Senkrechter freier Fall
|
|
|
- Gerhardt Bretz
- vor 8 Jahren
- Abrufe
Transkript
1 Senkrehter freier Fall Die Raumzeitkrümmung in der Shwarzshildmetrik [] zeigt sih unter anderem darin, dass die Zeit in der Nähe des Zentralkörpers langsamer läuft Um diesen Effekt zu veranshaulihen, soll die Zeit für einen freien Fall einerseits im System eines weit entfernten Beobahters und andererseits im fallenden System dh die Eigenzeit τ) berehnet werden Klassish Aus dem Energiesatz m v 2 2 G m M r = G m M r ) ergibt sih sofort die Geshwindigkeit: v = dr dt = 2 G M r ) 2) r G ist die Gravitationskonstante, M ist die Masse des Zentralkörpers und r ist der Abstand zum Zeitpunkt t = 0 Da niht rt), sondern tr) gesuht ist, muss für die Integration der Reziprokwert dt dr = 2 G M r ) r 3) verwendet werden Die Fallzeit ist gegeben durh das Integral r dr t = ) 2 G M r r r 2 4) r 2 ist ein Radius, der beliebig nahe beim Shwarzshildradius r s = 2 G M 2 liegen kann Wird die dimensionslose Variable x = r r s 5) 6) eingeführt, ergibt sih das Integral x x x 7)
2 Senkrehter freier Fall 2 Wenn bei der numerishen Integration von aussen nah innen summiert wird, ist für den ersten Summanden x = x Somit vershwindet der Nenner und dieser Summand wird unendlih Da der Probekörper an der Stelle x = x aus der Ruhe losgelassen wird, ist die Geshwindigkeit während des ganzen ersten Integrationsshrittes gleih null und damit die für die Streke dr benötigte Zeit gleih unendlih Das kann vermieden werden, entweder indem shon vor der Berehnung des ersten Terms der Shritt x x ausgeführt wird oder indem für das erste Zeitintervall die Beziehung 2 2 r dt = g dr = 2 4 r G M dr = 2 s x 8) 2 verwendet wird Mit beiden Verfahren wird keine befriedigende Genauigkeit erreiht Besser ist es, wenn von innen nah aussen integriert wird Relativistish Wenn der Probekörper keinen Bahndrehimpuls hat, ergibt sih in der Shwarzshildmetrik für die Eigenzeit der Fallbewegung formal die gleihe Beziehung wie in der klassishen Mehanik [2]: dτ dr = 2 G M r ) 9) r Die Umrehnung von der Eigenzeit τ auf die Zeit t eines in grosser Entfernung ruhenden Beobahters liefert den zusätzlihen Faktor [3] dt dτ = r s r = Damit wird die Fallzeit: x 0) x ) x x x ) Fallzeiten Fallzeit klassish t k x x x 2) Fallzeit relativistish t r x ) x x x 3)
3 Senkrehter freier Fall 3 Beispiele r s = 3 km x = 0 3 t k = s = t r = s Es mag erstaunlih sheinen, dass der Untershied zwishen der Eigenzeit und der Zeit des weit entfernten Beobahters so gering ist Der Faktor dt/dτ wirkt sih jedoh erst für Abstände r aus, die nur wenig grösser sind als der Shwarzshildradius r s, dh nur die allerletzten Zeitintervalle ersheinen vergrössert, aber diese geben in der gesamten Fallzeit keinen wesentlihen Beitrag Der Zeituntershied maht sih nur dann deutlih bemerkbar, wenn der Fall in unmittelbarer Nähe des Shwarzshildradius betrahtet wird x = t k = s = t r = 97 s Für den in grosser Entfernung ruhenden Beobahter erreiht der fallende Körper den Shwarzshildradius in unendlih langer Zeit Er kommt ihm jedoh in endliher Zeit beliebig nahe Analytishe Integration Für den Bereih x < + ε, ε können die Integranden der Integrale 7 und nah Potenzen von ε entwikelt werden, worauf die Integrale sih analytish berehnen lassen Klassish x x x x = + ε x = + ε = + 5) 4) ε dε ε ε 6) ε = y dε = dy 7) t = r s y dy y + ε 2 y + ε 2 ε ε 2 ε ε ε ) 8) y ε Da ε, gilt ε ε und es folgt: t = 2 r s ε 9) Für das obige Beispiel x = ist ε = 0 8 und für t ergibt sih t = s = s 20)
4 Senkrehter freier Fall 4 Relativistish x ) x x 2) x x = + ε x = + ε = + 22) ε = y ε y dε ε ε ε dε = dy dy y y + ε Die Integraltabelle [4] liefert 23) 24) 25) y + ε ε y ln ε y + ε + ε 26) ε ε ε ε ln ε ε ε + ε [ ln ε ε ] ε ln ε ε ε + ε 27) ln ε ε + ε ) ε ε ε ε ) ε + ε ln ε ε 28) ε Da ε, können die Wurzeln nah Potenzen von /ε entwikelt werden ln + /ε ε /ε Es ergibt sih shliesslih: ε ln 2 2 /ε 2 /ε 29) ε ln 4 ε 30) Für das obige Beispiel mit ε = 0 8, = 0 6 wird t = ln 4 s = 98 s 3) 0 6 In Turbo Pasal wird der Real-Datentyp extended mit 9 bis 20 Stellen dargestellt Bei der Integration von bis x kann daher in x = +ε für ε kein kleinerer Wert als etwa 0 8 eingesetzt werden In der aus der analytishen Integration erhaltenen Beziehung 30) kann dagegen der Wert beliebig klein gewählt werden Wenn der Absturz von x = bis = einen Nukleondurhmesser vom Shwarzshildradius entfernt) verfolgt wird, ergibt sih t = ln s = 25 s 32)
5 Senkrehter freier Fall 5 Literaturverzeihnis [] Torsten Fliessbah, Allgemeine Relativitätstheorie, Spektrum Akademisher Verlag, Heidelberg, Berlin, Oxford 995 Kapitel 24 [2] Ibid, Kapitel 25 [3] Ibid, Kapitel 45 [4] IN Bronstein, KA Semendjajew, Tashenbuh der Mathematik, Frankfurt am Main, Zürih Mai 206 A Ruh
Ferienkurs Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols
Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2
Klasse STa FrSe 4 ungr MAE Serie 6 Potenz und Taylorreihen Aufgabe a Bestimmen Sie die Grenzen des Konvergenzbereihs der Potenzreihe: p b Entwikeln Sie die Funktion f vier Summanden. k k 4 k k k in eine
5 Relativistische Mechanik
5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt
2. Wellenausbreitung
2. Wellenausbreitung Die Wellengleihung beshreibt die Bewegung des Stabes: 2 u t 2 =2 2 u x 2 Für die eindeutige Festlegung der Lösung müssen zusätzlih Anfangsbedingungen und Randbedingungen angegeben
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder
Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht
Potenzen mit gleichen Grundzahlen werden multipliziert, indem man die Hochzahlen addiert und die Grundzahlen beibehält. a n a m = a m+n. a...
Mathematikskript: Steven Passmore Potenzgesetze Einleitung Einen Ausdruk mit einer Hohzahl nennt man Potenz Beispiele: 3 5,9 x, a n ). Zunähst ist eine Potenz eine vereinfahte Shreibweise für die vielfahe
Mathematik - Oberstufe
Mathematik - Oberstufe Aufgaben und Musterlösungen zu linearen Funktionen Zielgruppe: Oberstufe Gmnasium Shwerpunkt: Geraden, Streken und Dreieke im Koordinatensstem Aleander Shwarz www.mathe-aufgaben.om
Das gefaltete Quadrat
=.? @ / - + Das gefaltete Quadrat Eine Aufgabe aus der Japanishen Tempelgeometrie 21. September 2004 Gegeben sei das Quadrat ABCD mit der Seitenlänge a. Entlang der Linie EF wird das Quadrat gefaltet,
Lichtgeschwindigkeit
Lihtgeshwindigkeit Die Lihtgeshwindigkeit beträgt konstant a. 300 000 km/s = 3*0 8 m/s. Für unsere Betrahtung genügt diese Genauigkeit. Nihts kann shneller als die Lihtgeshwindigkeit sein. Der Begriff
Die Lorentz-Transformation
Bernhard Szallies Die Lorentz-Transformation Die Lorentz-Transformation stellt die rehnerishe Beziehung zwishen den Ortskoordinaten und der Zeitkoordinate eines Ereignisses bezüglih zweier Inertialsysteme
Lorentzkraft. 1. Einleitung
Lorentzkraft Einleitung Ein gerader stromführender Draht lenkt eine Kompassnadel ab Wir shreiben diese Wirkung dem Magnetfeld zu, das von ihm ausgeht Streut man Eisenfeilspäne auf eine Unterlage, die vom
Die Relativität elektrischer und magnetischer
Die Relativität elektrisher und magnetisher Felder Beitrag von Norbert H. L. Koster zum Postgrade Leture Advanes (and Surprises) in Eletrodynamis - Fortshritte (und Überrashendes) in der Elektrodynamik,
21 Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Hofer 1 21 Spezielle Relativitätstheorie 21.1. Raum und Zeit Die Relativitätstheorie ist neben der Quantentheorie eine der beiden großen Revolutionen der Physik des 20. Jahrhunderts.
Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:
WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n
Ferienkurs Experimentalphysik 2
Ferienkurs Experimentalphysik 2 Sommersemester 2015 Gabriele Semino, Alexander Wolf, Thomas Maier Probeklausur Aufgabe 1: Kupfermünze 4 Punkte) Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA
Prof. Dr.-Ing. A. Schmitt. Ermittlung der Eigenkreisfrequenzen und Eigenschwingungsformen eines Torsionsschwingungssystems *)
Fahbereih Mashinenbau Prof. Dr.-Ing. A. Shmitt Ermittlung der Eigenkreisfrequenzen und Eigenshwingungsformen eines Torsionsshwingungssystems * * Auszug aus einer Laborarbeit im Labor Antriebstehnik der
Lichtablenkung unter Gravitation - flaches Universum?
Lihtablenkung unter Gravitation - flahes Universum? von Dieter Prohnow, Berlin E-mail: [email protected] Im Universum kann Liht in der Nähe von Massenanhäufungen von seiner Bahn abgelenkt werden.
Hans Sillescu. Das Zwillingsparadoxon
Hans Sillesu Das Zwillingsparadoxon Irgendwann erfahren die meisten Zwillinge in unserer zivilisierten Welt von dem sogenannten Zwillingsparadoxon. Ih will hier versuhen, mit einfahen Worten zu erklären,
6 Rotation und der Satz von Stokes
$Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden
Prof. Dr. H.-H. Kohler, WS 2004/05 PC1 Kapitel A.8 - Enzymkinetik A.8-1
rof. Dr. H.-H. Kohler, W 2004/05 C Kapitel A.8 - nzymineti A.8- A.8 nzymineti A.8. Katalysatoren und nzyme Katalysatoren sind oleüle, die die Geshwindigeit einer Reation erhöhen, aus der Reation aber unerändert
Quantenmechanikvorlesung, Prof. Lang, SS04. Comptoneffekt. Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler
Quantenmehanikvorlesung, Prof. Lang, SS04 Comptoneffekt Christine Krasser - Tanja Sinkovi - Sibylle Gratt - Stefan Shausberger - Klaus Passler Einleitung Unter dem Comptoneffekt versteht man die Streuung
Physik: Stundenprotokoll vom Max Pätzold
Physik: Stundenprotokoll vo 25.11.2011 Max Pätzold Inhalt: Lösen von Übungsaufgaben S.361 Lösen von Übungsaufgaben S.363 Rot- und Blauvershiebung Der optishe Dopplereffekt, Aufgabe 1 S.359 Gedankenexperient:
Alexander Halles. Temperaturskalen
emperatursalen Stand: 15.0.004 - Inhalt - 1. Grundsätzlihes über emperatur 3. Kelvin-Sala 3 3. Fahrenheit-Sala und Ranine-Sala 4 4. Celsius-emperatursala 4 5. Die Réaumur-Sala 4 6. Umrehnung zwishen den
Physik I Übung 11 - Lösungshinweise
Physik I Übung 11 - Lösungshinweise Stefan Reutter SoSe 2012 Moritz Kütt Stand: 04.07.2012 Franz Fujara Aufgabe 1 Das Lied der Moreley Die shöne Moreley singe eine besondere Art von Welle, die ein sehr
4. Einsteins Gleichungen und das Standardmodell der Kosmologie
4. Einsteins Gleihungen und das Standardmodell der Kosmologie 4.. Die Einsteinshen Gleihungen (EG) in obertson-walker- Metrik Wir haben die beiden Friedmann-Gleihungen bereits in Newtonsher Näherung abgeleitet.
1.5 Relativistische Kinematik
1.5 Relativistishe Kinematik 1.5.1 Lorentz-Transformation Grundlage: Spezielle Relativitätstheorie à In jedem Inertialsystem gelten die gleihen physikalishen Gesetze; Inertialsystem: System in dem das
Logarithmen und Logarithmengesetze
R. Brinkmnn http://brinkmnn-du.de Seite 9.. Logrithmen und Logrithmengesetze Wir betrhten die Gleihung 5 = 5 Auf der linken Seite steht eine Potenz mit der Bsis 5 und dem Eponenten. Auf der rehten Seite
Mathematische Methoden in den Ingenieurwissenschaften 2. Übungsblatt
Prof. Dr. T. Apel J. Mihael Mathematishe Methoden in den Ingenieurwissenshaften. Übungsblatt Wintertrimester 5 Aufgabe 4 : (Variationsrehnung Extremalen Bestimmen Sie die Extremalen der folgenden Variationsprobleme
Eine kurze Einführung in die spezielle und allgemeine Relativitätstheorie
Eine kurze Einführung in die spezielle und allgemeine Relativitätstheorie Inhaltsverzeihnis 16.1 Das Newtonshe Relativitätsprinzip / Galilei Transformation... 3 16. Die Lihtgeshwindigkeit... 3 16..1 Galileo
Magnetostatik Aufgabe Abb
78 3. Magnetostatik 3.2.2 Aufgabe 3.2.2 Abb. 3.. Eine stromdurhflossene, ebene Leitershleife erzeugt eine magnetishe Induktion B(r). Das Stromelement bei P wehselwirkt mit dem von anderen Stromelementen
SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 5. Laborprotokoll SSY. Reglerentwurf nach dem Frequenz- Kennlinien-Verfahren
Laborprotokoll SSY Reglerentwurf nah dem Frequenz- Kennlinien-Verfahren Daniel Shrenk, Andreas Unterweger, ITS 24 SSYLB2 SS6 Daniel Shrenk, Andreas Unterweger Seite 1 von 13 1. Einleitung Ziel der Übung
Achtung: Im Nenner eines Bruches darf nie die Null stehen!!
Grundwissen 6. Jahrgangsstufe Im Folgenden werden wir an Hand von einigen uns selbst gestellten Fragen, die wir auh gleih beantworten wollen, die wihtigsten Grundbegriffe zu Brühen wiederholen, die du
Physik I Übung 2 - Lösungshinweise
Physik I Übung - Lösungshinweise Stefan Reutter SoSe 01 Moritz Kütt Stand: 6.04.01 Franz Fujara Aufgabe 1 Dopplergabel Ein neugieriger Physikstudent lässt eine angeshlagene Stimmgabel, die den Kammerton
Protokoll zur Vorlesung Theoretische Informatik I
Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &
Versuch LF: Leitfähigkeit
Versuhsdatum: 8.9.9 Versuh LF: Versuhsdatum: 8.9.9 Seite -- Versuhsdatum: 8.9.9 Einleitung bedeutet, dass ein hemisher Stoff oder ein Stoffgemish in der Lage ist, Energie oder Ionen zu transportieren und
10. Grassmannsche Vektoren und die Drehungen im Raum.
10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen
3 Eigenschaften holomorpher Funktionen
3 Eigenshaften holomorpher Funktionen 3.1 Der Identitätssatz Der Identitätssatz zeigt einen überrashend engen Zusammenhang zwishen den Werten einer holomorphen Funktion auf. Satz 3.1 (Identitätssatz) Sei
Produktbeschreibung. EM converterled
Produktbeshreibung EM onverterled 3 Inhaltsverzeihnis EM onverterled LED-Notlihtbetriebsgerät.................................................................. 4 Eine Notlihteinheit für alle LED-Module,
2. Schätzen Sie das Auflösungsvermögen durch Messung zweier nah beieinanderliegender Störstellen ab.
Fakultät für Physik und Geowissenshaften Physikalishes Grundpraktikum M3 Ultrashall Aufgaben 1. Messen Sie die Shallgeshwindigkeit von Ultrashallwellen a. in Arylglas in Reflexion bei 1, 2 und 4 MHz und
Etablierte Bodenmodelle im Ingenieurbau
Einleitung BODENMODELLE Einleitung Die realistishe Abbildung von Bauwerk - Boden Wehselwirkungen in Finite Elemente Programmen ist ungeahtet des gegenwärtig hohen Entwiklungsstandes der verfügbaren Software
Bewegungsgleichung der Speziellen Relativitätstheorie
Ator: Walter islin on 6 walter.bislins.h/blog/.5.3 3:6 ewegngsgleihng der Seiellen Relatiitätstheorie Dienstag, 6. Jni - :4 Ator: wabis Themen: Wissen, Physik, Kosmologie Wenn es m Geshwindigkeiten ab
R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010
R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl
Um den Verlauf der Titrationskurven zu verstehen, benötigen wir die Löslichkeitsprodukte der entsprechenden Silberhalogenide.
1. Potentiometrishe Titration 1 1. POTENTIOMETRISCHE TITRATION 1. Aufgabe Das öslihkeitsprodukt zweier Silberhalogenide soll potentiometrish bestimmt werden. Dazu wird eine wässerige ösung, die zwei Halogenidionen
6. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1966/1967 Aufgaben und Lösungen
6. Mathematik Olympiade 1. Stufe (Shulolympiade) Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 1. Stufe (Shulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrehnungen
Grundlagen der Kryptographie
Grundlagen der Kryptographie Die Kryptographie, aus dem Altgriehishen Geheimshrift abgeleitet, ist die Wissenshaft der Vershlüsselung von Nahrihten. Ursprünglih in der Antike eingesetzt, um diplomatishen
Das Chemische Gleichgewicht Massenwirkungsgesetz
Das Chemishe Gleihgewiht Massenwirkungsgesetz Reversible Reaktionen: Beisiel : (Bodenstein 899 Edukt (Reaktanden Produkt H + I HIH Beobahtung: Die Reaktion verläuft unvollständig! ndig! D.h. niht alle
6. Trigonometrie. sin α = b c. cos α = a c. tan α = b a. 6.1 Rechtwinklige Dreiecke
6. Trigonometrie Trigonometrie bedeutet dem Wortsinn nah Dreieksmessung. Mit Hilfe von trigonometrishen Funktionen lassen sih alle Probleme, die man im Prinzip zeihnerish lösen kann, auh rehnerish bewältigen.
6. Aufgaben zur speziellen Relativitätstheorie
6. Aufgaben zur speziellen Relatiitätstheorie Aufgabe : Inertialsysteme Der Ursprung des Koordinatensystems S sitzt am hinteren Ende eines x m langen, unten dunkel gefärbten Zuges, welher mit 7 km/h in
Physik, grundlegendes Anforderungsniveau
Niedersahsen Diese Lösung wurde erstellt von Tanja Reimbold Sie ist eine offizielle Lösung des Niedersähsishen Kultusministeriums Eigenshaften von Liht Aufgabe 1 Vorgaben: Transmissionsgitter mit 6 g =
9 Strahlungsgleichungen
9-9 Strahlungsgleihungen Ein spontanes Ereignis bedarf keines nstoßes von außen, um ausgelöst zu werden. Das Liht thermisher Strahler, das wir visuell wahrnehmen, entsteht dadurh, dass eine Substanz bei
M 8 Schallgeschwindigkeit von Gasen
M 8 Shallgeshwindigkeit von Gasen 1. Aufgabenstellung 1.1 Bestimmen Sie die Shallgeshwindigkeit in Luft und vorgegebener Gase. 1. Berehnen Sie die zugehörigen Adiabatenexponenten. 1.3 Überprüfen Sie den
Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik
Leistungskurs Physik (Bayern): Abiturprüfung 2002 Aufgabe III Atomphysik 1. Röntgenstrahlung und Compton-Effekt a) Je nah Entstehung untersheidet man bei Röntgenstrahlung u. a. zwishen Bremsstrahlung,
Dopplereffekt. 1 Bewegte Quelle. Thomas Kuster. 18. Mai Herleitung der Gleichung
Dopplereffekt Thomas Kuster 18. Mai 2007 1 Bewegte Quelle 1.1 Herleitung der Gleihung Variablen: v Q : Geshwindigkeit des Velofahrer (Ethan), wird gesuht v B : Geshwindigkeit des Beobahters (Kamera steht)
LEITFÄHIGKEIT SCHWACHER ELEKTROLYTE
TU Clausthal Stand 8//3 LEITFÄHIGKEIT SCHWCHER ELEKTROLYTE. Versuhsplatz Komponenten: - Thermostat - Leitfähigkeitsmessgerät - Elektrode - Thermometer. llgemeines zum Versuh Der Widerstand eines Leiters
Leitfähigkeitsmessungen
1 Leitfähigkeitsmessungen Ziel des Versuhes Durh Leitfähigkeitsmessungen können Ionenkonzentrationen in Lösungen bis zu sehr geringen Werten (a 1-5 mol l -1 ) bestimmt werden, woraus sih die Anwendbarkeit
Optik. Bestimmung der zeitlichen Kohärenz und Linienbreite von Spektrallinien mit dem Michelson-Interferometer. LD Handblätter Physik P5.3.4.
Optik Wellenoptik Mihelson-Interferometer LD Handblätter Physik P5.3.4.4 Versuhsziele Bestimmung der zeitlihen Kohärenz und Linienbreite von Spektrallinien mit dem Mihelson-Interferometer Bestimmung der
Übung 6 - Musterlösung
Experimentaphysik für Lehramtskandidaten und Meteoroogen 6. Mai 00 Übungsgruppeneiter: Heiko Dumih Übung 6 - Musterösung Aufgabe 5: Kupfereiter Cu-Leiter: Länge =.5m, Eektronenadung q =.60 0 9 C, Leitungseektronendihte
Darstellungstheorie der Lorentz-Gruppe
Kai Walter 29. Juli 2008 Inhaltsverzeihnis 1 Einführung 2 2 Lie-Algebra der Lorentz-Gruppe 2 2.1 Minkowski-Raum............................. 2 2.2 Lorentz-Transformation......................... 3 2.3
11d Mathematik Stefan Krissel. Nullstellen
d Mathematik..009 Stefan Krissel D E R Z W E I T E S C H R I T T B E I D E R F U N K T I O N S U N T E R S U C H U N G : Nullstellen Der zweite Shritt bei der Untersuhung von Funktionen ist die Untersuhung
Magnetostatik. Ströme und Lorentzkraft
Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme 3. Käfte auf bewegte Ladungen im Magnetfeld i. Käfte im Magnetfeld Loentzkaft ii. Käfte zwishen Leiten iii. Kaft auf eine bewegte Ladungen i.
T7 - Bestimmung der Oberflächenspannung homologer wässriger Alkohollösungen (Traubesche Regel)
T7 - Bestimmung der Oberflähenspannung homologer wässriger Alkohollösungen (Traubeshe Regel) Aufgaben:. Messung der Oberflähenspannung von vershieden konzentrierten wässrigen Lösungen der homologen Alkohole
8 Euklidische Vektorräume und Fourierreihen
Mathematik für Ingenieure II, SS 9 Dienstag 7.7 $Id: fourier.te,v 1.6 9/7/7 13:: hk Ep $ $Id: diff.te,v 1. 9/7/7 16:13:53 hk Ep $ 8 Euklidische Vektorräume und Fourierreihen 8.4 Anwendungen auf Differentialgleichungen
Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 8
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 212/1 Vorlesung 8 Integration über ebene Bereiche Wir betrachten einen regulären Bereich in der x-y Ebene, der einfach zusammenhängend ist.
DIPLOMARBEIT. Grundlagen der Strömungssimulation. -einfache Beispiele unter ANSYS- -experimentelle Validierung- Amre EL-Kaddousi Matrikel-Nr.
DIPLOMARBEIT -einfahe Beispiele unter ANSYS- -- Matrikel-Nr.:35074 Matrikel-Nr.:350804 FH Düsseldorf, Kameier, Josef-Gokeln-Str. 9, D-40474 Düsseldorf Thema einer Diplomarbeit für Herrn Amre El-Kaddousi
Städtisches Gymnasium Wermelskirchen, Fachkonferenz Physik Leistungsbewertung
Städtishes Gymnasium Wermelskirhen, Fahkonferenz Physik C Beispiel einer Klausur SEK II inl. Erwartungshorizont Q Physik Grundkurs. Klausur 0.0.04 Thema: Dopplereffekt, Shwingkreis Name: Aufgabe : Doppler-Effekt
Grundbegriffe: Wellen, Phasen- und Gruppengeschwindigkeit, Doppler-Effekt, Piezoelektrischer
M13 ULTRASCHALL PHYSIKALISCHE GRUNDLAGEN Grundbegriffe: Wellen, Phasen- und Gruppengeshwindigkeit, Doppler-Effekt, Piezoelektrisher Effekt. o Shallwellen sind mehanishe Wellen, welhe sih in Körpern aufgrund
Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)
Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben
Physik. Lichtgeschwindigkeit
hysik Lihtgeshwindigkeit Messung der Lihtgeshwindigkeit in Versuhsaufbau Empfänger s Spiegel Sender l osition 0 d Abb. Versuhsdurhführung Die Spiegel werden auf die osition 0 m geshoben und die hase mit
Kundtsche Röhre. ρ = Dichte des Festkörpers. K = Kompressionsmodul
Kundtshe Röhre Stihworte: Shallgeshwindigkeit, Adiabatenexonent κ, Freiheitsgrade, Stehende Welle, Relexion von Wellen 1 Grundlagen Eine Shallwelle breitet sih in Lut oder einem anderen Gas in Form einer
Lichtgeschwindigkeit
Vorbereitung Lihtgeshwindigkeit Stefan Shierle Versuhsdatum: 13. 12. 2011 Inhaltsverzeihnis 1 Drehspiegelmethode 2 1.1 Vorbereitung auf den Versuh......................... 2 1.2 Justierung der Apparatur
Michelson-Versuche ohne Lorentz-Kontraktion
Miheson-Versuhe ohne Lorentz-Kontraktion Horst P. H. Meher, Potsdam Zusammenfassung Der Miheson-Versuh (MV) und seine zahreihen Wiederhoungen sowie Varianten und Modifikationen iefern mit ihren Nuresutaten
Erweiterte spezielle Relativitätstheorie
Das Mihelson-Morley-Experiment als Shlüssel zur Vereinheitlihung von spezieller Relativitätstheorie und Äthertheorie von Andreas Varesi Münhen, 7. Februar 2005 von 30 Abstrat Mit Hilfe des Mihelson-Morley-Experiments
Relativitätstheorie. Relativitätstheorie 345. Um das Jahr 1600. Um das Jahr 1900. Um das Jahr 2000. Wie wird es im Jahr 2200 aussehen?
Relatiitätstheorie Zeitreisen Reisen in die Vergangenheit oder Zukunft sind beliebte Themen für Siene- Fition-Romane. Darin lassen sih mit Hilfe on Zeitmashinen Personen in beliebige Epohen ersetzen. Man
Spezielle Relativitätstheorie
Spezielle Relativitätstheorie Skript zur Vorlesung von Apl. Prof. Jörg Main Berbeitung von Sebastian Boblest Vorläufige Version SS 2011 1. Institut für Theoretishe Physik Universität Stuttgart Pfaffenwaldring
17. KONTEXTSENSITIVE SPRACHEN
17. KONTEXTSENSITIVE SPRACHEN HAUPTERGEBNIS: KS = ERW = NSPACE(O(n)) REK Das heisst: Kontextsensitive Grammatiken und Grammatiken vom Erweiterungstyp haben die gleihe Beshreibungsmähtigkeit. Kontextsensitive
Parameter- und Kurvenintegrale
KAPITEL 6 Parameter- und Kurvenintegrale 1. Parameterintegrale Typishe Beispiele fur Parameterintegrale sind sogenannte spezielle Funktionen wie die Gamma-Funktion Γx : oder auh die Besselfunktionen J
$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln
$Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der
numerische Berechnungen von Wurzeln
numerische Berechnungen von Wurzeln. a) Berechne x = 7 mit dem Newtonverfahren und dem Startwert x = 4. Mache die Probe nach jedem Iterationsschritt. b) h sei eine kleine Zahl, d.h. h. Wir suchen einen
Weiterführende Aufgaben zu chemischen Gleichgewichten
Weiterführende Aufgaben zu hemishen Gleihgewihten Fahshule für Tehnik Suhe nah Ruhe, aber durh das Gleihgewiht, niht durh den Stillstand deiner Tätigkeiten. Friedrih Shiller Der Shlüssel zur Gelassenheit
Ferienkurs Experimentalphysik Musterlösung Probeklausur
Ferienkurs Experimentalphysik 1 2012 Musterlösung Probeklausur 1. Atwoodshe Fallmashine Betrahten Sie die abgebildete Atwoodshe Fallmashine. Der die Massen m 1 und m 2 Abbildung 1: Atwoodshe Fallmashine
Prinzipiell die gleichen Regeln wie bei Bruchzahlen! z.b. zum Addieren und Subtrahieren: Erweitern auf den Hauptnenner
Gmnasium Stein Grundwissenkatalog Mathematik Jahrgangsstufe 8 Wissen/Können Rehnen mit Bruhtermen (Grundrehenarten) Lösen von Bruhgleihungen Einfaher Spezialfall: Auflösen von Formeln Funktionen Zur Angabe
Versuch 1 Bestimmung der Dichte einer Flüssigkeit
Versuh 1 Bestiung der Dihte einer Flüssigkeit Versuh 1 Bestiung der Dihte einer Flüssigkeit Dihteessung it de digitalen Dihteeßgerät nah DIN 51757 ( Verfahren D ) Die Dihte ρ ist eine wihtige und vielfah
Zur Berechnung von ψ-werten für Baukonstruktionen im Bereich bodenberührter Bauteile
Ao. Univ. Prof. ipl.-in. r. tehn. Klaus Kreč, Büro für Bauphysik, Shönber am Kamp, Österreih raft, 24. 8. 2009 Zur Berehnun von ψ-werten für Baukonstruktionen im Bereih bodenberührter Bauteile I. Vorbemerkun
Algorithmen auf Sequenzen
Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 5 Approximative Textsuhe Weseite zur Vorlesung http://ls11-www.s.tu-dortmund.de/people/rahmann/teahing/ss2008/algorithmenaufsequenzen
Wellengleichung Für die Fourier-transformierten Felder lauten die Maxwell-Gleichungen (XI.1) in Abwesenheit von externen Ladungsträgern
XII.2.4 Dispersion und Absorption Der Einfahheit halber wird im Weiteren nur der Fall eines homogenen isotropen Mediums diskutiert. Dieses wird durh eine dielektrishe Funktion ɛ() harakterisiert, sowie
Zyklische Ungleichungen in 3 Variablen und Wege der Symmetrisierung
Zyklishe Ungleihungen in Varilen und Wege der Symmetrisierung Yimin Ge August 006 Symmetrishe Ungleihungen hen gegenüber zyklishen Ungleihungen mehrere Vorteile. Einerseits kann man ohne Beshänkung der
Klausuraufgaben, Prüfungsleistung 06/08, Wirtschaftsmathematik, Betriebswirtschaft
Studiengang Modul Art der Leistung Klausur-Kennzeihen Betriebswirtshat Wirtshatsmathematik Prüungsleistung Datum.6.8 BB-WMT-P 86 Bezüglih der Anertigung Ihrer Arbeit sind olgende Hinweise verbindlih: Verwenden
Schriftliche Abiturprüfung 2005 Sachsen-Anhalt Physik 13 n (Leistungskursniveau)
Shriftlihe Abiturprüfung 5 Sahsen-Anhalt Physik 3 n (Leistungskursnieau) Thea G: Untersuhungen on Bewegungen Betrahtungen zur Relatiität Die Huygens'she Theorie on der Ausbreitung einer Welle erlangt nah
