1. Mathematikschulaufgabe
|
|
|
- Klaus Weiner
- vor 9 Jahren
- Abrufe
Transkript
1 Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1. Die schraffiert gekennzeichnete Menge M einschließlich der Randlinien.. Gegeben sind die Punkte A (-3/-), B (4/-1) und C(1/). Fertige eine Zeichnung an und kennzeichne die Lösung mit blauer Farbe: { P d ( P; AB ) < cm d ( P; AB ) d ( P; BC ) [ PC ] [ AC ] } 3.0 Gegeben ist der Kreis k mit Mittelpunkt M(-/1) und Radius r 3cm. 3.1 Konstruiere die Tangenten von S (5/-1) an den Kreis k. 3. Berechne die Koordinaten des Mittelpunktes M der Strecke [ MS ]. 3.3 Kennzeichne ferner mit grünem Farbstift folgende Menge: { P [ PM ] < [ PS ] } k a ( M; r ) MS 3.4 Wie nennt man die Gerade m [ MS ] bezüglich des Kreises k? 4. Die Maße von Randwinkel und zugehörigem Mittelpunktswinkel betragen zusammen 79. Wie groß ist der Randwinkel, wie groß der Mittelpunktswinkel? 5.0 Gegeben sind die Punkte A (0/0), B (5/0), C(-/,5) und D(7/,5). 5.1 Konstruiere alle Punkte P CD, von denen aus die Strecke [ AB ] unter einem rechten Winkel erscheint. 5. Bestimme in obiger Zeichnung ferner alle Punkte P CD, für die gilt: AP B 60. RM_A0084 **** Lösungen 3 Seiten
2 1.1 Gib in Mengenschreibweise an: Zur Menge M gehören alle Punkte P, deren Abstand von der Geraden AB weniger als 3cm beträgt und die gleichzeitig von A höchstens so weit entfernt sind wie von B. 1. Welche beiden geometrischen Ortsbereiche werden durch die Beschreibung in Aufgabe 1.1 gekennzeichnet? Entscheide, ob der jeweilige Rand zum Ortsbereich gehört oder nicht..0 Gegeben ist die Gerade AB mit A(-1/6) und B(8/3)..1 Konstruiere die Mittelpunkte M 1 und M von Kreisen mit dem Radius r 3cm, die AB berühren und gleichzeitig durch C(3/0) gehen. Zeichne die beiden Kreise ein.. Konstruiere die zwei Tangenten von A aus an den Kreis, dessen Mittelpunkt näher bei A liegt. Kennzeichne die beiden Tangentenberührpunkte T 1 und T. 3. Beschreibe die im nebenstehenden Bild schraffierte Punktmenge in Mengenschreibweise. Der Rand gehört jeweils dazu. 4. Zeichne im Koordinatensystem folgende Punkte: A(0/3), B(4/-1), C(6/), D(5/6). P APB 45 DPC 60 farbig. Kennzeichne die Punktmenge { } 5.1 Wie lautet der Satz des Thales? 5. Nenne zwei Eigenschaften von Tangenten. RM_A01 **** Lösungen Seiten
3 1.1 Gib in Mengenschreibweise an: Zur Menge M gehören alle Punkte P, deren Abstand von der Geraden AB weniger als 3cm beträgt und die gleichzeitig von A höchstens so weit entfernt sind wie von B. 1. Welche beiden geometrischen Ortsbereiche werden durch die Beschreibung in Aufgabe 1.1 gekennzeichnet? Entscheide, ob der jeweilige Rand zum Ortsbereich gehört oder nicht..1 Zwei Orte A (/3) und B (4/5,5) wollen zusammen eine Mülldeponie errichten, die aber von beiden Orten gleich weit entfernt sein soll. Aus Gründen des Umweltschutzes muss die Müllanlage einen Abstand von mindestens km (1 km 1cm) vom Fluss f (f DE mit D(0/1,5) und E (8/6) haben. Um Kosten zu sparen, soll sich der Ort C ( 5, 5 / 5 ) beteiligen. C erklärt sich aber nur unter der Bedingung bereit dazu beizutragen, wenn die Müllanlage nicht weiter als 4 km von C entfernt ist. Kennzeichne den Teil, der für die Müllanlage in Frage kommt mit grüner Farbe. Platzbedarf: 0 < x < 10 0 < y < 10. Welche geometrischen Ortslinien hast du zur Konstruktion benötigt? 3. Beschreibe die im nebenstehenden Bild schraffierte Punktmenge in Mengenschreibweise. Der Rand gehört jeweils dazu. 4.0 Gegeben ist die Gerade AB mit A (-1/6) und B (8/3). 4.1 Konstruiere die Mittelpunkte M 1 und M von Kreisen mit dem Radius r 3cm, die AB berühren und gleichzeitig durch C(3/0) verlaufen. Zeichne die beiden Kreise ein. 4. Konstruiere die Tangenten von A aus an den Kreis, dessen Mittelpunkt näher bei A liegt. Kennzeichne die beiden Berührpunkte T 1 und T. Platzbedarf: -3 < x < 8 - < y < 6 RM_A013 **** Lösungen 1 Seite
4 1.0 Untersuche mit Hilfe von Wertetabellen, ob folgende Terme über der Grundmenge G äquivalent sind: 1.1 T 1 (x) - (x ) + 4 T (x) - x 1 + 4x G { 1; ; ; 3 3 } 1. T 3 (x) y 1 T 4 (x) y + G {-; 0; 1; 5}. Welche Terme sind über der Grundmenge G Q äquivalent? T 1 64a 3 b c T 8abc (8ab c) T 3 (8ab) ac T 4 (4a) 3 (b c) T 5 64a b 3 c 3. Vereinfache durch Termumformung unter Angabe der Gesetze : 3 (8 + x) 4x 4.0 Gegeben sind die Punkte A (-4/), B (-/-3), C(1,5/-1) und D(3/3). Platzbedarf: - 6 < x < 6-3 < y < Konstruiere den Inkreis im Dreieck ABC. 4. Konstruiere und kennzeichne die Lösungsmenge mit grüner Farbe: { P AP DP d(p;ad) 1cm} 4.3 Berechne die Koordinaten des Mittelpunktes von [CD]. 5. Konstruiere und kennzeichne die Lösungsmenge mit grüner Farbe: { P AP < BP AP < 3cm} mit A (-1,5/-) und B (/1). 6. Konstruiere die Menge aller Punkte, die von AB cm entfernt sind und von denen aus die Strecke [AB] unter einem Winkel erscheint, der kleiner als 90 ist. Kennzeichne die Lösungsmenge mit grüner Farbe A (-1/1) und B (4/0). RM_A014 **** Lösungen 3 Seiten
5 1. Fasse folgende Terme so weit wie möglich zusammen: a) T(x; y) 4x y 15xy + 31xy 64xy 0x y 48xy b) T(a; b) 0,3a (-3b) 1 9 b c) T(x; y; z) 7x (4x y + z) y d) T(x; y) 7x (3y 4x) 8xy (y x) (6y + 3x) + 6y. Klammere soweit wie möglich aus: a) 14a + 1ab b) 56x 4x + 14xy c) 9x y + 46xy 3xy 3. Zeichne die Punkte A (1/), B (4/3), C(6/7), D(0/5) in ein Koordinatensystem. Kennzeichne folgende Punktmengen farbig: a) die Punkte, die von [AB] einen Abstand von cm haben b) die Punkte, die von C und D gleich weit entfernt sind c) die Punkte, die von D weniger als cm entfernt sind 4. Gib die gekennzeichnete Punktmenge in Mengenschreibweise an. a) Der Rand gehört hier zur Menge b) RM_A015 **** Lösungen Seiten
6 1.0 Vereinfache die folgenden Terme soweit wie möglich 1.1 ( ) c c 4 b b 7 7 x 1 y y x ( a ) ( a) s 8 4s 8 ( 6s 3,5s 8 ) Multipliziere aus, und fasse soweit wie möglich zusammen..1 ( m + n)( 4m + 5 3n). ( a 3b) ( a 4b) + 3. Die Seite [AB] des Quadrats ABCD mit AB xcm wird um 1,5 cm verkürzt, die Seite [BC] um 4 cm verlängert. Berechne den Umfang und den Flächeninhalt des entstehenden Rechtecks AB C D in Abhängigkeit von x. 4.0 Wende die binomischen Formeln an und fasse soweit wie möglich zusammen. 4.1 ( 3x + 0,3y) 4. 3 ( b 4 ) ( p 7q 5 )( 7q p) ( 1, 5f g ) 5. Bestimme die Lösungsmenge durch Äquivalenzumformungen ( )( ) ( ) s 7 s s 7 s 3 5 s + + G RM_A008 **** Lösungen Seiten (RM_L008)
7 1. Multipliziere aus und fasse so weit wie möglich zusammen! 1,m 4n 9m m + 5,8mn 3 3 a) ( ) ( ) b) 4,a ( 3x 5y) + 8,9a ( 3x 5y + x) c) 13 a x ( 7,3b 5,8 z + 3 y) 0,0u 7a. Ein Quadrat ABCD hat die Seitenlänge a. Die Seite [AB] wird um 4 cm verlängert, die Seite [BC] um,5 cm verkürzt. Berechne den Flächeninhalt und den Umfang des neuen Rechtecks AEFG in Abhängigkeit von a. 3. Verwandle die angegebenen Summen in Produkte. a) 5x + 70x + 49 b) c) 1 x xy 9y xy 1 4. Berechne unter Verwendung der binomischen Formeln! a) y( y+ 1) b) (,5p 4q) c) ( 11x 14q)( 14q + 11x) d) ( 4x 5y) ( 1,5y 4) Zeichne die Strecke [AB] mit A ( 3 4) und ( ) B5. Kennzeichne alle Punkte, die von A höchstens 6 cm und zugleich gleichen Abstand von A und B haben. RM_A01 **** Lösungen Seiten (RM_L01)
8 Klasse 8 II / III 1. Vereinfache die Terme soweit wie möglich. 1.1 ( 7x 3w) ( 4x + w) + x 1. 1 ( x+ 3 y 1 1 ) ( y x) Überprüfe durch Rechnung, ob die Terme 1 ( ) T ( x) x 5x x x äquivalent sind ( G ). T x x 4x 8x + x und 3. Multipliziere aus und vereinfache die Terme soweit wie möglich. 3.1 ( 3y 4) ( y y 3 ) 3. ( 3a b) ( b a) ( b 3a) ( a b) 4. Belege die Platzhalter, O, so, dass wahre Aussagen entstehen. 4.1 ( ) + b 9+ + O 4. ( ) O 4xy+ 3x 5. Klammere alle gemeinsamen Faktoren aus b + 4b x y 14 x y 7y 6. Schreibe die folgenden Terme als Produkt. 6.1 a 0a a RM_A0316 **** Lösungen Seiten (RM_L0316)
Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5)
1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A( ) ; B( 0,5) und C( 0,5 ) 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:
Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B 1, 1,5(
1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A,, ( ; B, 0,5( und C 0,5 ( 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:
2. Mathematikschulaufgabe
. Mathematikschulaufgabe 1. Ist das folgende Dreieck konstruierbar? Begründe. φ = 100, a = 9cm, c = 4cm.. Konstruiere das Dreieck ABC aus folgenden Bestimmungsstücken: a = 5cm, α = 60 und Inkreisradius
1. Mathematikschulaufgabe
. Mathematikschulaufgabe. Stelle die folgende Produktmenge im Koordinatensystem dar: M = [ -2; +2 ] Q x [ -2; + ] Q 2.0 Gegeben ist die Funktion f: y = 2 + x G= Q x Q 2. Zeichne die Funktion in ein Koordinatensystem.
2. Mathematikschulaufgabe
. Mathematikschulaufgabe 1. Ist das Dreieck mit folgenden Maßen konstruierbar? Begründe! b = 6 cm, β = 76, Außenwinkel γ * = 59.. Ein Draht soll zu einem Dreieck gebogen werden. Eine Seite soll 1m lang
Aufgaben zum Basiswissen 7. Klasse
Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne
Aufgaben für Klausuren und Abschlussprüfungen
Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.
Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht
Am Ende der Aufgabensammlung finden Sie eine Formelübersicht 1. a) Leite eine Formel her für den Umfang eines Kreises bei gegebener Fläche. b) Wieviel mal größer wird der Umfang eines Kreises, wenn man
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
BMS Bern, Aufnahmeprüfung 004 Technische Richtung Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
4. Mathematikschulaufgabe
. Bestimme die Lösungsmengen. G 4x + x = 0 x - 6x +69 = 0 c) (0 + p) (p - 3) 0 d) 4u - 5 > 0. Kürze soweit wie möglich folgende Bruchterme: xy, 3y 5 x y, ( x y x 6y c), x 9 x 6x 9 3. Ergänze die fehlenden
4. Mathematikschulaufgabe
.0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.
Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22.
Vektorgeometrie ganz einfach Aufgabensammlung Berechnung von Strecken und Winkeln Hier alle Beispiele aus Teil 5 und 6 als Aufgabensammlung. Datei Nr. 640 Stand. März 0 INTERNETBIBLITHEK FÜR SCHULMATHEMATIK
4. Mathematikschulaufgabe
1. Wie weit kann man vom Chordach auf dem Mont-Saint-Michel (120 m) auf das Meer hinausschauen? (Erdradius 6370 km) 2. Konstruiere ein Quadrat, das den doppelten Flächeninhalt hat wie das Quadrat mit der
Trigonometrie - Funktionale Abhängigkeiten an Dreiecken
1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
2. Mathematikschulaufgabe
. Rechne möglichst vorteilhaft: 7 9 6 67 48 + = 48 9 7. Entscheide durch Rechnung: (w) oder (f): :4 < 7 6 4. Berechne und gib das Ergebnis in der einfachsten Form an: 9 : 4 : = 7 = 4: = 9 7 4 4 4 4 4.
Grundwissen 7 Bereich 1: Terme
Grundwissen 7 Bereich 1: Terme Termwerte 1.1 S1 Berechne für den Term T (x) = 3 (x 2) 2 + x 2 die Termwerte T (1), T (2) und T ( 3 2 ). 1.2 S1 Gegeben ist der Term A(m) = 2 2m 5 m Ergänze die folgende
Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag
Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen
Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.
Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,
Grundwissen Mathematik 7. Klasse
Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 7. Klasse Wissen Aufgaben/Beispiele Lösungen Achsenspiegelung Eigenschaften der Achsenspiegelung: - Die Verbindungsstrecke von Punkt P und Bildpunkt P
3. Mathematikschulaufgabe
1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere
Berufliches Schulzentrum Waldkirch Stihl Information zur Aufnahmeprüfung WO. Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen?
Information zur Aufnahmeprüfung WO Mathematik Welche mathematischen Kenntnisse und Fertigkeiten sollten Sie mitbringen? Musterprüfung: Lösen von linearen Gleichungen Aufgabe 1 Lösen von quadratischen Gleichungen
2.5. Aufgaben zu Dreieckskonstruktionen
2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere
Konstruktion von Kreistangenten
Konstruktion von Kreistangenten 1 Gegeben sind die Punkte A und B mit AB = 5cm Konstruiere die Geraden durch B, die von A den Abstand 3cm haben! 2 Eine Ecke einer Rasenfläche, an der die geraden Ränder
Terme Allgemeines/Aufstellen von Termen, Formeln und Gleichungen:
Terme Allgemeines/Aufstellen von Termen, Formeln und Gleichungen: Allgemeines zu Termen: https://www.youtube.com/watch?v=ghxszhk2dv8 1.1 Martin kauft im Supermarkt drei Liter Milch um je m, zwei Packungen
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den
S. 44 AAz Ich kann in Summentermen gemeinsame Faktoren finden und diese ausklammern.
Klasse 8b Mathematik Vorbereitung zur Klassenarbeit Nr. am 12.4.2018 Themen: Algebra (Ausmultiplizieren und Ausklammern, Binomische Formeln, Gleichungen und Ungleichungen) und Geometrie (Geraden am Kreis,
4. Mathematikschulaufgabe
Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Kreis und Gerade oder:... Wozu benötigt man rechte Winkel?
Es gibt drei wesentlich verschiedene Fälle von Geraden, bezogen auf einen gegebenen Kreis: Die Gerade ist eine ekante, d. h. die chnittmenge von Gerade und Kreis besteht aus zwei Punkten A und B (AB heißt
4 x
Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational
Raumgeometrie - Würfel, Quader (Rechtecksäule)
Hauptschule (Realschule) Raumgeometrie - Würfel, Quader (Rechtecksäule) 1. Gegeben ist ein Würfel mit der Kantenlänge a = 4 cm. a) Zeichne das Netz des Würfels (Abwicklung). b) Zeichne ein Schrägbild des
M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?
M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.
M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.
M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.
M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?
M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.
M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.
M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.
2. Mathematikschulaufgabe
. Mathematikschulaufgabe.0 Die Punkte A(-/-5) und B(6/) sind Eckpunkte von Dreiecken ABC n. Die Punkte C n liegen auf der Parabel p mit der Gleichung y = 0,5x +.. Zeichne die Parabel p sowie das Dreieck
1. Mathematikschulaufgabe
1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1
Geometrie, Einführung
Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende
2. Mathematikschulaufgabe
1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1
3. Mathematikschulaufgabe
Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;
1. Mathematikschulaufgabe
1.0 Gegeben: R = {(x/y) / y = 4 - Ix+1I } Π x Π 1.1 Stelle eine Wertetabelle im Bereich x [-5; 3] Ψ auf, x=1. 1. Zeichne R in ein Koordinatensystem, 1 LE 1cm.0 Lege ein kart. Koordinatensystem (1 LE 1cm)
Elementare Geometrie Wiederholung 3
Elementare Geometrie Wiederholung 3 Thomas Zink 10.7.2017 1.Schwerpunkt und Teilverhältnis, V13, Es seien A, B, C, D Punkte, die auf einer Geraden liegen, und so dass A B und C D. AB = λ CD λ = AB CD.
Geometrie Strecke, Gerade, Halbgerade
Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht
Rechnen mit rationalen Zahlen
Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)
Kreis und Kreisteile. - Aufgaben Teil 1 -
Am Ende der Aufgabensammlung finden Sie eine Formelübersicht. a) Gib das Bogenmaß,3 im Gradmaß an. b) Gib das Bogenmaß im Gradmaß an. 9 c) Gib das Gradmaß 44 im Bogenmaß als Bruchteil von an. d) Gib das
Qualiaufgaben Konstruktionen
Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der
M9 Geometrielehrgang. M9 Geometrielehrgang 1
M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche
Mathematikarbeit Klasse 8 03.06.03
Mathematikarbeit Klasse 8 0.06.0 Name: A. Aufgabe Bestimme bei der folgenden Gleichung die Definitionsmenge und die Lösungsmenge in. z z = 4 z z. Aufgabe In dieser Aufgabe geht es um ganz normale zylindrische
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Graph der linearen Funktion
Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)
Sehnenlänge. Aufgabenstellung
Sehnenlänge 1. Drehe die Gerade a um den Punkt A und beachte den grünen Text: a) Wann ist die Gerade eine Sekante, wann ist sie eine Tangente? Wann ist sie weder das eine noch das andere? b) Wie viele
4. Mathematikschulaufgabe
1. a) Zeichne mit Hilfe des y-abschnittes und eines Steigungsdreiecks die Geraden mit folgenden Gleichungen in ein Koordinatensystem! (Kennzeichne die Geraden mit I, II, III) I) y = 4-1,4 x II) 2x 3y 6
Vorbereitungsaufgaben SA1: Symmetrie und Winkelbetrachtungen
Aufgabe 1 a) Welche Eigenschaft besitzen alle Punkte auf der Mittelsenkrechten zu zwei gegebenen Punkten A und B? b) In einem Dreieck sind zwei Winkel gleich groß und der dritte Winkel doppelt so groß.
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 007 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Was kann ich? 1 Geometrie. Vierecke (Teil 1)
Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne
Raumgeometrie - gerade Pyramide
1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion
Ortslinien und Konstruktionen
Ortslinien und Konstruktionen Dr. Elke Warmuth Sommersemester 2018 1 / 17 Ortslinien Konstruktionen Dreieckskonstruktionen 2 / 17 Wo liegen alle Punkte P, die von einem Punkt M den gleichen Abstand r haben?
Jgst. 11/I 2.Klausur
Jgst. 11/I 2.Klausur 10.12.2010 A1. Gegeben sind die vier Punkte A(2/2), B(3/6), C(7/5) und D(6/1). Berechne die Gleichung des größten Kreises, den man in das Viereck, das aus diesen Punkten gebildet wird,
a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag?
Aufgaben zum Grundwissen ================================================================== I. Proportionale und umgekehrt proportionale Zuordnungen 1. Von welcher Art können die durch die Tabellen gegebenen
100 % Mathematik - Lösungen
100 % Mathematik: Aus der Geometrie Name: Klasse: Datum: 1 Ordne die gemessenen Längenangaben den beschriebenen Objekten zu. 22 m 37 cm Tischdicke 22 mm Breite eines Turnsaals 2 m 45 cm Sitzhöhe 258 mm
Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke
MATHEMATIK 7. Schulstufe Schularbeiten
MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)
Abschlussprüfung 2012 Mathematik 1. Serie
Abschlussprüfung 01 Mathematik 1. Serie 1. a) Löse folgende Gleichung nach x auf: 5 x x 6 x 6x HN : x( x 6) ( x6) 5x HN HN HN x18 5x HN 18 8x 16 :8 x L b) Nenne die drei grössten ganzen Zahlen, welche
Aufgabensammlung Klasse 8
Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................
r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:
Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck
4. Mathematikschulaufgabe
1. Stelle die folgenden Schreibweisen in jeweils einer Skizze dar. a) g= AB d) AB = 4cm b) h= [ AB e) A g c) s = [ AB] f) [ AB] g 2. Gegeben sind M ( 5 / 4 ) und r = 3 cm. Zeichne den Kreis kmr ( ) sauber
Fit für die E-Phase?
Kapitel Bruchrechnung (mit und ohne Variablen) a) 6 4 i) 6 7 7 8 4 b) 5 5 4 6 7 j) : 7 8 c) 5a a 4 ab y 6 k) : b y d) y l) ( y ) : y y e) a a a m) a 8b 5 6b f) y y n) a 5b 9a 0 b g) a b b y y o) +y y (+y)
Grundwissen 5 Lösungen
Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile
Grundwissen 7 Bereich 1: Terme
Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen
Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung 1. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(11/-1) sind gegenüberliegende Ecken eines
MATHEMATIK-WETTBEWERB 2014/2015 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 04/05 DES LANDES HESSEN. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) L = {... ; ; 0; ; ; }, denn x 4 + 4 > 0 gilt immer, somit x 4) < 0 x < 4 b) L = { ; 0; }, denn x 4) x + 6) x 4 6) < 0
Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben.
Übungen A1 Konstruiere ein Dreieck ABC und dessen Umkreismittelpunkt aus den folgenden Angaben. a) A( 4 2), B(2 2), C(2 4) b) a = 5cm, b = 4cm und c = 8cm A2 Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt
1 -fache des ursprünglichen Wertes. 1 heißt Wachstumsfaktor. 100
Grundwissen Mathematik 7. Klasse 1/6 Grundwissen 7. Klasse Algebra 1.Terme mit Variablen a) Allgemeines Treten in einem Term (Rechenausdruck) verschiedene Variablen auf, dann dürfen diese mit verschiedenen
Trigonometrie - Sinussatz, Kosinussatz
Gymnasium / Realschule Trigonometrie - Sinussatz, Kosinussatz Klasse 10 1. Gemäß nebenstehender Zeichnung sind die Stücke AB = c, α und β gegeben. Stelle eine Gleichung für die Strecke AD = x in Abhängigkeit
St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 3 4 5 6 7 8 9 10 11 1 13 Punkte Löse
1. Schularbeit Stoffgebiete:
1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(/-) sind gegenüberliegende Ecken eines
x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle
Parallelogramm. Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie
Einführung in das Thema Parallelogramm Simone Alvarenga, Klaus Baderschneider, Mathias Volz Mathematikunterricht in der Sekundarstufe I: Geometrie Lehrplanaussagen MS, RS Lehrplanaussage MS: Jahrgangsstufe
Übungen. Löse folgende Aufgaben mit GeoGebra
Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden
3. Mathematikschulaufgabe
Für alle Aufgaben gilt Grundmenge ist Q + 0. 10 1. a) Berechne die Termwerte zu T(x) = für x {0; 2; 4; 6}. 8 x + 10 b) Für welche Zahlen x Q0 hat T(x) = den Termwert 5 und 10? 8 x 10 c) Gib die Definitionsmenge
f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1
III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare
Semesterprüfung Mathematik 2. Klasse KSR 2010
Erreichte Punktezahl: / 58 Note: (Maximale Punktezahl: 58) Semesterprüfung Mathematik 2. Klasse KSR 2010 Montag, 31. Mai 2010 13.10-14.40 Das GROSSGEDRUCKTE: Unbedingt zuerst durchlesen! Prüfung auf jeder
Übungsaufgaben. Lichtbrechung. Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε'
Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε' -Diagramm von Blatt 3 1. (a) Auf eine 2 cm dicke ebene Glasplatte fällt unter dem Einfallswinkel 50 ein Lichtstrahl. Zeichne seinen weiteren
MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 5 2 (oder 2,5) (= 6 5 3) b) 6 5 ( = 1 3 3 1 6 5 ) ( c) 3 2 (oder 1,5) (= 56 3) 1 3 = 5 2 1) P2.
7 Mathematik I (4-stündig)
(4-stündig) In der Wahlpflichtfächergruppe I mit Schwerpunkt im mathematisch-naturwissenschaftlich-technischen Bereich wird das Fach Mathematik vertieft unterrichtet. Die Schüler lernen in der Jahrgangsstufe,
Grundwissen zur 5. Klasse (G9)
Grundwissen zur 5. Klasse (G9) (Strukturiert nach dem Schulbuch Lambacher Schweizer 5 zum Lehrplan Plus) I. Natürliche und ganze Zahlen a) Veranschaulichung von Zahlen Du musst wissen, wie man Zahlen am
Mathematik II (Geometrie)
Mathematik II (Geometrie) Zeit: 120 Minuten Jede Aufgabe gibt maximal 5 Punkte. Zum Lösen jeder der sieben Aufgaben steht jeweils ein Blatt zur Verfügung. Verwende auch die Rückseite, falls du auf der
