Das gefaltete Quadrat
|
|
|
- Bastian Kalb
- vor 9 Jahren
- Abrufe
Transkript
1 / - + Das gefaltete Quadrat Eine Aufgabe aus der Japanishen Tempelgeometrie 21. September 2004 Gegeben sei das Quadrat ABCD mit der Seitenlänge a. Entlang der Linie EF wird das Quadrat gefaltet, so das der Punkt A = A auf Seite BC liegt. Ein Kreis k tangiert die Seiten BC und CD des Quadrats sowie die Linie A D. Zeige an dieser Figur das stets d = r gilt!,,? ) ) * Abbildung 1: Skizze zur Aufgabenstellung 1
2 / - = = N + 6 Japanishe Tempelgeometrie Lösungsweg I von Jutta Gut, Wien,,? ) ) = * Abbildung 2: Skizze zum Lösungsweg I Es sei x = BA, M der Mittelpunkt des Kreises, T der Berührpunkt von Kreis und Seite BC und α der Winkel BEA = CA G. Berehnung von r Es ist: BAA = CA M = α 2 (1) Daher ist: AB BA = A T TM a (a x r) = x r r = x (a x) a + x (2) Berehnung von d Aus dem rehtwinkligen Dreiek EBA erhält man b 2 = () 2 + x 2 b = a2 + x 2, = a2 x 2 2a 2a (3) 2
3 Japanishe Tempelgeometrie Die Dreieke A CG und EBA sind ähnlih: GC a x = x GC = 2ax(a x) a 2 x 2 (4) Auh die Dreieke FD G und EBA sind ähnlih: FG = b = a2 + x 2 a 2 x 2 FG = (a2 + x 2 ) a 2 x 2 (5) Die Seite CD setzt sih zusammen aus: also CD = + FG + GC = a (6) + (a2 + x 2 ) 2ax (a x) (a x)2 a 2 x 2 + a 2 x 2 = a = 2a (7) Aus der Ähnlihkeit der Dreieke FD G und EBA ergibt sih weiter: d = x d = x x (a x)2 2a = 2a a 2 x 2 (8) d = x (a x) a + x d.h. d = r, qed. (9) 3
4 =.? / - C A D + Japanishe Tempelgeometrie Lösungsweg II von Ingmar Rubin, Berlin,,? ) ) = * Abbildung 3: Skizze zum Lösungsweg Teil a Die Streken und Punktebezeihner seien entsprehend Abbildung 3 gewählt. Wir beginnen damit die Strekenabshnitte, e, f, g und h auf der Peripherie des Quadrats zu berehnen. Streke b wird dabei als freier Parameter betrahtet. Die Seite e = BA folgt aus dem Satz des Pythagoras: EBA : e 2 = b 2 () 2 e = 2ab a 2 (1) Der Strekenabshnitt h = A C ist die Differenz aus a e: h = a e = a 2ab a 2 (2) Die Dreieke EBA und A CG sind einander ähnlih. Aus dem Seitenverhältnis folgt die Streke g = CG zu: e = g h g = (a 2ab a 2 ) 2ab a 2 Weiterhin ist Dreiek FGD ähnlih zum Dreiek EBA : f = b f = b (3) (4) 4
5 =.? / - N N O A O + Japanishe Tempelgeometrie Die Summe der Abshnitte g + f + entspriht der Seitenlänge a = CD vom Quadrat : CD = a = g + f + = (a 2ab a 2 ) 2ab a 2 + b + (5) Diese Gleihung wird nah aufgelöst: = b a(2 b a) = b e (6) Aus der Ähnlihkeit zwishen den Dreieken FD G EBA berehnen wir die Streke d: d = e d = e (b e)e = = a2 2ab + b a(2b a) (7) Lenken wir nun unsere Aufmerksamkeit auf den Berührungskreis k mit Radius dem r. Die,,? ) ) = * Abbildung 4: Skizze zum Lösungsweg Teil b Tangentenabshnitte x,y von den Punkten G,B an den Kreis k sind gleih lang. A C : h = a 2ab a 2 = y + r (8) CG : g = (a 2ab a 2 ) 2ab a 2 = x + r (9) 5
6 Japanishe Tempelgeometrie Die gespiegelte Quadratseite A D besteht aus den Teilstreken: A D : a = x + y + d = x + y + a2 2ab + b a(2b a) (10) Die Gleihungen (8),(9) bis (10) werden mit einem Computeralgebrasystem (z.b. Mathematia) nah r, x, y aufgelöst. {{ a 2 2ab + a(a 2b) b r, x a(a 2b), y a( a(a 2b) + b ) }} Der Vergleih mit den vorangegangenen Gleihungen, insbesondere (7) zeigt: r = d, x = e, y = a (11) 6
7 Japanishe Tempelgeometrie Lösungsweg III von Swen Lünig, Petershagen bei Berlin Die Abb. 5 zeigt die geometrishe Figur zur Lösung der Aufgabe. Das Quadrat habe die Seitenlänge 1. d E δ b r D a γ C g β e g A α f B Abbildung 5: Skizze zur Lösung Die Länge g wird aus dem offenen Intervall ( 1 2,1) vorgegeben. Dies ist gleihzeitig die Länge der ypotenuse des Dreieks ABC. Mit mit f = ergibt sih somit die Länge e = g 2 () 2 (1) = 2g 1 Die Länge a ergibt sih wieder aus der Seitenlänge des Quadrats (2) a = (1 e) = 1 2g 1 (3) (4) Der Winkel BAC und der Winkel DCE sind gleih, weil ihre Shenkel jeweils senkreht aufeinander stehen. Außerdem kann diese Eigenshaft mit den zwei Beziehungen α + β = und β + γ = gezeigt werden. Aus der Gleihheit der Winkel ergibt sih entsprehend der Strahlensätze die Beziehung e f = b a (5) und somit die neue Größe b. 7
8 Japanishe Tempelgeometrie Shließlih ergibt sih die Länge der ypotenuse zu = a 2 + b 2 (6) ( = a 2 + a e ) 2 (7) f = a 1 + ( ) e 2 f = a 1 + 2g 1 () 2 (9) g 2 = a () 2 g = a () Der Radius r des Inkreis eines rehtwinkligen Dreieks mit den Kathetenlängen a, b und der ypotenusenlänge ergibt sih zu (8) (10) (11) r = a + b 2 (12) Dies wird anhand der Abb. 6 und den darin geltenden Gleihungen deutlih: x 2 = (a r) 2 + r 2 (13) x 2 = 2 x + r 2 (14) y 2 = (b r) 2 + r 2 (15) y 2 = b 2 x + r2 = x + y (16) (17) y y x x r r r b a Abbildung 6: Skizze zum Inkreis Laut Behauptung der Aufgabe soll der Radius gleih der Länge d sein. Diese wiederum 8
9 Japanishe Tempelgeometrie ergibt sih zu d = 1. Es muß also folgende Gleihung untersuht werden: d = r (18) 1 = a + b 2 (19) 1 = a + b + 2 (20) 2 = a + b + (21) ( 2 = a 1 + e ) + (22) f ( ) 2g 1 2 = a (23) ( ) + 2g 1 2 = a + (24) ( + 2g 1 2 = a + g ) (25) 2 = a 1 + 2g 1 (26) ( 2 = 1 ) 1 + 2g 1 2g 1 (27) 2 = 1 (2g 1) (28) 2 = 2 (29) 2 = 2 (30) In umgekehrter Rihtung könnte nun aus 2 = 2 die Behauptung der Aufgabe d = r abgeleitet werden. Die Behauptung stimmt also. 9
Sangaku - Probleme. Aufgaben aus der japanischen Tempelgeometrie. ein Beitrag von Ingmar Rubin, Berlin. Abbildung 1: Ein typisches Sangaku-Problem
A B O B B G F C C N C L K Sangaku - Probleme Aufgaben aus der japanischen Tempelgeometrie ein Beitrag von Ingmar Rubin, Berlin Abbildung 1: Ein typisches Sangaku-Problem Zusammenfassung Der Beitrag beschäftigt
Checkliste Sinus, Kosinus, Tangens
Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse
Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)
Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei
Lösungen Prüfung Fachmaturität Pädagogik
Fachmaturität Mathematik 7.0.009 Lösungen Prüfung Lösungen Prüfung Fachmaturität Pädagogik. (7 min,7.5 P.) Brüche Forme so um, dass im Ergebnis maximal ein Bruchstrich vorkommt und nicht mehr weiter gekürzt
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:
Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der
5. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1965/1966 Aufgaben und Lösungen
5. Mathematik Olympiade Saison 1965/1966 Aufgaben und Lösungen 1 OJM 5. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen
3 6. Ähnlichkeitsabbildungen Bilde eine Figur durch Hintereinander Ausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen in eine
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
Dualität in der Elementaren Geometrie
Dualität in der Elementaren Geometrie Vortrag zum Tag der Mathematik 2012 Holger Stephan, Berlin Weierstraß Institut für Angewandte Analysis und Stohastik Inhaltsverzeihnis 1 Zusammenfassung (aus dem Programmheft)
Symmetrien und Winkel
1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen
2. Wellenausbreitung
2. Wellenausbreitung Die Wellengleihung beshreibt die Bewegung des Stabes: 2 u t 2 =2 2 u x 2 Für die eindeutige Festlegung der Lösung müssen zusätzlih Anfangsbedingungen und Randbedingungen angegeben
MATHESTAFFEL 2009 Die Bearbeitungszeit für 20 Aufgaben beträgt 60 Minuten. Insgesamt gibt es 500 Punkte.
MATHESTAFFEL 2009 Die Bearbeitungszeit für 20 Aufgaben beträgt 60 Minuten. Insgesamt gibt es 500 Punkte. 1 (20 Punkte) Sieben Gebiete Drei Kreise begrenzen sieben Gebiete. Wir verteilen die Zahlen von
Trigonometrie - Sinussatz, Kosinussatz
Erstelle zu jeder der folgenden Aufgaben zuerst eine maßstäbliche Zeichnung. 1. Berechne die Länge der nicht gegebenen Dreiecksseite im Dreieck ABC: a) b = 6,7 cm c = 5,9 cm α = 63,5 b) b = 2,6 cm c =
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen
7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
Maturitätsprüfung Mathematik
Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen
Aufgaben für Klausuren und Abschlussprüfungen
Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.
21 Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.
Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung
1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:
9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene
Besondere Linien und Punkte im Dreieck
Sttion 6 Aufge Besondere Linien und Punkte im Dreiek Nme: Betrhte folgende Begriffe. Shreie diese n die rihtige Stelle neen den Dreieken. Höhenlinie Winkelhlierende Seitenhlierende Mittelsenkrehte Mittelpunkt
3.3 Klassifikation quadratischer Formen auf R n
3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen
4. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen
4. athematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen 1 OJ 4. athematik-olympiade 3. Stufe (Bezirksolympiade) Klasse 8 Aufgaben Hinweis: Der Lösungsweg mit
Station A * * 1-4 ca. 16 min
Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt
Kapitel VI. Euklidische Geometrie
Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und
Raumgeometrie - gerade Pyramide
1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche
Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur
Aufgaben zu geometrischen Grundbegriffen 1
Aufgaben zu geometrischen Grundbegriffen 1 Punkt, Gerade, Strecke und Strahl 1. Gib alle Buchstaben an, mit denen ein Punkt bezeichnet wird. A 2. Schreibe verschiedene Redewendungen auf, in denen das Wort
Trigonometrie und Planimetrie
Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben
Realschule Abschlussprüfung
Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................
Geometrie-Dossier Kreis 2
Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert
1. Daten und Diagramme Beispiele / Veranschaulichung
1. Daten und Diagramme / Veranschaulichung Zum Vergleich von Daten sind Säulen- und Balkendiagramme geeignet: Bei dieser Arbeit gab es zweimal die Note 1, siebenmal die Note 2, usw. Die Verteilung innerhalb
Lernzielkontrolle natürliche Zahlen A
SEITE: Lernzielkontrolle natürliche Zahlen A Welche Zahlen sind am Zahlenstrahl markiert? a 00 = mm 0 00 b c d Zeichne einen Zahlenstrahl mit der Einheitsstrecke von mm und trage folgende Zahlen darauf
3. Mathematikschulaufgabe
Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;
Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.
1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets
6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen
6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit
I. Symmetrie. II. Grundkonstruktionen
I. Symmetrie Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. Punktsymmetrie Zwei Figuren, die bei einer Halbdrehung um einen Punkt ineinander
H Dreiecke und Vierecke
H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.
Darstellungstheorie der Lorentz-Gruppe
Kai Walter 29. Juli 2008 Inhaltsverzeihnis 1 Einführung 2 2 Lie-Algebra der Lorentz-Gruppe 2 2.1 Minkowski-Raum............................. 2 2.2 Lorentz-Transformation......................... 3 2.3
1. Mathematikschulaufgabe
Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.
Papierfalten und Algebra
Arbeitsblätter zum Thema Papierfalten und Algebra en Robert Geretschläger Graz, Österreich 009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel und Lineal AUFGABE 1 Zeige, dass die x-koordinaten der
Ein Halbkreis im Viertelkreis
1 Ein Halbkreis im Viertelkreis ätselaufgabe aus mathsoftpuzzle bbildung 1 zeigt den Kreis k 1 mit dem adius r = 1 und einen Viertelkreisbogen k mit dem adius =. Im Punkt D liegt die Tangente g 1 am Kreis
Weiterführende Aufgaben zu chemischen Gleichgewichten
Weiterführende Aufgaben zu hemishen Gleihgewihten Fahshule für Tehnik Suhe nah Ruhe, aber durh das Gleihgewiht, niht durh den Stillstand deiner Tätigkeiten. Friedrih Shiller Der Shlüssel zur Gelassenheit
4. Mathematikschulaufgabe
.0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.
Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben
Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde
2.3 Der Fluss eines Vektorfeldes
32 Kapitel 2. Gewöhnlihe Differentialgleihungen 2.3 Der Fluss eines Vektorfeldes Sei F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes.
Tag der Mathematik 2013
Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende
Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.
Fachbereich Mathematik Tag der Mathematik 0. Oktober 00 Klassenstufen 7, 8 Aufgabe (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion
Wahlteil Geometrie/Stochastik B 1
Abitur Mathematik: Wahlteil Geometrie/Stochastik B 1 Baden-Württemberg 214 Aufgabe B 1.1 a) 1. SCHRITT: SKIZZE ANFERTIGEN Die Lage der Pyramide im Koordinatensystem ist wie folgt: 2. KOORDINATENGLEICHUNG
BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK
BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 150 Minuten Tafelwerk Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler, die einen CAS-Taschencomputer
In der Zeichnung unten sind α und β, β und γ, γ und δ, δ und α Nebenwinkel. Scheitelwinkel sind α und γ oder β und δ.
Entdeckungen an Geraden- und Doppelkreuzungen Schneiden sich zwei Geraden, so entstehen vier Winkel mit Scheitel im Schnittpunkt. Jeweils zwei gleichgroße Winkel liegen sich dabei gegenüber man nennt diese
4.2. Aufgaben zu Wellen
4.. Augaben zu Wellen Augabe : Wellengleihung a) Berehne die Frequenz und die Periodendauer einer Rundunkwelle mit der Wellenlänge λ = 600 m und einer Ausbreitungsgeshwindigkeit on = 3 0 8 m/s. b) Berehne
Die Lorentz-Transformation
Bernhard Szallies Die Lorentz-Transformation Die Lorentz-Transformation stellt die rehnerishe Beziehung zwishen den Ortskoordinaten und der Zeitkoordinate eines Ereignisses bezüglih zweier Inertialsysteme
Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II
Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel
Aufgaben zum Faßkreisbogen (Randwinkelsatz)
Gymnasium / Realschule Aufgaben zum Faßkreisbogen (Randwinkelsatz) 1. Konstruiere über [PQ] mit PQ = 5 cm einen Faßkreisbogen zum Umfangswinkel a) ϕ = 50 b) ϕ = 10.. Konstruiere (zeichne) die Menge aller
Lösungen der 1. Lektion
Lektionen der Vektorrechnung in Aufgaben Lösungen Schickt mir bei Entdeckung eines Fehlers oder Unklarheiten bitte eine e-mail! Lösungen der 1. Lektion Es ist hier unerheblich, wie Vektoren definiert werden.
Physik. Lichtgeschwindigkeit
hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit
Euklides: Dedomena. Was gegeben ist.
Euklides: Dedomena. (Die "Data" des Euklid) Was gegeben ist. Verzeichnis der Lehrsätze Dedomena Ins Deutsche übertragen von Dr. phil. Rudolf Haller mit Benützung von Euclidis Opera Omnia, ediderunt I.
Lösungen Kapitel A: Zuordnungen
Windgeschwindigkeiten Lösungen Kapitel A: Zuordnungen Arbeitsblatt 01: Graphen einer Zuordnung 5 4 3 2 1 0 1 2 3 4 5 6 Tage Strandabschnitte 1 2 3 4 5 6 Muscheln 4,2 2,1 0,7 1,2 7,3 0,5 Arbeitsblatt 02:
3 Geometrisches Beweisen
22 3 Geometrisches Beweisen 3.1 Axiome Durch empirische Untersuchungen werden immer wieder Gesetzmäßigkeiten gefunden, die man versucht durch logische Schlüsse zu begründen. Irgendwann am Ende einer Schlusskette
Aufgaben zum Basiswissen 7. Klasse
Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne
7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1)
Name: Geometrie-Dossier 7 Ebene Figuren (angepasst an das Lehrmittel Mathematik 1) Inhalt: Fläche und Umfang von Rechteck und Quadrat Dreiecke (Benennung, Konstruktion) Winkelberechnung im Dreieck und
Trigonometrische Funktionen
Trigonometrische Funktionen Rainer Hauser September 013 1 Einleitung 1.1 Der Begriff Funktion Eine Funktion ordnet jedem Element m 1 einer Menge M 1 ein Element m einer Menge M zu. Man schreibt dafür f:
OvTG Gauting, Grundwissen Mathematik 7. Klasse
1. Symmetrie (vgl. auch Grundwissen 5. Klasse) Achsensymmetrie Zwei Figuren, die bezüglich einer Achse symmetrisch zueinander sind, nennt man achsensymmetrisch. a Punktsymmetrie Zwei Figuren, die bei einer
Lösungen Jahresprüfung Mathematik. 1. Klassen Kantonsschule Reussbühl Luzern. 26. Mai 2015
Lösungen Jahresprüfung Mathematik 1. Klassen Kantonsschule Reussbühl Luzern 26. Mai 2015 Zeit: Hilfsmittel: 90 Minuten (13.10-14.40 Uhr) Taschenrechner (TI-30) Punktemaximum: 75 Punkte Notenmassstab: 68
7.4. Teilverhältnisse
7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition
SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren
Laborprotokoll SSY Reglerentwurf nah dem Frequenz- Kennlinien-Verfahren Daniel Shrenk, Andreas Unterweger, ITS 24 SSYLB2 SS6 Daniel Shrenk, Andreas Unterweger Seite 1 von 13 1. Einleitung Ziel der Übung
Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:
Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf
Physik, grundlegendes Anforderungsniveau
Niedersahsen Diese Lösung wurde erstellt von Tanja Reimbold Sie ist eine offizielle Lösung des Niedersähsishen Kultusministeriums Eigenshaften von Liht Aufgabe 1 Vorgaben: Transmissionsgitter mit 6 g =
R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010
R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
2. Strahlensätze Die Strahlensatzfiguren
2. Strahlensätze 2.1. Die Strahlensatzfiguren 1) Beispiel Die nebenstehende Figur zeigt eine zentrische Streckung mit Zentrum Z. Man kennt einige Streckenlängen. a) Wie gross ist der Streckungsfaktor k?
Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: )
A A1a 2197120 on on A A1a 2311330 on on on on on on on A A1a 2316420 on on A A1a 2332345 on on on on on on on A A1a 2371324 on on on on on on on A A1a 2382962 on on A A1a 2384710 on on on on on on on A
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden
Erweiterte spezielle Relativitätstheorie
Das Mihelson-Morley-Experiment als Shlüssel zur Vereinheitlihung von spezieller Relativitätstheorie und Äthertheorie von Andreas Varesi Münhen, 7. Februar 2005 von 30 Abstrat Mit Hilfe des Mihelson-Morley-Experiments
I. Zahlen. II. Funktionen. Direkt proportionale Zuordnungen. Indirekt proportionale Zuordnungen. Funktion. Grundwissen Mathematik Jahrgangsstufe 8 ---
Grundwissen Mthemtik Jhrgngsstufe 8 I. Zhlen --- II. Funktionen Direkt proportionle Zuordnungen x und y sind direkt proportionl zueinnder, wenn... zum n-fhen Wert von x der n-fhe Wert von y gehört die
GW Mathematik 5. Klasse
Begriffe zur Gliederung von Termen Term Rechenart a heißt b heißt a + b (Summe) Addition 1. Summand 2. Summand a b (Differenz) Subtraktion Minuend Subtrahend a b ( Produkt) Multiplikation 1. Faktor 2.
Mathematik 36 Ähnlichkeit 01 Name: Vorname: Datum:
Mathematik 36 Ähnlichkeit 01 Name: Vorname: Datum: Aufgabe 1: Berechne die fehlenden Variablen: a) b) 12 cm 5 cm 8 cm 6 cm 4 cm 6 cm 10 cm 8 cm c) d) u 6 dm 3 dm 9 dm 5 dm 12 m v 6 m 6 m 8 m 15 m Aufgabe
750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis
2.7 Verminderter und vermehrter Grundwert 41 Beispiel: Bruttobetrg, Nettobetrg, Umstzsteuer Profirdfhrer Klus kuft sih ein Mountinbike. Ds Fhrrd kostet einshließlih 19 % Umstzsteuer 892,50. Ds Finnzmt
Leseprobe. Monika Noack, Alexander Unger, Robert Geretschläger, Hansjürg Stocker. Mathe mit dem Känguru 3. Die schönsten Aufgaben von 2009 bis 2011
Leseprobe Monika Noack, lexander Unger, Robert Geretschläger, Hansjürg Stocker Mathe mit dem Känguru 3 Die schönsten ufgaben von 009 bis 011 ISN: 978-3-446-480-1 Weitere Informationen oder estellungen
WF Mathematik: 1. Grundbegriffe der Geometrie
WF Mathematik: 1. Grundbegriffe der Geometrie Geometrie setzt sich aus den beiden griechischen Wörtern geo (Erde) und metrein (messen) zusammen, bedeutet ursprünglich Erdvermessen. Alle Gegenstände unseres
Strahlensatz allgemein
Strahlensatz allgemein 1 In nebenstehender Abbildung (nicht maßstabsgetreu) gilt AB CD (a) Berechne, y und z (b) Eine zentrische Streckung mit dem Zentrum Z, die A in C überführt, bildet ein Dreieck mit
2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay
ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +
Raum- und Flächenmessung bei Körpern
Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen
4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 2011/2012 DES LANDES HESSEN 1. RUNDE AUFGABENGRUPPE A - PFLICHTAUFGABEN 01.12.2011 P1. Die Klasse 8a verkauft auf dem Weihnachtsbasar heiße Esskastanien zum festen Stückpreis. Übertrage
D C. Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
V. Körper, Flächen und Punkte ================================================================= 5.1 Körper H G E F D C A B Man unterscheidet in der Geometrie zwischen Körpern, Flächen, Linien und Punkten.
5 Relativistische Mechanik
5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt
