Aufgabe 1 (Juni 2006) Ein Proton besitzt eine Gesamtenergie von 1800 MeV. a) Wie groß ist seine dynamische Masse? b) Berechne seine Geschwindigkeit in km/s. c) Welcher
Experimentalphysik E1
Eperimentalphysik E Schwerpunktssystem Schwerpunktssatz, Zwei-Körper Systeme:reduzierte Masse Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/inde.html 0. Dez. 06 ct
Relativitätstheorie und philosophische Gegenargumente II
Didaktik der hysik Frühjahrstagung Hannoer 00 Relatiitätstheorie und philosophishe Gegenargumente II J. Brandes* *Danziger Str. 65, D 76307 Karlsbad, e-mail: [email protected] Kurzfassung.) Es werden
Allgemeine Relativitätstheorie: Systeme, die gegeneinander beschleunigt werden; Einfluss von Gravitationsfeldern.
II Spezielle Relativitätstheorie II.1 Einleitung Mechanik für v c (Lichtgeschwindigkeit: 3x10 8 m/s) Spezielle Relativitätstheorie: Raum und Zeit in Systemen, die sich gegeneinander mit konstanter Geschwindigkeit
Abbildung 1: Zu Aufgabe 1. (a) Geben Sie das Potential der Ladungsverteilung im Punkt P mit dem Ortsvektor r an.
Aufgabe 1 (6 Pkt.) Vier positive Punktladungen im Vakuum gleicher Größe Q sitzen in der Ebenze z = 0 eines kartesischen Koordinatensystems auf den Ecken eines Quadrats, nämlich in den Punkten a x = a e
2. Kinematik. Inhalt. 2. Kinematik
2. Kinematik Inhalt 2. Kinematik 2.1 Arten der Bewegung 2.2 Mittlere Geschwindigkeit (1-dimensional) 2.3 Momentane Geschwindigkeit (1-dimensional) 2.4 Beschleunigung (1-dimensional) 2.5 Bahnkurve 2.6 Bewegung
Mathematik I für MB/ME
Mathematik I für MB/ME Fahbereih Grundlagenwissenshaften Prof. Dr. Viola Weiÿ Wintersemester /6 Übungsaufgaben Serie : Vektorrehnung. Gegeben seien die Vektoren a =, b =, = (a) Berehnen Sie a + b und a
Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13
Karlsruher Institut für Tehnologie Institut für Theorie der Kondensierten Materie Übungen zur Klassishen Theoretishen Physik III (Theorie C Elektrodynamik) WS 12-13 Prof. Dr. Alexander Mirlin Musterlösung:
Bewegungsgleichung der Speziellen Relativitätstheorie
Ator: Walter islin on 6 walter.bislins.h/blog/.5.3 3:6 ewegngsgleihng der Seiellen Relatiitätstheorie Dienstag, 6. Jni - :4 Ator: wabis Themen: Wissen, Physik, Kosmologie Wenn es m Geshwindigkeiten ab
Einführung in die Spezielle Relativitätstheorie
Einführung in die Spezielle Relativitätstheorie Lara Kuhn 12.06.15 Dies ist eine Zusammenfassung des Vortrags, den ich in dem Semiar zur Elektrodynamik und Speziellen Relativitätstheorie von Professor
Allgemeine Relativitätstheorie
Allgemeine Relativitätstheorie Eine anschauliche Einführung in die Grundlagen Wegelemente euklidischer Raum: Minkowski-Raum: y c t ds dy ds 2 =dx 2 dy 2 ds c d t ds 2 =c 2 dt 2 dx 2 dx x invariant bei
Teilchenidentifikation mit Cherenkov-Detektoren
Teilhenidentifikation mit CherenkovDetektoren Masterseminar I, 2013 Teilhenidentifikation mit CherenkovDetektoren Andreas Düdder Johannes GutenbergUniversität Mainz Betreuerin: Prof. C. Sfienti Motivation
Lösungen zur Experimentalphysik III
Lösungen zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. L. Oberauer Blatt 11 19.01.09 Aufgabe 1: a) Die Bedingung für ein Maximum erster Ordnung am Gitter ist: sinα = λ b mit b = 10 3 570
6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke
6. Trigonometrie Trigonometrie bedeutet dem Wortsinn nah Dreieksmessung. Mit Hilfe von trigonometrishen Funktionen lassen sih alle Probleme, die man im Prinzip zeihnerish lösen kann, auh rehnerish bewältigen.
10. Übungsblatt zur Mathematik II für Maschinenbau
Fahbereih Mathematik Prof. Dr. M. Joswig Dr. Davorin Lešnik Dipl.-Math. Katja Kulas 1. Übungsblatt zur Mathematik II für Mashinenbau Gruppenübung SS 211 2.6.-22.6.11 Aufgabe G1 (Wegintegral Gegeben seien
Eine kurze Einführung in die spezielle und allgemeine Relativitätstheorie
Eine kurze Einführung in die spezielle und allgemeine Relativitätstheorie Inhaltsverzeihnis 16.1 Das Newtonshe Relativitätsprinzip / Galilei Transformation... 3 16. Die Lihtgeshwindigkeit... 3 16..1 Galileo
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie. Marcel Indlekofer, Thomas Lauermann, Vincent Peikert und Raphael Straub
Vorlesungsskript Integrierter Kurs III - spezielle Relativitätstheorie Marel Indlekofer, Thomas Lauermann, Vinent Peikert und Raphael Straub 11. Januar 2005 2 Inhaltsverzeihnis 2 Spezielle Relativitätstheorie
Lichtgeschwindigkeit
Vorbereitung Lihtgeshwindigkeit Stefan Shierle Versuhsdatum: 13. 12. 2011 Inhaltsverzeihnis 1 Drehspiegelmethode 2 1.1 Vorbereitung auf den Versuh......................... 2 1.2 Justierung der Apparatur
Ferienkurs Teil III Elektrodynamik
Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................
1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper
1 Anwendungsaufgaen Geh ei Anwendungsaufgaen zu Körpererehnungen folgendermaßen vor: 1. Üerlege, o die gegeenen Körper mit einem geometrishen Grundkörper üereinstimmen.. Findest du keine Üereinstimmung,
Kapitel 3. Minkowski-Raum. 3.1 Raumzeitlicher Abstand
Kapitel 3 Minkowski-Raum Die Galilei-Transformation lässt zeitliche Abstände und Längen unverändert. Als Länge wird dabei der räumliche Abstand zwischen zwei gleichzeitigen Ereignissen verstanden. Solche
Polarimetrie 1. Polarimetrie
Polarimetrie 1 Polarimetrie Bei Reaktionen mit optish aktiven Reaktanten kann die Konzentration der an der Reaktion beteiligten toffe gut polarimetrish gemessen werden, indem für das Gemish der Drehwinkel
Ferienkurs der Experimentalphysik II Musterlösung Übung 3
Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das
4.1. Prüfungsaufgaben zu Wellen
4.. Prüfungsaufgaben zu Wellen Aufgabe : Wellengleihung (5) Im Ursprung des Koordinatensstems shwingt ein Erreger mit (0;t) = 4 m sin t mit t in Sekunden. Er erzeugt eine Transersalwelle, die sih mit =
Parameter- und Kurvenintegrale
KAPITEL 6 Parameter- und Kurvenintegrale 1. Parameterintegrale Typishe Beispiele fur Parameterintegrale sind sogenannte spezielle Funktionen wie die Gamma-Funktion Γx : oder auh die Besselfunktionen J
Lichtablenkung unter Gravitation - flaches Universum?
Lihtablenkung unter Gravitation - flahes Universum? von Dieter Prohnow, Berlin E-mail: [email protected] Im Universum kann Liht in der Nähe von Massenanhäufungen von seiner Bahn abgelenkt werden.
