Raumgeometrie - schiefe Pyramide
|
|
|
- Alexa Gerstle
- vor 9 Jahren
- Abrufe
Transkript
1 1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild der Pyramide ABCS mit q = 0,5 und ω = 45. Die Strecke [MB] soll auf der Schrägbildachse liegen. 1.2 Auf der Seitenkante [BS] liegt der Punkt P. Zeichne das Dreieck MBP für SP = 6 cm in die Pyramide ABCS ein, und berechne seinen Flächeninhalt. 1.3 Berechne die Länge der Strecke [MP]. 2.0 Die Pyramide ABCS hat als Grundfläche das gleichschenklige Dreieck ABC mit der Basis [AB]. Der Flächeninhalt des Dreiecks beträgt 50 cm 2, die Länge der Basis 8 cm. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Dreiecksseite [BC]. Das Maß ϕ des Winkels MAS beträgt Fertige eine übersichtliche Schrägbildskizze der Pyramide ABCS an. 2.2 Berechne das Volumen V und die Oberfläche O der Pyramide ABCS. 2.3 Berechne die Innenwinkel aller Dreiecke. 3.0 Das Dreieck ABC mit AB = 12 cm, BC = 6 cm und AC = 9,5 cm ist Grundfläche einer dreiseitigen Pyramide ABCS. Der Punkt F ist Fußpunkt der Höhe [FC] auf [AB]. Die Spitze S der Pyramide liegt 7 cm senkrecht über dem Punkt F. 3.1 Zeichne das Schrägbild der Pyramide ABCS. Die Strecke [AB] soll auf der Schrägbildachse liegen. ( ω = 45 ; q = 0,75) 3.2 Der Punkt M ist Mittelpunkt der Strecke [AB]. Berechne die Längen der Seiten und die Maße der Innenwinkel des Dreiecks MCS. 4.0 Der Punkt M ist Mittelpunkt der Basis [BC] des gleichschenkligen Dreiecks ABC mit BC = 10 cm und AM = 9 cm. Das Dreieck ABC ist die Grundfläche einer Pyramide ABCD, deren Spitze D senkrecht über M mit MD = 11 cm liegt. 4.1 Zeichne des Schrägbild der Pyramide ABCD. [AM] soll auf der Schrägbildachse liegen. Für die Zeichnung: q = 0,5; ω = 45 Berechne das Maß ϕ des Winkels MAD. [Ergebnis: ϕ = 51,34 ] 4.2 Punkte P n auf der Seitenkante [AD] der Pyramide sind Eckpunkte von Dreiecken BCP n. Zeichne des Dreieck BCP 1 für AP 1 = 5,5 cm in das Schrägbild ein. Berechne den Flächeninhalt A des Dreiecks BCP Es gibt ein Dreieck BCP 2, so dass P 2 MA = 50 gilt. Berechne das Maß ε des Winkels BP 2 C. Alle Ergebnisse auf 2 Stellen nach dem Komma runden! RM_AU009 **** keine Lösungen vorhanden 1 (6)
2 5.0 Das gleichseitige Dreieck ABC mit der Seitenlänge a ist Grundfläche einer Pyramide ABCS. Die Spitze S der Pyramide liegt senkrecht über dem Mittelpunkt M der Strecke [ BC ]. Die Höhe [ MS ] der Pyramide entspricht der Länge der Strecke [ AM ]. Ebenen BCP n mit P [ AS ] bilden in der Pyramide Dreicke. Der Winkel SMP n soll mit ε bezeichnet werden. 5.1 Zeichne ein Schrägbild der Pyramide mit einem Dreieck BCP. Für die Zeichnung gilt: a = 8 cm; ω = 45 ; q = 0,5; [ AP ] = 4 cm. Rißachse ist AM. 5.2 Berechne die Dreieckshöhe [ MP ] = x in Abhängigkeit von a und ε. Wie lauten die Grenzwerte für ε. Berechne die Grenzen der Dreieckshöhe [ MP ] in Abhängigkeit von a. 5.3 Berechne den Flächeninhalt A der Dreiecke BCP in Abhängigkeit von a und ε. 5.4 Für welche Werte von ε beträgt der Flächeninhalt A der Dreiecke 28 cm 2, wenn a = 8,5 cm lang ist. 5.5 Bestimme die Streckenlänge [ AP ] = z in Abhängigkeit von a und ε. 5.6 Der Punkt P ist die Spitze von Pyramiden ABCP. Berechne das Volumen V der Pyramiden in Abhängigkeit von a und ε. 5.7 Für welchen Wert von ε wird das Volumen a 3 / 48 cm 3 groß? Alle Ergebnisse auf 2 Stellen nach dem Komma runden! 6.0 Das Rechteck ABCD mit AB = 6cm und BC = 4cm ist Grundfläche einer 10cm hohen Pyramide. Die Spitze liegt dabei senkrecht über dem Mittelpunkt M der Grundkante [AD]. 6.1 Zeichne ein Schrägbild der Pyramide für q = 0,75 und ω = 45. Die Kante [CD] soll dabei auf der Schrägbildachse s liegen. 6.2 Berechne das Maß δ des Winkels, den die Seitenfläche ABS mit der Grundfläche einschließt. 6.3 Berechne das Maß ε = SCM. 7.0 Gegeben ist eine Pyramide mit quadratischer Grundfläche. Die Spitze S liegt senkrecht über C. Die Höhe h = 10 cm. Die Seite des Quadrates beträgt 6 cm. 7.1 Zeichne ein Schrägbild der Pyramide mit ω = 45 und q = 0, Berechne die Länge der Seitenkanten BS und AS. 7.3 Berechne die Maße der Winkel CAS und CDS. 7.4 Welchen Abstand besitzt der Punkt C von der Seitenkante [AS]? Zeichne den Abstand d = [CP] in die Zeichnung ein und berechne sein Maß! 7.5 Zeige durch Rechnung, dass P die Seitenkante [AS] nicht halbiert. RM_AU009 **** keine Lösungen vorhanden 2 (6)
3 8.0 Eine Pyramide PQRS hat als Grundfläche ein gleichseitiges Dreieck PQR mit der Seitenlänge s = 8 cm. Der Mittelpunkt M der Grundkante [QR] ist der Fußpunkt der Pyramidenhöhe h. Es gilt: MS = h = 12 cm. Ein Punkt T n bewegt sich auf [PS]. Durch [QR] und T n [PS] sind Ebenen festgelegt. Es sei T n MP = ε. 8.1 Zeichne ein Schrägbild der Pyramide mit q = 0,5 und ω = 60. Trage ein Dreieck T 1 QR in das Schrägbild ein. 8.2 Berechne das Maß des Neigungswinkels α der Seitenkante [PS] gegen die Grundfläche. ( Ergebnis: α = 60 ) 8.3 Berechne den Flächeninhalt der Schnittfläche QRT n in Abhängigkeit von ε. 24 ( Ergebnis: A( ε) = cm sin( 120 ε) 2 ) 8.4 Berechne das Winkelmaß ε 0, für das die Schnittfläche den kleinsten Flächeninhalt annimmt. 9.0 Bei einer schiefen Pyramide ABCDS mit dem Quadrat ABCD als Grundfläche liegt die Spitze S senkrecht über dem Punkt D. Es gilt AB = 6 cm und DS = 8 cm. 9.1 Zeichne ein Schrägbild der Pyramide ABCDS mit q = 0,5 und ω = Berechne das Maß ε des Neigungswinkels SBD der Seitenkante [BS] gegenüber der Grundfläche. 9.3 Berechne die Maße der Innenwinkel des Dreiecks SAC. [Teilergebnis: SCA = 64,90 ] 9.4 Berechne den Flächeninhalt des Dreiecks SAC. 9.5 Ein Punkt P liegt auf der Seitenkante [CS]. Von P wird das Lot auf [DC] gefällt; der Lotfußpunkt heißt Q. Zeichne den Punkt P und die Lotstrecke [PQ] für PQ = 6,6 cm in die Zeichnung ein. 9.6 Berechne die Längen der Strecken [CP] und [CQ] für PQ = 6,6 cm. [Teilergebnis: CP = 8,25 cm] 9.7 Der Punkt M ist der Schnittpunkt der Diagonalen im Quadrat ABCD. Berechne das Maß ϕ des Winkels CMP für PQ = 6,6 cm. Achtung: Alle Ergebnisse auf 2 Stellen nach dem Komma gerundet! RM_AU009 **** keine Lösungen vorhanden 3 (6)
4 10.0 Die Raute ABCD (a = 5,00 cm; α = 73,74 ) ist Grundfläche einer Pyramide ABCDS. Die Spitze S liegt senkrecht über C. CS = h = 6,00 cm. M ist Schnittpunkt der Diagonalen Berechne die Längen der Diagonalen [AC] und [BD] Zeichne ein Schrägbild dr Pyramide. Rissachse sei AC, ω = 45, q = 0, Berechne Volumen und Oberfläche der Pyramide ε = SAC. Berechne das Maß von ε Auf [AS] wandert der Punkt P n. ϕ n = AMP n Welche Werte kann das Maß von ϕ n annehmen? 10.7 Stelle die Flächeninhalte der Dreiecke BP n D als Funktion von ϕ n dar. 2,4 2 (Zwischenergebnis: MP = cm ) sin 36,87 +ϕ ( ) 10.8 Für welches Maß von ϕ erhält man das Dreieck mit minimalem Flächeninhalt? 10.9 Für welche Maße von ϕ aus 10.6 werden die Dreiecke BP n D gleichseitig? 7, Zeige, dass der Term A( ϕ ) = sin(36,87 +ϕ) auf die Form A( ϕ ) = 36 3cosϕ + 4sinϕ gebracht werden kann. RM_AU009 **** keine Lösungen vorhanden 4 (6)
5 12.0 Eine Pyramide ABCDS mit dem Quadrat ABCD als Grundfläche und AB = 6 cm ist gegeben. Die Pyramidenspitze S liegt senkrecht über A, es gilt AS = 6 2 cm. Zeichne mit q = 0,5 und ω = 45 ein Schrägbild der Pyramide Ein Punkt bewegt sich auf der Seitenkante [CS] von C nach S. Die Dreiecke DBP schließen mit der Grundfläche die Winkel CMP mit dem Maß ϕ ein, wobei M der Schnittpunkt der Diagonalen [AC] und [BD] ist. Zeichne ein Dreieck DBP in das Schrägbild zu 12.1 ein und berechne den Flächeninhalt A(ϕ) der Dreiecke DBP in Abhängigkeit von ϕ. (Ergebnis: A(ϕ) = sin( 45 ) ϕ + cm 2 ) 12.2 Ermittle das Winkelmaß ϕ 0 für das flächenkleinste Dreieck DBP Die Winkel MBP haben das Maß α. Stelle α in Abhängigkeit von ϕ dar und zeichne den zugehörigen Graphen. Für welchen Wert von ϕ nimmt α einen Extremwert an? (Teilergebnis: tanα = sin45 sin(45 +ϕ) oder tanα = 1 2 sin( ϕ+ 45 ) ) 13.0 Das gleichschenklige Dreieck ABC mit der Basislänge BC = 12 cm und der Höhe AM = 10 cm ist die Grundfläche der Pyramide ABCS. Ihre Spitze S liegt senkrecht über dem Mittelpunkt H der Strecke [AM] mit HS = 12 cm. Die Punkte P n auf der Strecke [MS] sind die Spitzen von Pyramiden ABCP n. Winkel P n AS ist ϕ Zeichne ein Schrägbild der Pyramide ABCS. Dabei soll die Strecke [AM] auf der Schrägbildachse liegen. Zeichne dann die Pyramide ABCP 1 für ϕ = 15 ein. Für die Zeichnung: q = 0,5; ω = Berechne α = MAS. ( Ergebnis: α = 67,38 ) 13.3 Ermittle die Streckenlänge AP n (ϕ) in Abhängigkeit von ϕ. Unter den Strecken [AP n ] ist [AP 0 ] die kürzeste Strecke. Gib das zugehörige Winkelmaß ϕ 0 und AP 0 an. 923, ( Teilergebnis: AP n ( ϕ) = ) sin( 45, 24 + ϕ) 13.4 Berechne ϕ so, daß AP n = 9,5 cm gilt Ermittle rechnerisch das Volumen V(ϕ) der Pyramiden ABCP n in Abhängigkeit von ϕ. Berechne ϕ, so daß die zugehörige Pyramide ABCP 2 ein Volumen von 100 cm 3 hat. ( Teilergebnis: V( ϕ) = 184, 6 sin( 67, 38 ϕ) cm 3 ) sin( 45, 24 + ϕ) RM_AU009 **** keine Lösungen vorhanden 5 (6)
6 14.0 Das Rechteck ABCD mit den Seitenlängen [AB] = a cm und [BC] = a 2 cm ist Grundfläche einer Pyramide ABCDS mit der Höhe h= a 3 cm. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Strecke [AD]. Eine Ebene APQD mit P [BS] und Q [CS] schneidet aus der Pyramide gleichschenklige Trapeze APQD aus. Der Punkt R ist der Mittelpunkt der Strecke [PQ]. Der Winkel RMS hat das Maß ϕ Zeichne das Schrägbild der Pyramide ABCDS und ein Trapez APQD. Trage den Winkel ϕ ein. Für die Zeichnung: a = 6 cm; ω = 45 ; q = 0,5; Rißachse ist CD Berechne die Trapezhöhe MR = x cm in Abhängigkeit von a und ϕ Berechne die Streckenlänge PQ in Abhängigkeit von a und ϕ Für welchen Wert von ϕ wird PQ = 12, a cm lang? 15.0 Das Rechteck ABCD mit AB = 6 cm und BC = 4 cm ist Grundfläche einer 10 cm hohen Pyramide. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Grundkante [AD] Zeichne ein Schrägbild der Pyramide mit q = 3 4 und ω = 45. Die Kante [CD] soll dabei auf der Schrägbildachse liegen Berechne das Maß des Winkels DAS, den die Seitenfläche ABS mit der Grundfläche einschließt. Begründe, warum DAS der Schnittwinkel der angegebenen Flächen ist Berechne das Maß des Winkels SCM Ebenen schneiden die Pyramide in gleichschenkligen Trapezen BCF n G n. Sie schließen mit der Grundfläche Winkel mit dem Maß ϕ ein. Zeichne jenes Trapez BCF 1 G 1 ein, welches die Pyramidenhöhe halbiert. ( Zur Beschriftung: E ist Mittelpunkt von [BC], P ist Mittelpunkt von [F 1 G 1 ], ϕ = PEM ) 15.5 Welche Winkelmaße kann ϕ annehmen? 15.6 Berechne die Höhe [EP] und den Flächeninhalt der Trapeze in Abhängigkeit von ϕ. RM_AU009 **** keine Lösungen vorhanden 6 (6)
Raumgeometrie - schiefe Pyramide
Bei allen Aufgaben: Ergebnisse auf 2 Stellen nach dem Komma runden! 1.0 Berechne das Volumen der beiden dargestellten Pyramiden 1 und 2. 2.1 Die Spitze S einer dreiseitigen Pyramide ABCS liegt senkrecht
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
Raumgeometrie - gerade Pyramide
1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A(-I1) und B(6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
Raumgeometrie - schiefe Pyramide
1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;
Raumgeometrie - Prisma (Würfel, Quader)
Raumgeometrie - Prisma (Würfel, Quader) 1.0 Ein Quader mit einem Rechteck als Grundfläche ist 8 cm hoch. Die zwei Seitenflächen haben den Flächeninhalt 96 cm und 7 cm. 1.1 Berechne Volumen und Oberfläche
Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung
1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten
Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 In einer Medikamentenstudie wird in drei zeitgleich beginnenden Laborversuchen die Vermehrung von Krankheitserregern untersucht. Bei allen Versuchen
Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 006 50 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Pflichtteil Nachtermin Aufgabe P Name: Vorname: Klasse: Platzziffer: Punkte: 3 P.0 Der Punkt A 3 3 4 liegt
Übungsaufgaben Trigonometrie
Klasse 0 I + II + III Vorwort Vor einiger Zeit wurde im bayerischen Kultusministerium beschlossen, die Symbole für die Strecke und die Länge der Strecke zu ändern. Im Schreibweisen- / Zeichenkatalog (Stand
Schrägbilder zeichnen
Was sind Schrägbilder und welchen Zweck haben sie? Durch ein Schrägbild wird auf einer ebenen Fläche (z.b. Blatt Papier) ein Körper räumlich dargestellt (räumliche Perspektive des Körpers). Es gibt sehr
3. Mathematikschulaufgabe
Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;
Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der
4. Mathematikschulaufgabe
Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das
Abschlussprüfung 150 Minuten an den Realschulen in Bayern
Prüfungsdauer: Abschlussprüfung 150 Minuten an den Realschulen in Bayern 009 Mathematik II Nachtermin Aufgabe A 1 Name: Vorname: Klasse: Platzziffer: Punkte: A 1 Die nebenstehende Skizze zeigt den Axialschnitt
Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: O 1
Prüfungsdauer: Abschlussprüfung 007 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben ist die Funktion f 1 mit
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz
Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS
1. Mathematikschulaufgabe
1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1
Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke
3. Mathematikschulaufgabe
Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;
a, b und c aus. Linearkombination der Vektoren b) Für einen Punkt P gilt: AP = a
Aufgabe Die drei linear unabhängigen Vektoren a = OA, b = OB,c = OC spannen ein dreiseitiges Prisma auf. Dabei ist S der Schwerpunkt des Dreiecks OAB, M der Schnittpunkt der Diagonalen in der Seitenfläche
Abschlussprüfung 2010 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 010 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 Das radioaktive Cäsium-137 wird in der
Grundkursabitur 2011 Analytische Geometrie Aufgabe III. In einem kartesischen Koordinatensystem sind die Punkte A 3 0 0,,
Grundkursabitur 2011 Analytische Geometrie Aufgabe III In einem kartesischen Koordinatensystem sind die Punkte A 0 0,, B 0 0 C 0 und S 0 0 6 gegeben. 1. a) Das Dreieck ABC liegt in der x 1 x 2 -Ebene.
Vektoren, Skalarprodukt, Ortslinien
.0 Gegeben sind die Punkte A(0/-4), C(0/4), sowie die Pfeile mit α [ 90 ; 90 ]. 4cosα AB = 4sinα+ 4. Zeichne die drei Punkte B, B und B 3 mit α { 30;0;30 } in ein KOS.. Zeige: 4cosα CB =. 4sinα 4.3 Zeige,
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
Raumgeometrie - Prisma (Würfel, Quader)
Raumgeometrie - Prisma (Würfel, Quader) 1.0 Ein Quader mit einem Rechteck als Grundfläche ist 8 cm hoch. Die zwei Seitenflächen haben den Flächeninhalt 96 cm und 7 cm. 1.1 Berechne Volumen und Oberfläche
Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgabe A1 A1 Die nebenstehende Skizze dient als Vorlage für eine Pflanzschale. Sie zeigt den Axialschnitt ABCDEF eines Rotationskörpers mit der Rotationsachse KL. Es gilt: =1,4
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den
Abbildungen im Koordinatensystem
Klasse 0 I. Drehe die Gerade g mit y = x um O(0/0) mit α = 5. Bestimme die Gleichung der Bildgeraden g. Berechne das Maß des Winkels zwischen g und g.. Die Gerade g mit y = x + 5 soll um O(0/0) so gedreht
Aufgabe 00 (Einstiegsaufgabe zur Berechnung im Raum)
Aufgabe 00 (Einstiegsaufgabe zur Berechnung im Raum) Das Modell zeigt die Pyramide ABCDS mit rechteckiger Grundfläche ABCD (AB cm; BC 7 cm). Die Spitze S liegt senkrecht über C (SC 5 cm). (Modell vergrößert
Sekundarschulabschluss für Erwachsene
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung 1. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(11/-1) sind gegenüberliegende Ecken eines
Aufgaben zu Anwendungen zur Vektorrechnung
Aufgaben zu Anwendungen zur Vektorrechnung. Von einer Strecke AB mit dem Mittelpunkt M sind bekannt: A(/5) und M(-4/3). Berechnen Sie B.. Die Punkte A(3/7) und B(/-) sind gegenüberliegende Ecken eines
R4/R6. Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Mathematik II Nachtermin Aufgabe P 1.
Prüfungsdauer: Abschlussprüfung 008 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1 Gegeben ist das Trapez ABCD mit AB
Geometrie Strecke, Gerade, Halbgerade
Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans [email protected] Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen
Gymnasium / Realschule. Extremwertaufgaben. Klassen 8 bis 10
Überblick Die vorliegenden sind Textaufgaben, meist mit Zeichnungen versehen, bei denen die Frage gestellt wird, unter welchen Bedingungen ein Wert (z.b. Abstand, Länge, Fläche, Volumen) am größten oder
Analytische Geometrie
Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u
4. Mathematikschulaufgabe
1. Wie weit kann man vom Chordach auf dem Mont-Saint-Michel (120 m) auf das Meer hinausschauen? (Erdradius 6370 km) 2. Konstruiere ein Quadrat, das den doppelten Flächeninhalt hat wie das Quadrat mit der
Abschlussprüfung 2010 an den Realschulen in Bayern
Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels
Qualiaufgaben Konstruktionen
Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der
2. Mathematikschulaufgabe
1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1
Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung
Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit
Trigonometrie - Funktionale Abhängigkeiten an Dreiecken
1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des
Mathematik II Wahlteil Haupttermin Aufgabe A 1
Prüfugsdauer: Abschlussprüfug 006 Mathematik II Wahlteil Haupttermi Aufgabe A 1 A 1.0 Gegebe sid die Parabel p mit der Gleichug y = 0,15x + 0,3x + 6,85 ud die 3 Gerade g mit der Gleichug y= x+ mit GI =
3. Mathematikschulaufgabe
1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere
4. In einem Parallelogramm ABCD sind die Seiten a = c = 6 und
Sinus, Cosinus und Tangens 1. In einem gleichschenkligen Dreieck ABCsind die Seiten c = 4 und a = b = gegeben. Berechne die Winkel im Dreieck ABC und den Flächeninhalt des Dreiecks. In einem Parallelogramm
Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1
Hinweise: Alle Zwischen- und Endergebnisse auf 2 Stellen nach dem Komma runden. Die Zeichnungen sind nicht maßstäblich. Alle Maße sind in mm, falls nicht anders angegeben. 1. Bestimme das Maß x in nebenstehender
1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade
993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt
Das Prisma ==================================================================
Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der
1. Mathematikschulaufgabe
1.0 Gegeben: R = {(x/y) / y = 4 - Ix+1I } Π x Π 1.1 Stelle eine Wertetabelle im Bereich x [-5; 3] Ψ auf, x=1. 1. Zeichne R in ein Koordinatensystem, 1 LE 1cm.0 Lege ein kart. Koordinatensystem (1 LE 1cm)
Übungsaufgabe z. Th. lineare Funktionen und Parabeln
Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen
Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke
Algebra 4.
Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen
A 2.2 Das waagrecht stehende Gefäß ist bis zu einer Höhe von 6 cm mit Wasser gefüllt. Ermitteln Sie rechnerisch das Volumen des Wassers im Gefäß.
Prüfungsdauer: Abschlussprüfung 150 Minuten an den Realschulen in Bayern 009 Mathematik II Haupttermin Aufgabe A 1 Name: Vorname: Klasse: Platzziffer: Punkte: A 1.0 Die nebenstehende Skizze zeigt den Grundriss
Geometrie Strecke, Gerade, Halbgerade
Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht
Sekundarschulabschluss für Erwachsene. Geometrie A 2012
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
4. Mathematikschulaufgabe
1. a) Zeichne mit Hilfe des y-abschnittes und eines Steigungsdreiecks die Geraden mit folgenden Gleichungen in ein Koordinatensystem! (Kennzeichne die Geraden mit I, II, III) I) y = 4-1,4 x II) 2x 3y 6
Hauptprüfung Fachhochschulreife Baden-Württemberg
Hauptprüfung Fachhochschulreife 05 Baden-Württemberg Aufgabe 4 Analytische Geometrie Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 05 Ein Papierflieger
Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar.
Raumgeometrie 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar. H G E F K D C A B (a) Berechne den Flächeninhalt des Dreiecks ABK. Runde das Ergebnis auf zwei
MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 2009/2010 DES LANDES HESSEN 3. RUNDE LÖSUNGEN 1. a) L { 1; 0; 1} b) L {... ; 1; 0; 1; 2} c) L {2; 3; 4}, denn: x 4 0 oder falls x 4 > 0 dann x + 3 5 oder falls x 4 < 0 dann x + 3
Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B 1, 1,5(
1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A,, ( ; B, 0,5( und C 0,5 ( 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:
Kongruenz, Vierecke und Prismen
Kongruenz, Vierecke und Prismen Kongruente Figuren Ziele: Begriff: Kongruenz, Kongruenzsätze für Dreiecke Schrittfolgen für Konstruktionen beschreiben, über Eindeutigkeit entscheiden kongruente Teilfiguren
Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für
Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 2
Hinweise: Die Zeichnungen sind teilweise verkleinert dargestellt. Alle Maße sind in mm, falls nicht anders angegeben. Die folgenden Aufgaben wurden aus Schulaufgaben Gymnasium entnommen, die auch auf meiner
Trigonometrie - Sinussatz, Kosinussatz
Gymnasium / Realschule Trigonometrie - Sinussatz, Kosinussatz Klasse 10 1. Gemäß nebenstehender Zeichnung sind die Stücke AB = c, α und β gegeben. Stelle eine Gleichung für die Strecke AD = x in Abhängigkeit
Zweidimensionale Vektorrechnung:
Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a
Aufgabe W1b/2017. Aufgabe W2a/ ,5. Lösung: Abstand von 5,2. Gegeben sind ein rechtwinkliges Trapez ABCD und ein regelmäßiges Sechseck.
Aufgabe W1a/2017 Das rechtwinklige Dreieck ABD und das gleichschenklige Dreieck ABC haben die Seite gemeinsam. Es gilt: 7,2 3,0 42. Berechnen Sie den Abstand des Punktes von sowie den Winkel. Lösung: Abstand
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.
und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche
Oktaeder. Bernhard Möller. 22. Dezember 2010
Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben
m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.
2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2
Seite http://www.realschulrep.de/ Seite 2 Mittlere-Reife-Prüfung 2007 Mathematik I Aufgabe B2 Aufgabe B2. Der Punkt A 2 2 ist gemeinsamer Eckpunkt von Rauten A B n C n D n. Die Eckpunkte B n 3 liegen auf
Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten
Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden
Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Trigonometrie - Sinussatz, Kosinussatz
Erstelle zu jeder der folgenden Aufgaben zuerst eine maßstäbliche Zeichnung. 1. Berechne die Länge der nicht gegebenen Dreiecksseite im Dreieck ABC: a) b = 6,7 cm c = 5,9 cm α = 63,5 b) b = 2,6 cm c =
Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )
Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede
Themenbereich: Besondere Dreiecke Seite 1 von 6
Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften
Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.
Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,
2. Mathematikschulaufgabe
. Mathematikschulaufgabe 1. Ist das Dreieck mit folgenden Maßen konstruierbar? Begründe! b = 6 cm, β = 76, Außenwinkel γ * = 59.. Ein Draht soll zu einem Dreieck gebogen werden. Eine Seite soll 1m lang
Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.
LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
4. Mathematikschulaufgabe
. Bestimme die Lösungsmengen. G 4x + x = 0 x - 6x +69 = 0 c) (0 + p) (p - 3) 0 d) 4u - 5 > 0. Kürze soweit wie möglich folgende Bruchterme: xy, 3y 5 x y, ( x y x 6y c), x 9 x 6x 9 3. Ergänze die fehlenden
2 14,8 13,8 10,7. Werte einsetzen
Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte
Abituraufgaben Analytische Geometrie Wahlteil 2005 BW
Lösung B1 Lösungslogik a) Koordinaten von und : Wir schneiden die Geraden durch die Punkte und bzw. und mit der Ebene. Nachweis gleichschenkliges Trapez : Nachweis des Trapezes über Parallelität zweier
Tipp: Kosinussatz für Pyramidenkante.
3 Aufgaben im Dokument Aufgabe W2b/2014 Aus einer Kreisfläche werden die Mantelflächen einer quadratischen Pyramide und eines Kegels ausgeschnitten. Der Kreis hat den Radius 20. Berechnen Sie die Differenz
Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt
Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale
Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse
Sekundarschulabschluss für Erwachsene. Geometrie A 2014
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für
2. Mathematikschulaufgabe
. Mathematikschulaufgabe.0 Die Punkte A(-/-5) und B(6/) sind Eckpunkte von Dreiecken ABC n. Die Punkte C n liegen auf der Parabel p mit der Gleichung y = 0,5x +.. Zeichne die Parabel p sowie das Dreieck
Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide
Michael Buhlmann, Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Aufgabe: a) Zeige, dass das Viereck ABCD mit
1 Grundwissen Pyramide
1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken
