2. Mathematikschulaufgabe

Größe: px
Ab Seite anzeigen:

Download "2. Mathematikschulaufgabe"

Transkript

1 . Mathematikschulaufgabe 1. Ist das Dreieck mit folgenden Maßen konstruierbar? Begründe! b = 6 cm, β = 76, Außenwinkel γ * = 59.. Ein Draht soll zu einem Dreieck gebogen werden. Eine Seite soll 1m lang sein, die andere 0,75m. Wie lang muss die dritte Seite mindestens sein und wie lang darf sie höchstens werden? 3.1 Konstruiere das Dreieck ABC mit b = 4,5cm, c = 5cm und β = Begründe, weshalb es hier Lösungen gibt. 3.3 Gib die Konstruktionsbeschreibung an. 4. Gegeben: M(-/-1), D(4/-) und k(m; r = 3cm). 4.1 Konstruiere die Tangenten von D an den Kreis und markiere sie mit grüner Farbe. 4. Konstruiere und kennzeichne mit blauer Farbe: { P/P k MPD= 40 } 5. Löse die Klammern auf und fasse zusammen: ( ( )) ( ) ( ) ( ) a b + 4a 3a 4b 5 + 3a 4a + 3b = 6. Klammere aus: x y - 4x y + 84x y = 7. Faktorisiere: 7.1 ( 6b 3c )( 4m 7a) ( 16a 6m)( 6b 3c ) = 7. 6a a + 3ab b = 8. Ergänze: 8b y 6byz + 10y = ( 4y)(...) = 9. Multipliziere aus und vereinfache soweit möglich: r b b+ r b 3 r = RM_A0110 **** Lösungen 3 Seiten

2 . Mathematikschulaufgabe 1.0 Zeichne die Punkte A( 1,5) und B( ) Platzbedarf: -3 x 7 ; -3 y M 1 ist der Mittelpunkt der Strecke [AB]. Kennzeichne folgende Punktmenge mit grüner Farbe: P/PM <,5cm PA PB { 1 } 3,5 4 in ein Koordinatensystem. 1. Berechne die Koordinaten des Mittelpunktes M 1 von der Strecke [AB] mit Hilfe der Mittelpunktsformel. Weiterhin ist gegeben der Punkt C( 1, 8 6, 7 ). Berechne die Koordinaten von den Mittelpunkten der Strecken [AC] und [BC]..0 Zeichne die Punkte A(-1/4), B(4/-1), C(9/1), D(5/7) in ein Koordinatensystem. Platzbedarf: - x 11 ; - y 9.1 Kennzeichne folgende Punktmenge blau: { P / BPD = 90 }. Kennzeichne folgende Punktmenge grün: { Q/ CQA = 10 } Mit Skizze und Konstruktionsbeschreibung..3 Kennzeichne folgende Punktmenge braun: { S / BSD = 90 CSA = 10 } Hinweis: siehe.1 und.!!! 3.0 Bestimme die Lösungsmengen der folgenden Aussageformen. 3.1,56x + 19,5 = -3,94x G = N y > y + G = Q 0 Stelle die Lösungsmenge auch auf der Zahlengeraden dar! RM_A0111 **** Lösungen Seiten

3 . Schulaufgabe aus der Mathematik 1.0 Vereinfache die folgenden Terme: 1.1 x + x + x 3 = 1. 5( 3x ) 3x 3( + 5x) = 1.3 ( x 4)( x 3x 1) ( x 6x 1)( x ) x( 3x) =.0 Übertrage die Aufgabe auf dein Blatt und setze in die Leerstellen Terme ein, so dass äquivalente Terme entstehen..1 (4a +...) (...+ 4) = 0a a + 1a = a (5a -...) - (...- 8b) = - 3a Forme die folgenden Terme in Produkte um: ax - 56ay - 54bx + 63by 3. 3ax + 6bx - 3x - 5ay - 10by + 5y 4. Für welche Belegung von x nimmt der Term x - 6x den Wert 0 an? Begründe deine Antwort! 5.0 Entscheide, ob es die folgenden Dreiecke gibt. Begründe deine Antwort! 5.1 a = 3cm, b = cm, c = 4cm 5. a = 6cm, b = 3cm, β = a = b = 4cm, c = 5cm, α = Das Dreieck ABC mit A (3/) und B (9/) wird durch Drehung um A mit dem Drehwinkel 90 auf das Dreieck A B C mit C ( 0 / 8 ) abgebildet. 6.1 Konstruiere die Dreiecke ABC und A B C. 6. Berechne die Koordinaten von C und B. 6.3 Konstruiere den Umkreismittelpunkt M im ABC und M im A'B'C'. 6.4 Berechne die Koordinaten der Umkreismittelpunkte M und M. RM_A011 **** Lösungen Seiten

4 . Schulaufgabe aus der Mathematik 1.0 Löse die Klammern auf, und fasse zusammen. Alle Variablen stehen für rationale Zahlen. 1.1 (a 3b) (5a 4b) = 1. (3x y) (x + y) = 1.3 (4 + 3c) (c + 8) (5 c) (c 3)=.0 Wandle die folgenden Summenterme durch Ausklammern in Produktterme um. Alle Variablen stehen für rationale Zahlen..1 6a 3 b 15a b 3 + 3a b =. 4y + 5x 10xy = 3.1 Zeichne das Dreieck ABC mit A (-/0,5), B (3/-0,5), BAC =α= 35 und BC = 6,5cm in ein Koordinatensystem. 3. Begründe sorgfältig, dass es nur ein derartiges Dreieck ABC gibt. 3.3 Konstruiere den Inkreismittelpunkt M, und zeichne den Inkreis des Dreiecks ABC. 4.0 Die Punkte, A (-/-1), B (5/-1) und C(4/y) mit y > -1 sind Eckpunkte von Dreiecken ABC. 4.1 Konstruiere das Dreieck ABC 1 mit CA 1 = 8,5cm, und konstruiere seinen Umkreismittelpunkt M 1 sowie den Umkreis. 4. Konstruiere das Dreieck ABC, dessen Umkreismittelpunkt auf einer Dreiecksseite liegt. Zeichne den Umkreismittelpunkt M ein. 4.3 Auf welcher geometrischen Ortslinie liegen die Umkreismittelpunkte M aller Dreiecke ABC? Zeichne sie farbig ein. 4.4 Es gibt Dreiecke ABC mit β > γ (wie das Dreieck ABC 1 ), aber auch solche mit γ > β (wie das Dreieck ABC ). Konstruiere das Dreieck ABC 3, in dem γ = β gilt. Begründe sorgfältig, dass in diesem Dreieck ABC 3 das kleinste Winkelmaß α ist. 5. Welche der folgenden Dreiecke sind kongruent? Begründe deine Antwort. a 1 = 7,3cm b 1 = 5,7cm β 1 = 43 a = 7,3cm c = 5,7cm α = 43 b 3 = 5,7cm a 3 = 7,3cm α 3 = 43 b 4 = 5,7cm c 4 = 7,3cm β 4 = 43 RM_A0113 **** Lösungen 3 Seiten

5 . Mathematikschulaufgabe 1.0 Gegeben sind die Punkte B( 1 /0) und C(7/). 1.1 Bestimme durch Konstruktion die Menge aller Punkte P, von denen aus die Strecke [BC] unter einem rechten Winkel erscheint und zugleich die Länge der Strecke [PB] gleich der Länge der Strecke [PC] gilt. 1. Gib die Menge aus Aufgabe 1.1 in Mengenschreibweise an.. Von einem Dreieck ABC sind folgende Angaben bekannt: Inkreismittelpunkt P( 3 /); Eckpunkte A( 0 /1) und B( 6 /-1). Konstruiere das Dreieck ABC. 3.0 Bestimme den Extremwert. Gib auch die zugehörige Belegung der Variablen an T(x) = x -4x T(x) = - x + 3x- T(x) = 3,5x - 10,5x Ein Rechteck hat die Seitenlängen 4 cm und 6 cm. Die kürzere Seite wird um x cm verlängert und gleichzeitig die längere Seite um 0,5x cm verkürzt. 4.1 Zeichne das ursprüngliche Rechteck und das neue Rechteck für x = Für welche Werte von x existieren Rechtecke? 4.3 Stelle den Flächeninhalt des neuen Rechtecks in Abhängigkeit von x dar. [Kontrollergebnis: A(x) = - 0,5x + 4x + 4 ] 4.4 Ermittle die Belegung für x, für die das Rechteck seinen maximalen Flächeninhalt hat. 4.5 Um wie viel Prozent geringer ist der Flächeninhalt des Rechtecks für x = 1 gegenüber dem maximalen Flächeninhalt? 4.6 Für welche Belegung von x ergibt sich ein Quadrat? Berechne. Der Gang der Berechnung muss klar ersichtlich sein. Nur Zeichnungen sind mit Bleistift anzufertigen. RM_A0197 **** Lösungen 3 Seiten

6 . Mathematikschulaufgabe 1. Bestimme die Lösungsmenge der folgenden Ungleichung: 8 ( ) ( ) ( ) x+ x 1 > 3x x + G= 3. Der Umfang eines Rechtecks beträgt 68 m. Der Flächeninhalt des Rechtecks wird um 33 m² größer, wenn man eine Seite um 4 m verkürzt und gleichzeitig die andere Seite um 5 m verlängert. Wie lang sind die Seiten des ursprünglichen Rechtecks? Fertige dazu auch eine Skizze an. 3.1 Berechne den Extremwert des folgenden Terms und gib an, für welchen Wert von x der Extremwert angenommen wird. T 7 ( x) = x + 14x 4 8 x 4;1 mit x = 1 3. Tabellarisiere den Term für [ ] 4.1 Ein LkW fährt mit einer Geschwindigkeit von 84 km/h von Würzburg ins 00 km entfernte Lager bei Nürnberg. Eine halbe Stunde später fährt ein PkW dieselbe Strecke mit einer Geschwindigkeit von 11 km/h. Nach welcher Zeit holt der Personenwagen der LkW ein? 4. Wie weit sind beide beim Überholen von Würzburg entfernt? RM_A03 **** Lösungen 3 Seiten (RM_L03)

7 . Mathematikschulaufgabe 1. Löse die folgenden Gleichungen bzw. Ungleichungen. a) 4+ 4 ( x 5) = 31,4 ( 6x 17) b) ( ) ( ) ( ) ( ) 1 x 4 x 3 0,x 5 3,71 x 3 65,87 G < = 0. Löse folgende Textaufgaben: a) Subtrahiert man vom Fünffachen einer Zahl das Zweifache der um 4 verminderten Zahl, so erhält man das Achtfache der um 10 verminderten Zahl. b) Verkürzt man die eine Seite eines Quadrates um 3 cm und verlängert gleichzeitig die andere Seite um 5 cm, so wird der Flächeninhalt des entstehenden Rechtecks um 10 cm² größer als der des ursprünglichen Quadrates. Berechne die Seitenlängen des Quadrates und des Rechtecks. 3. Kann man aus den folgenden gegebenen Stücken jeweils ein Dreieck konstruieren? Begründe! a) a = 7, cm; b = 3,7 cm; c = 3,5 cm b) c = 6,3 cm; b = 3,9 cm; β = Konstruiere ein Dreieck aus den Stücken a = 47 mm; b = 60 mm und β= 98 und gib die Konstruktionsbeschreibung an! 5. Beim Neubau einer Straße soll ein Teilstück mit einer Brücke versehen werden. Hierzu haben Vermessungsingenieure ein Geländedreieck festgelegt. (Siehe Skizze) a) Konstruiere das Dreieck im Maßstab 1 : 0 000! b) Wie lang wird die Brücke? c) 100 Meter der Brücke kosten rund 0,8 Millionen Euro. Welche Kosten verursacht die gesamte Brücke? RM_A04 **** Lösungen 3 Seiten (RM_L04)

8 . Mathematikschulaufgabe 1. Bestimme die Lösungsmenge. ( x+ 6)( x- 8) = 0. Gib jeweils die Definitionsmenge der Terme an für G =. a) 7 x+ 5 b) 3 - x ( 3x+ 5)( x-4) c) ( - ) 3 x 7 x Löse die folgende Bruchgleichung. x-1 = x-3 x + 3 4x Vereinfache. 3x + 3 x -5 x + 10x + 5 9x Verdoppelt man die Summe aus einer Zahl und 3 und subtrahiert dann das Vierfache der Zahl, so erhält man die Zahl 7. Wie heißt die dazugehörige x- Gleichung? 6. a) Gib einen dazugehörigen quadratischen Term T(x) an. Für x =- 3 ist Tmax = 5 b) Berechne den Extremwert. T(x) = - x + 1x + 7. Ein Rechteck ABCD hat die Länge AB = 10 cm und die Breite AD = 4 cm. Man erhält neue Rechtecke, indem man AB bei B um x cm verkürzt und zugleich AD bei D um x cm verlängert. a) Zeichne die Rechtecke ABCD und ABCD für x = 1,5. b) Welche Werte darf x annehmen? c) Berechne den Flächeninhalt der Rechtecke in Abhängigkeit von x. d) Für welche Belegung von x erhält man ein Quadrat? 8. Konstruiere das Dreieck ABC mit b = 4, m, c = 6,5 m, g = 110 im Maßstab 1:100. Beschreibe deine Konstruktion. RM_A0338 **** Lösungen 4 Seiten (RM_L0338)

9 . Mathematikschulaufgabe 1. Gib den Extremwert, seine Art (min oder max) und die zugehörige Belegung für x an. a) T(x) = x -14 T = für x = b) T(x) =-,5( x+ 0,4) + 1 T = für x = c) T(x) = ( x+ 8) T = für x =. Gib einen quadratischen Term T(x) an, a) der für x =- 9 den maximalen Wert annimmt: b) der das Minimum 1,5 für x = 0 besitzt: 3. Ermittle die Extremwerte und die zugehörige Belegung für x durch Rechnung. a) T(x) = 4x + 0x -15 b) T(x) = - 0,5x + x+ 5 RM_A0374 **** Lösungen 3 Seiten (RM_L0374) 1 (3)

10 . Mathematikschulaufgabe 4.0 Gegeben ist ein gleichschenklig-rechtwinkliges Dreieck ABC mit AB = AC = 8 cm. Diesem Dreieck lassen sich beliebig viele Rechtecke einbeschreiben (siehe Skizze). 4.1 Bestimme den Flächeninhalt der Rechtecke in Abhängigkeit von x. 4. Bestimme den maximalen Flächeninhalt und den zugehörigen x-wert. 5. Von einem Turmfenster in der Höhe H= 50m werden der Fußpunkt und die Spitze eines Baumes der Höhe x angepeilt. Gemessen zur Horizontalen ergeben sich die Tiefenwinkel 4 und 5. Wie weit ist der Baum vom Turm entfernt (Maß d) und welche Höhe hat der Baum (Maß x)? Beantworte die Fragen mithilfe einer genauen Konstruktion (Bleistift) im Maßstab 1 : 1000 RM_A0374 **** Lösungen 3 Seiten (RM_L0374) (3)

11 . Mathematikschulaufgabe 6. Konstruiere das Dreieck ABC mit folgenden Maßen. Verwende Geo-Dreieck, Bleistift, Zirkel. Eine Planfigur kann hilfreich sein. a) a = 7, cm, b = 6, cm, b= 5 b) b = 8 cm, a = 65, b= 81 RM_A0374 **** Lösungen 3 Seiten (RM_L0374) 3 (3)

12 . Mathematikschulaufgabe 1. Gib den Extremwert ( T min oder T max ) und die zugehörige Belegung für x an. a) T(x) = - 0,3( x+ 4) -3 T = für x = b) T(x) x 7 ( ) = + T = für x = 9 T(x) = x T = für x = 3 c) ( ). Gib einen passenden quadratischen Term T(x) an, der a) das Minimum - 3,8 für x =- 4, besitzt: b) für x = 0 den minimalen Wert - 5 annimmt: 3. Bestimme durch Rechnung den Extremwert und die zugehörige Belegung für x. 5 T(x) = - 4x+ x Bestimme die Lösungsmenge. ( x+ 3)( x- ) + 8 = 15x+ ( x+ 9)( x-4) RM_A0408 **** Lösungen 4 Seiten (RM_L0408) 1 (3)

13 . Mathematikschulaufgabe 5. Emma hat im Baumarkt 1 m Haustierzaun gekauft, um für ihre Schildkröten im Garten ein Freigehege abzugrenzen. Den Tieren soll eine möglichst große rechteckige Fläche zur Verfügung stehen. Das Freigehege wird an zwei Seiten durch eine Mauer begrenzt (dort ist kein Zaun notwendig). a) Stelle einen Term A(x) auf, der die Fläche des Rechtecks in Abhängigkeit von x beschreibt. b) Welche Seitenlängen hat der Zaun des Freigeheges mit dem größten Flächeninhalt? Gib auch A an. max 6. Max steht vor einem kleinen Windrad und blickt unter dem Winkel 4 zur Rotorblattspitze. Nachdem er 50 m näher an das Windrad herangegangen ist, sieht er die Blattspitze nun unter einem Winkel von 41. Wie weit ist die Rotorblattspitze vom Boden entfernt? (Die Augenhöhe von Max soll unberücksichtigt bleiben) Bestimme die Rotorblatthöhe mithilfe einer genauen Konstruktion. Wähle dazu einen geeigneten Maßstab, der auch anzugeben ist. RM_A0408 **** Lösungen 4 Seiten (RM_L0408) (3)

14 . Mathematikschulaufgabe 7. Welche Angaben sind erforderlich, um ein gleichschenklig-rechtwinkliges Dreieck zu konstruieren? 8.1 Bestimme die Maße der Winkel a im Dreieck ABC mit b = 6,5 cm, c = 4,6 cm und g = 4 durch Konstruktion (Geo-Dreieck, Zirkel, Bleistift). 8. Was müsste gelten, damit das Dreieck aus 8.1 eindeutig konstruierbar ist? 9. Beweise folgenden Satz: Wenn das (spitzwinklige) Dreieck ABC gleichschenklig ist, dann sind die Lote von den Basisecken zu den gegenüberliegenden Schenkeln gleich lang. RM_A0408 **** Lösungen 4 Seiten (RM_L0408) 3 (3)

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B 1, 1,5(

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B 1, 1,5( 1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A,, ( ; B, 0,5( und C 0,5 ( 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe 1. Ist das folgende Dreieck konstruierbar? Begründe. φ = 100, a = 9cm, c = 4cm.. Konstruiere das Dreieck ABC aus folgenden Bestimmungsstücken: a = 5cm, α = 60 und Inkreisradius

Mehr

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5)

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5) 1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A( ) ; B( 0,5) und C( 0,5 ) 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.

Mehr

Vektoren, Skalarprodukt, Ortslinien

Vektoren, Skalarprodukt, Ortslinien .0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe 1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen

Mehr

6,5 34,5 24,375 46,75

6,5 34,5 24,375 46,75 Teste dich! - (/5) Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (0 km; x km) Fahrt als Term dar. 2,5 +,6

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

Arbeitsblatt Mathematik

Arbeitsblatt Mathematik Teste dich! - (1/5) 1 Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer 1,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (40 km; x km) Fahrt als Term dar. 2

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 06 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Repetition Mathematik 8. Klasse

Repetition Mathematik 8. Klasse Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise

Mehr

Abbildungen im Koordinatensystem

Abbildungen im Koordinatensystem Klasse 0 I. Drehe die Gerade g mit y = x um O(0/0) mit α = 5. Bestimme die Gleichung der Bildgeraden g. Berechne das Maß des Winkels zwischen g und g.. Die Gerade g mit y = x + 5 soll um O(0/0) so gedreht

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A(-I1) und B(6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS

Mehr

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc.

Übungen aus dem Buch: 65/15; 69/16; 74/8; 97/9a; 101/6c; 101/8; 106/10; 108/Beweise; 116/8a Aufgaben auf S. 151: 1; 2; 3; 4; 5; c Mc. AB 25, Seite 1 Satz von Thales 8e 08.03.2012 Aus alten Klassenarbeiten: 1) Trapez: Gegeben ist ein Trapez mit den gegenüber liegenden Seiten a und c und der Höhe h a auf a. Erläutere mit einer Skizze,

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte

St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe Punkte St.Gallische Kantonsschulen Aufnahmeprüfung 2011 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 Punkte Löse

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 05 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide Bei allen Aufgaben: Ergebnisse auf 2 Stellen nach dem Komma runden! 1.0 Berechne das Volumen der beiden dargestellten Pyramiden 1 und 2. 2.1 Die Spitze S einer dreiseitigen Pyramide ABCS liegt senkrecht

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17

ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke: x 2. Strecke: 4x x 4x 85 x 17 Textgleichungen Aus der Geometrie Lösungen 1. Von zwei Strecken ist die eine viermal so lang wie die andere. Zusammen ergeben die Strecken eine Länge von 85 cm. Wie lang sind die Strecken? 1. Strecke:

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

1. Schularbeit R

1. Schularbeit R 1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:

Mehr

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis?

Aufgabe 3: In einem gleichschenkligen Dreieck ist die Basis 8,7 cm lang und die Schenkel jeweils 4,8 cm. Wie lang ist die Höhe auf die Basis? Aufgabe 1: Berechne die Länge der fehlenden Seite. Aufgabe : Peter hat sich eine Leiter gekauft, die er beim Anstreichen seiner Hauswand benötigt. Diese Leiter ist 5,60 m lang. Damit sie nicht umkippt,

Mehr

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag?

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag? Aufgaben zum Grundwissen ================================================================== I. Proportionale und umgekehrt proportionale Zuordnungen 1. Von welcher Art können die durch die Tabellen gegebenen

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 1. a) Zeichne mit Hilfe des y-abschnittes und eines Steigungsdreiecks die Geraden mit folgenden Gleichungen in ein Koordinatensystem! (Kennzeichne die Geraden mit I, II, III) I) y = 4-1,4 x II) 2x 3y 6

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

3e 1. Schularbeit/ A

3e 1. Schularbeit/ A 3e 1. Schularbeit/ A 27.10.1997 1) Löse folgende Gleichung: 5 + 4 x = 7 ( 4 P ) 10 2) Berechne und kürze das Ergebnis so weit es geht: 2 1 11 : 3 3 + 1 1 * 2 2 = ( 9 P ) 16 12 4 24 15 3 a) Konstruiere

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist

Vierecke. 7.1 Grundwissen Mathematik Geometrie Klasse 7. Drachenviereck: Viereck, bei dem eine Diagonale Symmetrieachse ist 7.1 Grundwissen Mathematik Geometrie Klasse 7 Vierecke Trapez: Viereck, bei dem zwei Gegenseiten parallel sind gleichschenkliges Trapez: Trapez, bei dem die beiden Schenkel c gleich lang sind (b = d) d

Mehr

Mathematik II (Geometrie)

Mathematik II (Geometrie) Mathematik II (Geometrie) Zeit: 120 Minuten Jede Aufgabe gibt maximal 5 Punkte. Zum Lösen jeder der sieben Aufgaben steht jeweils ein Blatt zur Verfügung. Verwende auch die Rückseite, falls du auf der

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Umfangswinkelsatz. 1. Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? Begründe deine Antwort anhand einer Skizze.

Umfangswinkelsatz. 1. Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? Begründe deine Antwort anhand einer Skizze. Umfangswinkelsatz 1 Wie groß ist der Umfangswinkel in einem 2 Kreisbogen? egründe deine ntwort 5 anhand einer Skizze 108, Zusammenhang zwischen ittelpunkts- und Umfangwinkel 2 Gegeben ist die Strecke []

Mehr

Gymnasium / Realschule. Extremwertaufgaben. Klassen 8 bis 10

Gymnasium / Realschule. Extremwertaufgaben. Klassen 8 bis 10 Überblick Die vorliegenden sind Textaufgaben, meist mit Zeichnungen versehen, bei denen die Frage gestellt wird, unter welchen Bedingungen ein Wert (z.b. Abstand, Länge, Fläche, Volumen) am größten oder

Mehr

Grundwissen 8I/11. Terme

Grundwissen 8I/11. Terme Grundwissen 8I/ Termumformungen. Vereinfachung von Produkten Terme Halte dich an folgende Reihenfolge: Klammern bei Potenzen auflösen Vorzeichen des Produkts bestimmen Ordnen: Zahlen zuerst, dann Variablen

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1 Hinweise: Alle Zwischen- und Endergebnisse auf 2 Stellen nach dem Komma runden. Die Zeichnungen sind nicht maßstäblich. Alle Maße sind in mm, falls nicht anders angegeben. 1. Bestimme das Maß x in nebenstehender

Mehr

Grundwissen 5 Lösungen

Grundwissen 5 Lösungen Grundwissen 5 Lösungen Zahlengerade Zeichne eine Zahlengerade, wähle eine passende Einheit und trage folgende Zahlen ein: 12 30 3 60 Welche Zahlen werden auf den Zahlengeraden in der Figur durch die Pfeile

Mehr

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q

Variable und Terme A 7_01. Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z. B. x IN; y ; a Q Variable und Terme A 7_01 Variable sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge G, z B x IN; y ; a Q Jede sinnvolle Zusammenstellung aus Zahlen und Variablen mit Hilfe von Rechenzeichen

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)

Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6) (Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie

Mehr

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2005/2006 DES LANDES HESSEN Hinweis: Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden diejenigen mit der besten

Mehr

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe

Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Wissen / Können 1. Symmetrie Gymnasium Hilpoltstein Grundwissen 7. Jahrgangsstufe Definitionen und Beispiele Achsensymmetrie Eine Figur heißt achsensymmetrisch, wenn sie durch Umklappen um eine Gerade

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe . Mathematikschulaufgabe. Stelle die folgende Produktmenge im Koordinatensystem dar: M = [ -2; +2 ] Q x [ -2; + ] Q 2.0 Gegeben ist die Funktion f: y = 2 + x G= Q x Q 2. Zeichne die Funktion in ein Koordinatensystem.

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe St.Gallische Kantonsschulen Aufnahmeprüfung 010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 3 4 5 6 7 8 9 10 11 1 13 Punkte Löse

Mehr

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner

Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Informationsblatt für den Einstieg ins 2. Mathematikjahr AHS Kursleiter: Manfred Gurtner Stoff für den Einstufungstest Mathematik in das 2. Jahr AHS 1) Gleichungen/ Gleichungssysteme/ Terme Lineare Gleichungen

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Grundwissen. 7. Jahrgangsstufe. Mathematik

Grundwissen. 7. Jahrgangsstufe. Mathematik Grundwissen 7. Jahrgangsstufe Mathematik Grundwissen Mathematik 7. Jahrgangsstufe Seite 1 1 Geometrie 1.1 Grundkonstruktionen Lotkonstruktion I: Gegeben ist die Gerade g und der Punkt P, der nicht auf

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Grundwissen 7 Bereich 1: Terme

Grundwissen 7 Bereich 1: Terme Grundwissen 7 Bereich 1: Terme Termwerte 1.1 S1 Berechne für den Term T (x) = 3 (x 2) 2 + x 2 die Termwerte T (1), T (2) und T ( 3 2 ). 1.2 S1 Gegeben ist der Term A(m) = 2 2m 5 m Ergänze die folgende

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7

Achsensymmetrie. Konstruktionen. Mathematik-Grundwissen Klassenstufe 7 Wissen Achsensymmetrie Beispiel Figuren die an einer Achse a gespiegelt werden nennt man achsensymmetrisch bezüglich a. Die Verbindungsstrecke zwischen zwei achsensymmetrischen Punkten wird durch die Achse

Mehr

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8)

Grundwissen. Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium. Jahrgangsstufe: 7(G8) Gymnasium Eckental Mathematisch-naturwissenschaftliches Gymnasium Neusprachliches Gymnasium Gymnasium Eckental Neunkirchener Straße 9042 Eckental Grundwissen Jahrgangsstufe: 7(G8) Vereinfachen von Summen

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Schularbeitsstoff zur 2. Schularbeit am

Schularbeitsstoff zur 2. Schularbeit am Schularbeitsstoff zur. Schularbeit am 19.1.016 Flächeninhalt 8 Flächeninhalt 1 9 Flächeninhalt 1 14 Flächeninhalt Bruchzahlen 10 Bruchzahlen Potenzen Potenzen 11 Potenzen 1 Potenzen Variable und Funktionen

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck Berechnungen am Dreieck 1 ImDreieck OBAmitO(0 0),B(b 0)undA(0 a) ist H(x y) der Fußpunkt der Höhe von O auf AB Weitere Bezeichnungen: y a A h = OH, p = AH, q = HB und c = AB y p H(x y) Drücke c, h, p,

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe Klasse 9 GM_A0009 **** Lösungen Seiten www.mathematik-aufgaben.de . Mathematikschulaufgabe Klasse 9 GM_A00 **** Lösungen Seiten www.mathematik-aufgaben.de . Mathematikschulaufgabe

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150)

Lösungen V.1. Pfeile bedeuten ist auch ein. (Lambacher-Schweizer Geometrie 2, S. 150) Lösungen V.1 I: Trapez (zwei parallele Seiten; keine Symmetrie) II: gleichschenkliges Trapez (zwei parallele Seiten, die anderen beiden gleich lang; achsensymmetrisch) III: Drachen(viereck) (jeweils zwei

Mehr

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich

Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 006 Serie B Teil Fach: Teil Zeit: 45 Minuten Hilfsmittel: - Geometriewerkzeuge, kein Taschenrechner Vorschriften: - Der Lösungsvorgang muss vollständig ersichtlich sein. - Ungültiges ist

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Geometrie, Einführung

Geometrie, Einführung Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe. Eine Klasse hat Kastanien für den Zoo gesammelt. Astrid hat genau 500 Kastanien in ihrem Beutel. Sie möchte gern ihr Sammelergebnis mit dem der anderen vergleichen. a) Bastian

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 In einer Medikamentenstudie wird in drei zeitgleich beginnenden Laborversuchen die Vermehrung von Krankheitserregern untersucht. Bei allen Versuchen

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

MTG Grundwissen Mathematik 5.Klasse

MTG Grundwissen Mathematik 5.Klasse MTG Grundwissen Mathematik 5.Klasse Umgang mit großen Zahlen Beispiel: 47.035.107.006 = 4 10 10 + 7 10 9 + 3 10 7 + 5 10 6 + 10 5 + 7 10 3 + 6 10 0 A1: Schreibe 117 Billionen 12 Milliarden vierhundertsiebentausendsechzig

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Prüfung zum mittleren Bildungsabschluss 2004

Prüfung zum mittleren Bildungsabschluss 2004 Prüfung zum mittleren Bildungsabschluss 2004 Pflichtaufgaben Mathematik x+3 45 Die Aufgabenblätter und die mit ausgegebene Formelsammlung sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen

Mehr

Erweiterte Beispiele 1 1/1

Erweiterte Beispiele 1 1/1 Erweiterte Beispiele 1 1/1 Gegeben ist das Dreieck ABC [A(-20/-9), B(30/-9), C(12/15)]. Die Seitenmittelpunkte D, E, F bilden ein Dreieck. Zeige, dass der Umkreis dieses Dreiecks den Inkreis des Dreiecks

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

In dieser Aufgabenserie wollen wir die Lösungswege diskutieren bei. Extremalwertaufgaben (mit Nebenbedingungen)

In dieser Aufgabenserie wollen wir die Lösungswege diskutieren bei. Extremalwertaufgaben (mit Nebenbedingungen) Analysis-Aufgaben: Differentialrechnung 8 In dieser Aufgabenserie wollen wir die Lösungswege diskutieren bei Extremalwertaufgaben (mit Nebenbedingungen) Theoretische Grundlagen: Beispiel zur Vorgehensweise:

Mehr

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie

Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass

Mehr

Weitere Anwendungen quadratischer Funktionen

Weitere Anwendungen quadratischer Funktionen Weitere Anwendungen quadratischer Funktionen 1. Auf einer Wiese soll mit einem 6 m langen Zaun eine rechteckige Fläche eingezäunt werden; dabei sollen 4 m als Einfahrt frei bleiben: 4 m Die Funktion A

Mehr

(2 a) (3 + b) = -4a + 2ab + 3b 6. (a 1) (b + 3) = -3a ab + 2b + 6. (2a + 3) (b 2) = 3a + ab b 3

(2 a) (3 + b) = -4a + 2ab + 3b 6. (a 1) (b + 3) = -3a ab + 2b + 6. (2a + 3) (b 2) = 3a + ab b 3 1) Multipliziere die Binome. (2 a) ( + b) = -4a + 2ab + b 6 (a 1) (b + ) = -a ab + 2b + 6 (2a + ) (b 2) = a + ab b 2) Berechne und verbinde Gleichwertiges. a 4b + (-2a) b = 2a b (-a) 2b = a (-2b) (-2a)

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium. Note:

St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium. Note: Kand.-Nummer St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium Mathematik ohne Taschenrechner Dauer 90 Minuten Name: Vorname: Bisherige Schule: Klasse: Schwerpunktfach: Aufgabe 2 3 4 5 6 7 8 9

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 5 IM FCH MTHEMTIK FÜR DIE JHRGNGSSTUFE 9 DER RELSCHULE HINWEISE: Beim Kopieren der ufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen sind

Mehr