Trigonometrie - Sinussatz, Kosinussatz
|
|
|
- Adrian Rosenberg
- vor 9 Jahren
- Abrufe
Transkript
1 Gymnasium / Realschule Trigonometrie - Sinussatz, Kosinussatz Klasse Gemäß nebenstehender Zeichnung sind die Stücke AB = c, α und β gegeben. Stelle eine Gleichung für die Strecke AD = x in Abhängigkeit von c, α und β auf. 2. Gegeben sind: BD = a = 52 m α = 41,6 δ = 78,2 γ = 62,5 Stelle eine Gleichung für x in Abhängigkeit von a, α, γ und δ auf und berechne x auf 2 Nachkommastellen. 3. Um eine Strecke AD = x zu bestimmen, deren Endpunkte nicht zugänglich sind, wählt man sich auf AD einen Punkt C, von dem A und D sichtbar sind, sowie außerhalb der Strecke einen geeigneten Hilfspunkt B. Man misst BC = m, Winkel BCA = γ = 81 17, Winkel ABC = β 1 = und Winkel CBD = β 2 = Berechne die Länge der Strecke x. 4. Gegeben ist die Strecke AB = a mit 18 m sowie die Winkel α = 55, β = 62 und γ = 21 (siehe Skizze). Gib eine möglichst kurze Gleichung für die Strecke CD = x in Abhängigkeit von a, α, β und γ an. Berechne x für die angegebenen Werte auf zwei Stellen nach dem Komma. 5. Im ABC sind die Seiten a = 12 cm, b = 8 cm und c = 14 cm gegeben. Berechne den BMC = ϕ. (AM = MB ) GM_AU003 **** Lösungen 26 Seiten (GM_LU003) 1 (6)
2 6. In nebenstehender Zeichnung sind die Winkel α, β und γ sowie die Strecke AB = a gegeben. Ausserdem gilt CD AD. Gib eine Gleichung für die Strecke CD = h in Abhängigkeit von α, β, γ und a an. 7. In einem Trapez mit den parallelen Seiten [AB] und [CD] sind gegeben: AB = 7cm, CD = 3cm, BC = 6cm, AD = 5 cm. Berechne die Innenwinkel auf zwei Nachkommastellen. 8. Im Viereck ABCD sind folgende Stücke gegeben: BC = b = 4,00 cm CD = c = 5,00 cm AD = d = 1,50 cm Winkel BAD = α = 105,00 Winkel ADC = δ = 100,00 Gesucht sind f und a! 9. Gegeben ist ein Halbkreis mit Radius r = 9cm. Auf dem Halbkreis befindet sich ein Punkt R. M ist der Kreismittelpunkt und N die Mitte des Radius r. Weiterhin ist gegeben der Winkel RNM = α = 54. Berechne den Winkel RMP = β. 10. Von einem Punkt A aus sieht man die Spitze eines Turmes unter einem Erhöhungswinkel (Elevationswinkel) von α = 5 20 und von einem Punkt B aus unter einem Erhöhungswinkel von β = Beide Punkte sind 420m voneinander entfernt und befinden sich in einer Ebene mit dem Turm. Stelle eine möglichst kurze Gleichung für die Turmhöhe h in Abhängigkeit von α, β und a auf. Berechne h mit den angegebenen Werten. GM_AU003 **** Lösungen 26 Seiten (GM_LU003) 2 (6)
3 11. Von einem Schiff S aus peilt man zwecks Standortbestimmung einen Leuchtturm L unter α = und einen Schornstein T unter β = an. Aus einer Karte entnimmt man die Strecke LT = 21,5 km und ihre Richtung mit γ = Wie weit ist das Schiff vom Leuchtturm entfernt? 12. Der Abstand zweier Punkte P und Q lässt sich nicht direkt bestimmen. Auf der Verlängerung von PQ wird daher ein Punkt A markiert und von dort aus eine Standlinie AC abgesteckt. Weiterhin wurde auf AC ein Punkt B bestimmt. Gemessen wurden folgende Größen: AB = 105 m, BC = 84m, α = 76, β = 82, γ = 26. Berechne die Länge PQ auf zwei Stellen nach dem Komma. 13. Bei einer Geländevermessung können die Strecken AB = c, BC = a und AC = b nicht direkt gemessen werden. Zur indirekten Bestimmung der gesuchten Strecken a, b und c misst man in B den Winkel β= 48 29' und in einem Hilfspunkt D den Winkel δ= 59 38', sowie die Strecken AD = d = 340,52 m und CD = e = 486,18 m. Berechne die gesuchten Längen auf zwei Stellen nach dem Komma. 14. Ein Wanderer W, der 135m über einem Bergsee steht, sieht den Gipfel G des Berges unter dem Erhebungswinkel α = 34 und das Spiegelbild G des Berggipfels im See unter dem Tiefenwinkel β = 46. Berechne die Gipfelhöhe FG = x über dem See. GM_AU003 **** Lösungen 26 Seiten (GM_LU003) 3 (6)
4 15. Die Entfernung e zweier Punkte P und Q soll bestimmt werden. Zu diesem Zweck werden in zwei Punkten A und B mit dem bekannten Abstand AB = a die Winkel α und α 1 sowie β und β 1 gemessen. Berechne die Strecke PQ= e für a = 20m, α = 65, α 1 = 42, β= 38 und β 1 = 56. Gib eine allgemeine Gleichung für e in Abhängigkeit von a, α, α 1, β, und β 1 an. 16. Es ist die Entfernung x zweier Punkte P und Q zu bestimmen. Hierzu werden jeweils von P und Q die Punkte A und B mit bekanntem Abstand AB = a anvisiert und folgende Winkel gemessen: γ = 105,5 ; γ 1 = 47,2 ; δ = 102,8 ; δ 1 = 52,6 ; Die Strecke a ist 822,6 m lang. Berechne x (Ergebnis und Zwischenwerte jeweils mit zwei Kommastellen runden). 17. Bei dem skizziertem Kranausleger sind die Winkel α und β sowie die Gewichtskraft F G der angehängten Last gegeben. Stelle jeweils die Gleichung für die in Strebe 1 auftretende Zugkraft F 1, und für die in Strebe 2 herrschende Druckkraft F 2 auf. 18. In einem Kurbelgetriebe ist die Strecke x aus dem Drehwinkel ϕ, dem Kurbelradius r und der Schubstangenlänge a zu bestimmen. Berechne x mit r = 80mm, a = 360mm und ϕ = 25. GM_AU003 **** Lösungen 26 Seiten (GM_LU003) 4 (6)
5 19. In einem Kurbelgetriebe ist die Strecke x aus dem Drehwinkel ϕ, dem Kurbelradius r und der Schubstangenlänge a zu bestimmen. Stelle eine möglicht kurze Gleichung für die Strecke x in Abhängigkeit von a, r und ϕ auf. 20. In der dargestellten Dreieckskonstruktion sind die Strecke AB = cund der Winkel ϕ gegeben. Gib eine Gleichung für x in Abhängigkeit von c und ϕ an. 21. Ein 60 -Winkel mit dem Scheitel S ist durch eine Gerade so zu schneiden, dass die Längen der auf den Schenkeln liegenden Abschnitte SPund SQ sich wie 5:4 verhalten und die Querstrecke PQ die vorgegebene Länge a hat. Gib eine Gleichung für SPund SQ in Abhängigkeit von a an. 22. Die Grenzlinie von A über B nach C zwischen zwei Grundstücken soll so begradigt werden, dass sich die Grundstücksgrößen nicht ändern. Damit die neue Grenzlinie [CD] gezogen werden kann, muss die Länge der Strecke AD berechnet werden. Folgende Messwerte sind bekannt: AB = 269,5 m; BC = 109,2 m; Winkel ACB = γ = 46,1 ; Winkel DAB = ϕ = 74,8. GM_AU003 **** Lösungen 26 Seiten (GM_LU003) 5 (6)
6 23. Die Kräfte F 1 = 240 N und F 2 = 380 N greifen an einem gemeinsamen Punkt an und schließen einen Winkel von ϕ = 48 ein. Wie groß ist die resultierende Kraft F R? Welchen Winkel bildet sie mit F 2? GM_AU003 **** Lösungen 26 Seiten (GM_LU003) 6 (6)
Aufgaben für Klausuren und Abschlussprüfungen
Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.
Übungen: Trigonometrie
Übungen: Trigonometrie Polarkoordinaten 1. Berechnen Sie die kartesischen Koordinaten der Punkte A(5; 45 ), B(6; 120 ), C(3,5; 310 ), D(4,8; 235 ); E(2,7; 0 ), F(3,3; 90 ), G(10; 53,13 ), H(3,16; 161,57
2.5. Aufgaben zu Dreieckskonstruktionen
2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere
Trigonometrie - Sinussatz, Kosinussatz
Gymnasium / Realschule Trigonometrie - Sinussatz, Kosinussatz Klasse 10 1. Gemäß nebenstehender Zeichnung sind die Stücke AB = c, α und β gegeben. Stelle eine Gleichung für die Strecke AD = x in Abhängigkeit
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 50 Minuten Abschlussprüfung 0 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A Nachtermin A Eierbecher S Die nebenstehende Skizze zeigt den
Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1
Hinweise: Alle Zwischen- und Endergebnisse auf 2 Stellen nach dem Komma runden. Die Zeichnungen sind nicht maßstäblich. Alle Maße sind in mm, falls nicht anders angegeben. 1. Bestimme das Maß x in nebenstehender
Berechnung von Strecken und Winkeln. Hier alle Beispiele aus Teil 5 und 6. als Aufgabensammlung. Datei Nr. 64120. Stand 22.
Vektorgeometrie ganz einfach Aufgabensammlung Berechnung von Strecken und Winkeln Hier alle Beispiele aus Teil 5 und 6 als Aufgabensammlung. Datei Nr. 640 Stand. März 0 INTERNETBIBLITHEK FÜR SCHULMATHEMATIK
Aufgaben Ähnlichkeit:
Aufgaben Ähnlichkeit: 1. Berechne die gesuchten Zahlwerte, beziehungsweise z. a) 8 21 14 α 18 β α β b) 40 α 16 12 α 22 β β c) d) e) Geometrie-Dossier 3-2 Ähnlichkeit.doc A.Räz Seite 23 2. Berechne die
Trigonometrie - Sinussatz, Kosinussatz
Erstelle zu jeder der folgenden Aufgaben zuerst eine maßstäbliche Zeichnung. 1. Berechne die Länge der nicht gegebenen Dreiecksseite im Dreieck ABC: a) b = 6,7 cm c = 5,9 cm α = 63,5 b) b = 2,6 cm c =
Trigonometrische Berechnungen
Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =
Aufgaben zum Basiswissen 7. Klasse
Aufgaben zum Basiswissen 7. Klasse 1. Achsen- und Punktsymmetrie 1. Aufgabe: Zeichne die Gerade g und alle weiteren Punkte ab und spiegle diese Punkte an der Geraden g und am Zentrum Z. 2. Aufgabe: Zeichne
Alle hier gezeigten Aufgaben verwenden Sinussatz und Kosinussatz. Die Sammlung wird weiter ergänzt. Klassenstufe 10. Datei Nr
Trigonometrie Trainingsaufgaben 2 lle hier gezeigten ufgaben verwenden Sinussatz und Kosinussatz ie Sammlung wird weiter ergänzt Klassenstufe 10 atei Nr. 16032 November 2005 Friedrich uckel INTERNETILITHEK
Geometrie, Einführung
Geometrie, Einführung Punkte, Linien 1. Gib die Längen von 3 Strecken r, s. t an, welche nicht die Seiten eines Dreiecks sein können. Begründe deine Wahl. 2. a) Zeichne Punkte und Geraden, welche folgende
Berechnungen am Dreieck
1 Stern Berechnungen am Dreieck Ein fünfzackiger Stern, wie abgebildet, soll völlig symmetrisch sein (alle fünf Linien sind gleich lang und alle gleichartigen Innenwinkel gleich groß) Die Gesamtlänge der
1. Mathematikschulaufgabe
Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.
Trigonometrie - Sinussatz, Kosinussatz
Gymnasium / Realschule Trigonometrie - Sinussatz, Kosinussatz Klasse 10 1. Gemäß nebenstehender Zeichnung sind die Stücke AB = c, α und β gegeben. Stelle eine Gleichung für die Strecke AD = x in Abhängigkeit
Trigonometrie - Funktionale Abhängigkeiten an Dreiecken
1.0 Die Basis [AB] eines gleichschenkligen Dreiecks ABC hat die Länge 10 cm. 1.1 Berechne den Flächeninhalt A des Dreiecks in Abhängigkeit von α. (Ergebnis: A(α) = 5 tanα cm ) 1. Berechne den Umfang des
Aufgaben zum Thema Kraft
Aufgaben zum Thema Kraft 1. Ein Seil ist mit einem Ende an einem Pfeiler befestigt und wird reibungsfrei über einen weiteren Pfeiler derselben Höhe im Abstand von 20 m geführt. Das andere Seilende ist
Strahlensätze: Aufgaben
Strahlensätze: Aufgaben 1. Zwei parallele Geraden schneiden zwei Strahlen mit gemeinsamen Anfangspunkt S. Berechne die in der Tabelle fehlenden Streckenlängen. a b c d (a) 5 cm 4cm 6cm (b) 3.6cm 9.2cm
Berufsmaturitätsprüfung 2009 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2009 Mathematik Zeit: 180 Minuten Hilfsmittel: Formel- und Tabellensammlung ohne gelöste Beispiele, Taschenrechner
Baustelle 1. Die Handwerkskammer schreibt für Leitern einen Anstellwinkel von ca. 70 vor. Leitern über 7 m Länge müssen zusätzlich abgestützt werden.
Baustelle 1 Die Handwerkskammer schreibt für Leitern einen Anstellwinkel von ca. 70 vor. Leitern über 7 m Länge müssen zusätzlich abgestützt werden. Bestimme, wie hoch eine ordnungsgemäß aufgestellte Leiter,
Ballon. Bestimme, in welcher Höhe der Ballon über dem Punkt G schwebt m über dem Punkt G. Der Ballon schwebt in einer Höhe von
Ballon Von einem Freiballon aus werden die Orte A und B, die 2700m voneinander entfernt sind, unter den Tiefenwinkeln mit den Winkelweiten α = 66 und β = 24 angepeilt. Bestimme, in welcher Höhe der Ballon
Sinus- und Kosinussatz
Sinus- und Kosinussatz Aufgabe 1 Bestimme für 0 α 360 die zwei Winkel, für die gilt a) sin α = 0,2 b) sin α = -0,74 c) cos α = 0,84 d) cos α = -0,05 e) tan α = 21 f) tan α = -0,51 g) cos α = -0,9 h) tan
Übungsaufgaben. Lichtbrechung. Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε'
Verwende zur Bestimmung des Brechungswinkels jeweils das ε - ε' -Diagramm von Blatt 3 1. (a) Auf eine 2 cm dicke ebene Glasplatte fällt unter dem Einfallswinkel 50 ein Lichtstrahl. Zeichne seinen weiteren
Geometrie Strecke, Gerade, Halbgerade
Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht
MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 2015/2016 DES LANDES HESSEN 1. RUNDE LÖSUNGEN AUFGABENGRUPPE A PFLICHTAUFGABEN P1. a) 5 2 (oder 2,5) (= 6 5 3) b) 6 5 ( = 1 3 3 1 6 5 ) ( c) 3 2 (oder 1,5) (= 56 3) 1 3 = 5 2 1) P2.
Analytische Geometrie
Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),
Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:
Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:
Dreieckskonstruktionen Anwendungsaufgaben Lösungen
Hilfe home Dreieckskonstruktionen nwendungsaufgaben Lösungen ufgabe 1 Konstruiere ein rechtwinklig gleichseitiges Dreieck mit der Hypotenuse c = 8 cm. Zeichne über den Katheten a und b die Quadrate und
Übungsaufgaben Klasse 7
Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Realschule / Gymnasium. Klassen 9 / 10. - Aufgaben - Am Ende der Aufgabensammlung finden Sie eine Formelübersicht
Am Ende der Aufgabensammlung finden Sie eine Formelübersicht 1. a) Leite eine Formel her für den Umfang eines Kreises bei gegebener Fläche. b) Wieviel mal größer wird der Umfang eines Kreises, wenn man
Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile
Geometrie I (Sommersemester 006, Dr. Christian Werge, [email protected]) Training in Vorbereitung der Nachklausur Tipps gibt es über der Fußzeile (Die Lösungen liegen in einer anderen Datei vor, bitte erst
Zweite Schularbeit Mathematik Klasse 5A am
Zweite Schularbeit Mathematik Klasse 5A am 10.12.2013 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Grundkompetenzen Grundwissen Grundkompetenzen Grundfertigkeiten Vernetzung und Vertiefung 18 Punkte
Abschlussprüfung 2010 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 010 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 Das radioaktive Cäsium-137 wird in der
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse
Seiten 7 / 8 Aufgaben Punktmengen (Die Lösungen sind verkleinert gezeichnet) 1 a) Problemanalyse k mam 1. näher bei M als bei A (Entfernung von 2 Punkten) 2. weniger als 35mm von A entfernt (Entf. von
R4/R6. Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Mathematik II Nachtermin Aufgabe P 1.
Prüfungsdauer: Abschlussprüfung 008 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1 Gegeben ist das Trapez ABCD mit AB
6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.
6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese
Qualiaufgaben Konstruktionen
Qualiaufgabe 2008 Aufgabengruppe I Trage in ein Koordinatensystem mit der Einheit 1 cm die Punkte A (-2/2) und C (1/3) ein. a) Zeichne das gleichseitige Dreieck AMC. b) Ein regelmäßiges Sechseck mit der
M9 Geometrielehrgang. M9 Geometrielehrgang 1
M9 Geometrielehrgang Inhalt: 1 Geometrische Grundbegriffe 2 1.1 Punkte 2 1.2 Linien und deren Lagebeziehungen: 2 1.3 Flächen und Körper. Ordne die Begriffe durch nummerieren zu! 3 2 Dreiecke 4 2.1 Dreieckfläche
Raumgeometrie - Würfel, Quader (Rechtecksäule)
Hauptschule (Realschule) Raumgeometrie - Würfel, Quader (Rechtecksäule) 1. Gegeben ist ein Würfel mit der Kantenlänge a = 4 cm. a) Zeichne das Netz des Würfels (Abwicklung). b) Zeichne ein Schrägbild des
Bezeichnungen am Dreieck
ezeichnungen am Dreieck Verbindet man drei Punkte, die nicht auf einer Geraden liegen, so entsteht ein Dreieck. llgemeine ezeichnungen: Die Eckpunkte des Dreiecks werden mit den uchstaben, und bezeichnet.
Raumgeometrie - gerade Pyramide
1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne
Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale
Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse
Übung 11. Fachwerkträger. Aufgabe 01: Aufgabe 02: Aufgabe 03: Aufgabe 04: Aufgabe 05: 170 m. 85 m SEE. E 160 m. x =? 4,4 m.
Übung 11 Aufgabe 01: C D 170 m 85 m Aufgabe 02: E 160 m B SEE =? A Fachwerkträger 5 m 3 m 3 m 4,4 m Aufgabe 03: 10 40 36 z 15 25 Aufgabe 04: 4 13 18 10 Aufgabe 05: 7 3 Aufgabe 06: 4 m 1 m Aufgabe 07: Ein
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras
Berechnungen am rechtwinkligen Dreieck, Satz des Pythagoras Aufgabe 1 Berechne die fehlenden Grössen (a, b, c, h, p, q, A) der rechtwinkligen Dreiecke: a) p = 36, q = 64 b) b = 13, q = 5 c) b = 70, A =
Der Maßstab. Methodentraining Maßstab Jgst. 5. Die Karte verkleinert die Wirklichkeit.
Der Maßstab Die verkleinert die. Der Maßstab gibt an, in welchem Verhältnis die gegenüber der verkleinert wurde. Maßstab Strecke in der 1:25000 (großer Maßstab) 25000 cm = 250 m = 0,250 km 1:50000 50000
Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung
Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit
1. Mathematikschulaufgabe
1.0 Gegeben: R = {(x/y) / y = 4 - Ix+1I } Π x Π 1.1 Stelle eine Wertetabelle im Bereich x [-5; 3] Ψ auf, x=1. 1. Zeichne R in ein Koordinatensystem, 1 LE 1cm.0 Lege ein kart. Koordinatensystem (1 LE 1cm)
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das
1 Begriffe und Bezeichnungen
1 Begriffe und Bezeichnungen Verbindet man vier Punkte A, B, C, D einer Ebene, von denen keine drei auf einer Geraden liegen, der Reihe nach miteinander, können unterschiedliche Figuren entstehen: ein
Sicheres Wissen und Können zu Dreiecken 1
Sicheres Wissen und Können zu Dreiecken 1 Die Schüler verwenden den egriff Figur für beliebige geradlinig oder krummlinig begrenzte ebene Figuren. Die Namen der Figuren sind im Denken der Schüler sowohl
Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS
4. Mathematikschulaufgabe
Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und
Raumgeometrie - schiefe Pyramide
1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;
Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke
Vergleichsarbeit Klasse 9. I. Quadratische Funktionen
Name: Vergleichsarbeit Klasse 9 I. Quadratische Funktionen 90 Minuten 1. Bestimme den Scheitelpunkt und die Nullstellen des Graphen von f. Gehe dabei möglichst geschickt vor. a) f(x) = 50 5x² b) f(x) =
20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A(-I1) und B(6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
Kongruenz und Symmetrie
Kongruenz und Symmetrie Kongruente Figuren Wenn Figuren genau deckungsgleich sind, nennt man sie kongruent. Sie haben gleiche Form und gleiche Größe. Es entsteht eine 1:1 Kopie. Figuren, die zwar die gleiche
4 x
Quadratwurzeln und reelle Zahlen. Bestimme die Definitionsmenge des Wurzelterms in G = R a) T(x) = x b) x c) x d) x e) x +. Vereinfache a) 0 + 90 b) 6 7 + 08 7 7 c) 0 0 + d) 6. Mache den Nenner rational
Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:
Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel
Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz
BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK
BESONDERE LEISTUNGSFESTSTELLUNG 2006 MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 150 Minuten Tafelwerk Taschenrechner (nicht programmierbar, nicht grafikfähig) (Schüler, die einen CAS-Taschencomputer
A 2.2 Das waagrecht stehende Gefäß ist bis zu einer Höhe von 6 cm mit Wasser gefüllt. Ermitteln Sie rechnerisch das Volumen des Wassers im Gefäß.
Prüfungsdauer: Abschlussprüfung 150 Minuten an den Realschulen in Bayern 009 Mathematik II Haupttermin Aufgabe A 1 Name: Vorname: Klasse: Platzziffer: Punkte: A 1.0 Die nebenstehende Skizze zeigt den Grundriss
Vorbereitung für die Arbeit
Vorbereitung für die Arbeit Trigonometrie: 1. Eine 8 m hohe Fahnenstange wirft einen 13 m langen Schatten. Was ist der Winkel mit dem die Sonne die Fahnenstange trifft? 2. Ein U-Boot wird mit Sonar aufgespürt.
Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen
Mathematik Klasse 10c Vorbereitung Klassenarbeit Nr. 3 am 1.3.019 Themen: Strahlensätze, Trigonometrie, trigonometrische Funktionen Checkliste Was ich alles können soll Ich erkennen die Strahlensatzfiguren
Raumgeometrie - schiefe Pyramide
1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
Berufs-/Fachmittelschulen Aufnahmeprüfung 2012. Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Total Maximale Punktzahl Erreichte Punktzahl
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Total Maximale Punktzahl Erreichte Punktzahl 3 3 3 3 3 15 Note Die Geometrie-Prüfung umfasst 5 Aufgaben. Als Hilfsmittel ist ein nicht algebrafähiger und nicht grafikfähiger
Analytische Geometrie
Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u
Realschule Abschlussprüfung
Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................
Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgabe A1 A1 Die nebenstehende Skizze dient als Vorlage für eine Pflanzschale. Sie zeigt den Axialschnitt ABCDEF eines Rotationskörpers mit der Rotationsachse KL. Es gilt: =1,4
9, Im Dreck gilt: Berechnen Sie den Umfang des Dreiecks. Lösung: 27,9. und. Tipp: Dreimal Sinussatz für,
Aufgabe P1/2014 Im Viereck sind gegeben 3,2 5,8 54,6 Berechnen Sie den Umfang des Dreiecks Lösung 17,4 14 Aufgaben im Dokument Aufgabe P2/2014 Das Dreieck und das Dreieck überdecken sich teilweise Es gilt
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN
Mathematik Mag. Schmid Wolfgang Arbeitsblatt 4 3. Semester ARBEITSBLATT 4 VERMESSUNGSAUFGABEN Nun wollen wir unser Wissen über recht- und schiefwinkelige Aufgaben an einigen Aufgaben beweisen Beispiel
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Erweiterte Beispiele 01 1/1 Vermessungsaufgaben
Erweiterte Beispiele 01 1/1 Vermessungsaufgaben Vor dem Bau eines Tunnels sollen seine Länge BC und der Steigungswinkel bestimmt werden. Zu diesem Zweck steckt man beiderseits des Berges 2 horizontale
Geometrie-Dossier Vierecke
Geometrie-Dossier Vierecke Name: Inhalt: Vierecke: Bezeichnungen Parallelenvierecke: Ihre Form und Eigenschaften Konstruktion von Parallelenvierecken Winkelsumme in Vielecken, Flächenberechnung in Vielecken
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 014 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung
Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden
Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.
Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)
Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.
Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,
Bei Windstille bilden die Regentropfen am Fenster eines mit einer Geschwindigkeit v z
Aufgabe 1 (Verkehrsschild) a) Unter welchem Winkel steigt die Straße an? Schätze zuerst. b) Die Straße überwindet einen Höhenunterschied von 100m. Wie lang ist die Straße? c) Welchen Höhenunterschied überwindet
4. Mathematikschulaufgabe
.0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.
Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene
Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander
Geometrie Strecke, Gerade, Halbgerade
Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht
Vektorgeometrie. Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert. (G): Grundlagen, Basiswissen einfache Aufgaben
Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben Vorzeigeaufgaben: Block Stunde
Liechtensteinisches Gymnasium
Schriftliche Matura 2015 Liechtensteinisches Gymnasium Prüfer: Huber Sven Klasse 7Wa Zeit: 240 Minuten Name: Klasse: Instruktionen: 1) Gib die zur Rechnung nötigen Einzelschritte an. 2) Skizzen müssen
3. Mathematikschulaufgabe
1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere
MATHEMATIK ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE
ZUR VORBEREITUNG AUF DEN UNMITTELBAREN EINTRITT IN EINEN REALSCHULREIFELEHRGANG ODER FACHSCHULREIFELEHRGANG DER BUNDESWEHRFACHSCHULE MATHEMATIK Lehreinheit 11 Geometrie: Dreiecke und Vierecke II GEOMETRIE:
Übungen. Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt aus den folgenden. Angaben. Angaben.
Übungen A1 Konstruiere ein Dreieck ABC und dessen Umkreismittelpunkt aus den folgenden Angaben. a) A( 4 2), B(2 2), C(2 4) b) a = 5cm, b = 4cm und c = 8cm A2 Konstruiere ein Dreieck ABC und dessen Inkreismittelpunkt
Aufgabe W1b/2006. Gegeben ist das rechtwinklige Trapez. Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt:.
Realschulabschluss Trigonometrie (Wahlteil nur e-aufgaben) von 2003-2009 7 Aufgaben im Dokument Aufgabe W4b/2003 Im nebenstehenden Dreieck ist der Mittelpunkt von. Zeigen Sie ohne Verwendung gerundeter
Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten
Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten
3. Mathematikschulaufgabe
Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;
