Theoretische Physik III (Elektrodynamik)

Größe: px
Ab Seite anzeigen:

Download "Theoretische Physik III (Elektrodynamik)"

Transkript

1 Theoretishe Physik III (Elektrodynamik) Prof. Dr. Th. Feldmann 8. Juni 03 Kurzzusammenfassung Vorlesung 6 vom.6.03 Impulserhaltung Analog zur Energieerhaltung leiten wir nun Kontinuitätsgleihung für Impulsdihte her. Ausgangspunkt ist Änderung des Impulses der geladenen Materie durh Lorentzkraft, dp ( m = F dt = q E + v ) ( B = d 3 x ρe + ) j B d 3 x t p m ( x, t) () Die beiden Terme shreiben wir wieder mit Maxwell-Gleihung um ρ E = (div D) E j, B = [ roth ] td B Weiterhin t D B = t ( D B) D t B = t ( D B) + D (rot E) Zusammengefasst ergibt sih somit t p m = [ E (div D) B (rot H) t( D B) D (rot E) Wenn wir die zeitlihe Änderung der Impulsdihte des elmg. Feldes mit t p f := ( ) t D B ] () (3) identifizieren, und einen Term H (divb) = 0 addieren, damit das Ergebnis symmetrish in elektrishen und magnetishen Feldern aussieht, ergibt sih t [ p m + p f ] = [ ] E (divd) + H (divb) B (roth) D (rote) (4) Drei unabhängige Gleihungen für drei unabhängig erhaltene Impulskomponenten.

2 Form einer Kontinuitätsgleihung? Zeige, dass sih rehte Seite als Divergenz einer Impulstromdihte shreiben lässt. Dazu soll in der Übung überprüft werden, dass t [ p m + p f ] i = j T ij, j mit T ij = [ E i D j + H i B j ] δ ij ( E D + H B) (5) Die Größe T ij heisst Maxwellsher-Spannungstensor. Anmerkung: Im Vakuum ist E = D und B = H, und somit p f = ( ) E B = S (ɛ = µ = ) Beispiel: Energiebilanz für ebene Welle (linear pol.) Für die elektrishen und magnetishen Felder haben wir die Zeitabhängigkeit E( x, t) = E 0 ɛ sin( k x ωt) (E 0 k A 0 ) B( x, t) = E 0 k ɛ k sin( k x ωt) Daraus lässt sih der Poynting-Vektor direkt berehnen S( x, t) = E B = E 0 ɛ ( k ɛ) k sin ( k x ωt) Doppeltes Kreuzprodukt ergibt ɛ ( k ɛ) = k ( ɛ) ɛ ( k ɛ) = k, und somit S( x, t) = E 0 k k sin ( k x ωt) Poynting-Vektor zeigt in Rihtung der Wellenausbreitung ( e k = k/k) Betrag der Energiedihte oszilliert periodish mit sin (..). Im zeitlihen (bzw. räumlihen) Mittel ergibt sih (mit ϕ = k x ωt) S = E 0 π π 0 dϕ sin ϕ = E 0 8π Die Energiestromdihte der elektromagnetishen Welle ist also proportional zum Amplitudenquadrat E 0 und zur Lihtgeshwindigkeit. Die lokale Energiedihte der elektromagnetishen Welle berehnet sih analog aus ω f ( x, t) = 8π ( E + B ) = ( E 8π 0 sin ϕ + E0 sin ϕ ) = E 0 sin ϕ

3 Im Mittel haben wir wieder ω f = E 0/8π, und somit S = e k ω f, (Vegleih: j = v q) d.h. die elektromagnetishe Welle transportiert (im Mittel) die Energie mit Lihtgeshwindigkeit in Rihtung von e k. Wir können für diesen Fall auh explizit das Poynting-Theorem nahprüfen, t ω f = ω E 0 π os ϕ sin ϕ k=ω/ = S = ( k ek ) E 0 π os ϕ sin ϕ Die analoge Diskussion für die Impulsbilanz erfolgt in den Übungen. Elektromagnetishe Strahlung von lokalisierten Quellen Wir hatten bisher als elementare Wellenmoden ebene Wellen mit festem Wellenvektor k betrahtet. Anshaulih (vgl. Wasserwellen) entspriht dies einer Idealisierung, bei der die Quelle entweder unendlih weit entfernt oder unendlih ausgedehnt ist. Für lokalisierte (z.b. punktförmige) Quellen erwarten wir eher so etwas wie Kugelwellen, die radial von der Quelle ausghen ( Skizze) Mathematish entspriht der letzte Fall der Lösung der inhomogenen Wellengleihung mit einem räumlih lokalisierten Quellterm, U( x, t) = f( x, t). Führe zunähst Fourier-Transformation bezüglih der Zeitabhängigkeit durh, U( x, t) + π Ũ( x, ω) e iωt, f( x, t) + π f( x, ω) e iωt (6) Dann gilt mit t e iωt = iω e iωt und t e iωt = ω e iωt, dass + ] U( x, t) = [ ω π e iωt Ũ( x, ω) (7) Mit k = ω/ lautet die Wellengleihung für die Fourier-Transformierten also ( + k ) Ũ( x, ω) = f( x, ω) (8) und für k = 0 ergibt sih als Spezialfall wieder die bekannte Poissongleihung. Spezielle Lösungen für k 0 lassen sih wieder mit Hilfe der Greenshen Funktion konstruieren, welhe folgende DGL löst, ( + k ) G k ( x, x ) = δ (3) ( x x ) (9) wobei shon bekannt ist, dass G k=0 ( x, x ) = x x (0) 3

4 O.B.d.A. (Translationsinvarianz) können wir die Quelle in den Ursprung setzen ( x = 0), und erhalten so ein kugelsymmetrishes Problem, so dass r r (r G k (r)) + k G k (r) = δ (3) ( x) Wir lösen zunähst die DGL für r = x 0, so dass ( r + k ) (r G k (r)) = 0 rg k = α e ikr + β e ikr Für allgemeine Abstände r = x x entspriht das zwei unabhängigen Lösungen G ± k ( x x ) x x e±i k x x () Die allgemeine Lösung ergibt sih dann durh Überlagerung und die Forderung, dass G 0 das bekannte Ergebnis liefert, G k = a + G + k + a G k mit a + + a = G 0 = Wie sieht der zeitlihe Zusammenhang zwishen f( x, t) und U( x, t) aus? x x Spezielle Lösung für Ũ aus Greensher Funktion Ũ ± ( x, ω) = d 3 x G ± k ( x, x ) f( x, ω) (3) Damit spezielle Lösung für U durh Fourier-(Rük-)Transformation + U ± ( x, t) = π e iωt d 3 x x x e±i k x x f( x, ω) ( ) = d 3 x x x π f( x, ω) e iω t x x = d 3 x x x f( x, t = t x x ) (4) Beispiel: periodishe Störung an festem Ort x = 0 f( x, t) := f 0 os(ω 0 t) δ (3) ( x ) U ± ( x, t) = f 0, r os ( ω 0 (t r ) ) Maxima breiten sih gemäß r = ±t mit Lihtgeshw. in radialer Rihtung aus. U + beshreibt radial auslaufenden Kugelwellen mit () t = t r < t retardiert Entspriht physikalish kausaler Situation: Ursahe f(t ) vor Wirkung U + (t). 4

5 U entspriht radial auslaufenden Kugelwellen mit t = t + r > t avaniert Allg. Lsg. durh Überlagerung ( Huygenshes Prinzip in der Wellenoptik) Z.B. für skalares Potential in Lorentz-Eihung (Lösung von φ = ρ) φ ret. ( x, t) = d 3 x x x ρ( x, t = t x x ) zu vergleihen mit instantantem Coulomb-Potential (t = t ) in Coulomb-Eihung. 5

Theoretische Physik III (Elektrodynamik)

Theoretische Physik III (Elektrodynamik) Theoretishe Physik III (Elektrodynamik) Prof. Dr. Th. eldmann. Juni 203 Kurzzusammenfassung Vorlesung 3 vom 28.5.203 5. Zeitabhängige elder, Elektromagnetishe Strahlung Bisher: Elektrostatik und Magnetostatik

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesh 7. März 200 Inhaltsverzeihnis Wellen. Wellen im Vakuum........................... 2.. Lösung der Wellengleihung................. 2..2 Energietransport / Impuls

Mehr

Elektrodynamische Potentiale

Elektrodynamische Potentiale G Elektrodynamishe Potentiale 2003 Franz Wegner Universität Heidelberg 20 Elektrodynamishe Potentiale, Eihtransformationen In der Elektrostatik haben wir bereits das elektrishe Potential Φ kennengelernt,

Mehr

IX.3 Potentiale und Felder einer bewegten Punktladung

IX.3 Potentiale und Felder einer bewegten Punktladung N.BORGHINI Elektrodynamik einer Punktladung Theoretishe Physik IV IX.3 Potentiale und Felder einer bewegten Punktladung Dieser Abshnitt beginnt mit der Berehnung der Potentiale und Felder, die durh eine

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 25 Gabriele Semino, Alexander Wolf, Thomas Maier sblatt 4 Elektromagnetishe Wellen und spezielle Relativitätstheorie Aufgabe : Leistung eines Herzshen Dipols

Mehr

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE Kapitel 9: Relativistishe Elektrodynamik Vorlesung für Studenten der Tehnishen Physik Helmut Nowotny Tehnishe Universität Wien Institut für Theoretishe Physik 7.,

Mehr

Übungen zur Elektrodynamik

Übungen zur Elektrodynamik Übungen zur Elektrodynamik Blatt, T3: Elektrodynamik, Kurs 7 Professor: H. Ruhl, Übungen: B. King, N. Moshüring, N. Elkina, C. Klier, F.Deutshmann, V. Paulish, A. Kapfer, S. Luest Lösungen: 4.6. - 8.6.3

Mehr

Relativistisch kovariante Formulierung der Elektrodynamik

Relativistisch kovariante Formulierung der Elektrodynamik KAPITEL III Relativistish kovariante Formulierung der Elektrodynamik Die Spezielle Relativitätstheorie wurde gerade entwikelt, um die Konstanz der Lihtgeshwindigkeit im Vakuum in allen Inertialsystemen

Mehr

Das Eichprinzip in der Elektrodynamik

Das Eichprinzip in der Elektrodynamik Das Eihprinzip in der Elektrodynamik Seminarvortrag von Florian Niolai Die Maxwellgleihungen (mikroskopish) E + 1 B = 0 B = 0 B = 4π j + 1 E E = 4πϱ Direkt aus den MWG folgt, dass sih die elektrishen und

Mehr

Theoretische Physik C - Zusammenfassung

Theoretische Physik C - Zusammenfassung Theoretishe Physik C - Zusammenfassung Diese Zusammenfassung erhebt keinen Anspruh auf Vollständigkeit oder Korrektheit. Solltet ihr Fehler finden oder Ergänzungen haben, teilt sie mir bitte mit: [email protected]

Mehr

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte)

Aufgabe K5: Kurzfragen (9 1 = 9 Punkte) Aufgabe K5: Kurzfragen (9 = 9 Punkte) Beantworten Sie nur, was gefragt ist. (a) Wie transformiert das Vektorpotential bzw. das magnetische Feld unter Eichtransformationen? Wie ist die Coulomb-Eichung definiert?

Mehr

Lehrstuhl für Technische Elektrophysik Technische Universität München

Lehrstuhl für Technische Elektrophysik Technische Universität München Lehrstuhl für Technische Elektrophysik Technische Universität München Tutorübungen zu "Elektromagnetische Feldtheorie II" (Prof. Wachutka) SS9 Blatt 1 Aufgabe: Ebene Wellen Im Vakuum, daß heißt die Leitfähigkeit

Mehr

Aufgabe 1. Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr

Aufgabe 1. Elektromagnetische Felder und Wellen: Lösung zur Klausur Frühjahr Elektromagnetishe Felder und Wellen: zur Klausur Frühjahr 1 1 Aufgabe 1 Bei einem ebenen Plattenkondensator habe jede der parallel im Abstand d angeordneten Metallplatten die Flähe A. Eine der Platten

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

Klassische Theoretische Physik III WS 2014/ D Leiterschleifen: (15 Punkte)

Klassische Theoretische Physik III WS 2014/ D Leiterschleifen: (15 Punkte) Karlsruher Institut für Tehnologie Institut für Theorie der Kondensierten Materie Klassishe Theoretishe Physik III WS 2014/2015 Prof. Dr. A. Shnirman Blatt 7 Dr. B. Narozhny Lösungen 1. 2D Leitershleifen:

Mehr

Die Liénard-Wiechert-Potentiale

Die Liénard-Wiechert-Potentiale Die Liénard-Wiehert-Potentiale Hendrik van Hees 26. Februar 28 Alternative Herleitung der retardierten Green-Funktion In der vorigen Vorlesung haben wir hergeleitet, dass die elektromagnetishen Potentiale

Mehr

4. Ausbreitung elektromagnetischer Wellenfelder in Hohlleitern

4. Ausbreitung elektromagnetischer Wellenfelder in Hohlleitern 4. Ausbreitung elektromagnetisher Wellenfelder in ohlleitern Weil das Modell Lihtstrahl nur bestimmte Aspekte der Lihtausbreitung korrekt wiedergibt, wurde zur Erklärung der Aberration zusätzlih zur Lihtgeshwindigkeit

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen. 7. Vorlesung Nadja Regner, Thomas Schmierer, Gunnar Spieß, Peter Gilch

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen. 7. Vorlesung Nadja Regner, Thomas Schmierer, Gunnar Spieß, Peter Gilch PN Einführung in die Eperimentalphsik für Chemiker und Biologen 7. Vorlesung.6.7 Nadja Regner, Thomas Shmierer, Gunnar Spieß, Peter Gilh Lehrstuhl für BioMolekulare Optik Department für Phsik Ludwig-Maimilians-Universität

Mehr

Ferienkurs Elektrodynamik

Ferienkurs Elektrodynamik Ferienkurs Elektrodynamik Zusammenfassung Zeitabhängige Maxwellgleichungen Erhaltungsgrößen Retardierte Potentiale 7. März Bernhard Frank Bisher sind in der Elektro- und Magnetostatik folgende Gesetze

Mehr

Elektrodynamische Wellen

Elektrodynamische Wellen Elektrodynamische Wellen Hannah Vogel 23.01.2017 Hannah Vogel Elektrodynamische Wellen 23.01.2017 1 / 33 Inhaltsverzeichnis 1 Elektrische und Magnetische Kräfte und Felder 2 Die Maxwell schen Gleichungen

Mehr

Einführung in die theoretische Physik II Sommersemester 2015

Einführung in die theoretische Physik II Sommersemester 2015 Einführung in die theoretische Physik II Sommersemester 25 [email protected] Ausgewählte Aufgaben zur Klausurvorbereitung Lösungshinweise Aufgabe : Elektrostatik Betrachten Sie eine geladene

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommersemester 2015 Gabriele Semino, Alexander Wolf, Thomas Maier Probeklausur Aufgabe 1: Kupfermünze 4 Punkte) Die alte, von 1793 bis 1837 geprägte Pennymünze in den USA

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Tehnologie Institut für Theorie der Kondensierten Materie Übungen zur Klassishen Theoretishen Physik III (Theorie C Elektrodynamik) WS 12-13 Prof. Dr. Alexander Mirlin Musterlösung:

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel Karlsruhe, 22. Oktober 204 Institut für Analysis KIT University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz

Mehr

32. Lebensdauer von Myonen 5+5 = 10 Punkte

32. Lebensdauer von Myonen 5+5 = 10 Punkte PD. Dr. R. Klesse, Prof. Dr. A. Shadshneider S. Bittihn, C. von Krühten Wintersemester 2016/2017 Theoretishe Physik in 2 Semestern I Musterlösung zu den Übungen 9 und 10 www.thp.uni-koeln.de/ rk/tpi 16.html

Mehr

8. Potentiale und Felder zeitabhängiger Ladungs- und Stromverteilungen 8.1 Retardierte Potentiale

8. Potentiale und Felder zeitabhängiger Ladungs- und Stromverteilungen 8.1 Retardierte Potentiale 8. Potentiale und Felde zeitabhängige adungs- und Stomveteilungen 8. Retadiete Potentiale Kapitel 4.3: Maxwellgleihungen können duh Einfühung von skalaem Potential ( t, ) Mit und Vektopotential A(, t)

Mehr

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes

X.3.1 Energiedichte und -stromdichte des elektromagnetischen Feldes X.3 Energie und Impuls des elektromagnetischen Feldes 169 X.3 Energie und Impuls des elektromagnetischen Feldes Genau wie mechanische Systeme trägt das elektromagnetische Feld Energie ( X.3.1 und Impuls

Mehr

Angewandte Mathematik - Probeklausur SS 10 - Prof. Scheltho. 1. Berechnen Sie die Richtungsableitung der Funktion. f(x; y) = 1 xy. D v (f) = grad f ~v

Angewandte Mathematik - Probeklausur SS 10 - Prof. Scheltho. 1. Berechnen Sie die Richtungsableitung der Funktion. f(x; y) = 1 xy. D v (f) = grad f ~v Angewandte Mathematik - Probeklausur SS 0 - Prof. Sheltho. Berehnen Sie die Rihtungsableitung der Funktion f(x; y) = xy im Punkt ~x 0 = (x 0 ; y 0 ) = (; 3) in Rihtung des (bereits normierten) Vektors

Mehr

Elektrodynamik und klassische Feldtheorie. Jun.-Prof. Harvey B. Meyer Institut für Kernphysik Johannes Gutenberg Universität Mainz

Elektrodynamik und klassische Feldtheorie. Jun.-Prof. Harvey B. Meyer Institut für Kernphysik Johannes Gutenberg Universität Mainz Elektrodynamik und klassishe Feldtheorie Jun.-Prof. Harvey B. Meyer Institut für Kernphysik Johannes Gutenberg Universität Mainz Wahlpflihtfah (Theorie 5) Wintersemester 2011-2012 Kapitel 1 Einführung

Mehr

Die Relativität elektrischer und magnetischer

Die Relativität elektrischer und magnetischer Die Relativität elektrisher und magnetisher Felder Beitrag von Norbert H. L. Koster zum Postgrade Leture Advanes (and Surprises) in Eletrodynamis - Fortshritte (und Überrashendes) in der Elektrodynamik,

Mehr

2. Wellenausbreitung

2. Wellenausbreitung 2. Wellenausbreitung Die Wellengleihung beshreibt die Bewegung des Stabes: 2 u t 2 =2 2 u x 2 Für die eindeutige Festlegung der Lösung müssen zusätzlih Anfangsbedingungen und Randbedingungen angegeben

Mehr

Klassische Theoretische Physik III (Elektrodynamik)

Klassische Theoretische Physik III (Elektrodynamik) WiSe 017/18 Klassische Theoretische Physik III (Elektrodynamik Vorlesung: Prof. Dr. D. Zeppenfeld Übung: Dr. M. Sekulla Übungsblatt 10 Ausgabe: Fr, 1.01.18 Abgabe: Fr, 19.01.17 Besprechung: Mi, 4.01.18

Mehr

2. Vorlesung Partielle Differentialgleichungen

2. Vorlesung Partielle Differentialgleichungen 2. Vorlesung Partielle Differentialgleichungen Wolfgang Reichel 2.Transatlantische Vorlesung aus Oaxaca, Mexiko, 20. Oktober 2010 Institut für Analysis KIT University of the State of Baden-Wuerttemberg

Mehr

Kapitel 2 Kovariante vierdimensionale Formulierungen

Kapitel 2 Kovariante vierdimensionale Formulierungen Kapitel Kovariante vierdimensionale Formulierungen Kovariante vierdimensionale Formulierungen.1 Ko- und kontravariante Tensoren... 39.1.1 Definitionen... 39.1. Rehenregeln... 43.1.3 Differentialoperatoren...

Mehr

6 Rotation und der Satz von Stokes

6 Rotation und der Satz von Stokes $Id: rotation.tex,v 1.8 216/1/11 13:46:38 hk Exp $ 6 Rotation und der Satz von Stokes 6.3 Vektorpotentiale und harmonishe Funktionen In 4.Satz 2 hatten wir gesehen das ein auf einem einfah zusammenhängenden

Mehr

Magnetostatik Aufgabe Abb

Magnetostatik Aufgabe Abb 78 3. Magnetostatik 3.2.2 Aufgabe 3.2.2 Abb. 3.. Eine stromdurhflossene, ebene Leitershleife erzeugt eine magnetishe Induktion B(r). Das Stromelement bei P wehselwirkt mit dem von anderen Stromelementen

Mehr

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert.

Vektoren werden addiert, bzw. subtrahiert, indem man die einander entsprechenden Komponenten addiert bzw. subtrahiert. R. Brinkmann http://brinkmann-du.de Seite.9. Vektoren im kartesishen Koordinatensystem Rehengesetze für Vektoren in Koordinatendarstellung Addition und Subtraktion von Vektoren: Vektoren werden addiert,

Mehr

1 Elektromagnetische Wellen im Vakuum

1 Elektromagnetische Wellen im Vakuum Technische Universität München Christian Neumann Ferienkurs Elektrodynamik orlesung Donnerstag SS 9 Elektromagnetische Wellen im akuum Zunächst einige grundlegende Eigenschaften von elektromagnetischen

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astronomie Auf dem Hügel 71 [email protected] Website: www.astro.uni-bonn.de/tp-l

Mehr

Musterlösung Nachholsemestrale Ex

Musterlösung Nachholsemestrale Ex Musterlösung Nahholsemestrale Ex 2.4.2008 Musterlösung Nahholsemestrale Ex 2.4.2008 2 Aufgabe Wir berehnen zuerst den Ort des abarishen Punktes, d.h. seinen Abstand r a vom Erdmittelpunkt. Das von Erde

Mehr

Vorlesung 17. Quantisierung des elektromagnetischen Feldes

Vorlesung 17. Quantisierung des elektromagnetischen Feldes Vorlesung 17 Quantisierung des elektromagnetischen Feldes Wir wissen, dass man das elektromagnetische Feld als Wellen oder auch als Teilchen die Photonen beschreiben kann. Die Verbindung zwischen Wellen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 45: Gesucht ist die Schnittmenge der beiden Zylinder Übungen ur Ingenieur-Mathematik III WS 2/2 Blatt..22 Aufgabe 45: Gesuht ist die Shnittmenge der beiden Zlinder 2 + 2 =, 2 + 2 =. (i Zeigen Sie, dass die Shnittmenge aus wei geshlossenen Kurven besteht

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

IX.2 Multipolentwicklung

IX.2 Multipolentwicklung IX. Multipolentwicklung 153 IX. Multipolentwicklung Ähnlich der in Abschn. III.3 studierten Entwicklung des elektrostatischen Skalarpotentials Φ( r) einer Ladungsverteilung ρ el. als Summe der Potentiale

Mehr

Ferienkurs Teil III Elektrodynamik

Ferienkurs Teil III Elektrodynamik Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................

Mehr

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und

Übungsblatt 11. PHYS1100 Grundkurs I (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, und Übungsblatt 11 PHYS11 Grundkurs I Physik, Wirtshaftsphysik, Physik Lehramt Othmar Marti, [email protected]. 1. 6 und 3. 1. 6 1 Aufgaben 1. In Röhrenfernsehgeräten werden Elektronen typisherweise

Mehr

Schallwellen II. Krystian Gaus. Wintersemester 2012/2013

Schallwellen II. Krystian Gaus. Wintersemester 2012/2013 Shallwellen II Krystian Gaus Wintersemester 01/013 Erinnerung. ρ = ρ 0 + ρ ist die Gasdihte, p = p 0 + p der Gasdruk und u = ũ die Gasgeshwindigkeit. Dabei sind p, ρ, ũ kleine Amplituden-Störungen. ist

Mehr

7.5 Relativistische Bewegungsgleichung

7.5 Relativistische Bewegungsgleichung 7.5. RELATIVISTISCHE BEWEGUNGSGLEICHUNG 7 7.5 Relativistishe Bewegungsgleihung Das Ziel ieses Abshnittes ist es, ie Bewegungsgleihung er Klassishen Mehanik an ie relativistishe Kinematik anzupassen. Ausgangspunkt

Mehr

Lösung 10 Klassische Theoretische Physik I WS 15/16

Lösung 10 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung Klassische Theoretische Physik I WS 5/6 Prof. Dr. G. Schön Punkte Sebastian Zanker, Daniel endler Besprechung

Mehr

Theoretische Physik 2 (Theoretische Mechanik)

Theoretische Physik 2 (Theoretische Mechanik) Theoretische Physik 2 (Theoretische Mechanik Prof. Dr. Th. Feldmann 21. Januar 2014 Kurzzusammenfassung Vorlesung 23 vom 21.1.2014 Satz von Liouville Der Fluß eines Hamilton schen Systems im Phasenraum

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Auf diesem Übungsblatt verwenden wir die folgenden Notation:

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS Auf diesem Übungsblatt verwenden wir die folgenden Notation: Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Übungen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik) WS 12-13 Prof. Dr. Alexander Mirlin Blatt 8

Mehr

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen

Theoretischen Physik II SS 2007 Klausur I - Aufgaben und Lösungen Theoretischen Physik II SS 7 Klausur I - Aufgaben und Lösungen Aufgabe Elektrostatik Im Mittelpunkt einer leitenden und geerdeten Hohlkugel RadiusR) befindet sich eine kleine Kugel mit homogener Ladungsverteilung

Mehr

Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2

Klasse ST13a FrSe 14 ungr. Serie 16 (Potenz und Taylorreihen) a) Bestimmen Sie die Grenzen des Konvergenzbereichs der Potenzreihe: 3 k (x 4) k (3k 2)2 Klasse STa FrSe 4 ungr MAE Serie 6 Potenz und Taylorreihen Aufgabe a Bestimmen Sie die Grenzen des Konvergenzbereihs der Potenzreihe: p b Entwikeln Sie die Funktion f vier Summanden. k k 4 k k k in eine

Mehr

Das zeitabhängige Elektromagnetische Feld. Elektromagnetische Wellen

Das zeitabhängige Elektromagnetische Feld. Elektromagnetische Wellen Kapitel 4 Das zeitabhängige Elektromagnetische Feld. Elektromagnetische Wellen Nach Untersuchung des elektrostatischen und magnetostatischen Feldes in den letzen Kapiteln, kehren wir jetzt zum allgemeinen

Mehr

Ferienkurs Experimentalphysik Musterlösung Probeklausur

Ferienkurs Experimentalphysik Musterlösung Probeklausur Ferienkurs Experimentalphysik 1 2012 Musterlösung Probeklausur 1. Atwoodshe Fallmashine Betrahten Sie die abgebildete Atwoodshe Fallmashine. Der die Massen m 1 und m 2 Abbildung 1: Atwoodshe Fallmashine

Mehr

Experimentalphysik 2

Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Sommer 2014 Vorlesung 4 Thema: Elektromagnetische Schwingungen, elektromagnetische Wellen und Spezielle Relativitätstheorie Technische Universität München 1 Fakultät für

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

Wellen und Dipolstrahlung

Wellen und Dipolstrahlung Wellen und Dipolstrahlung Florian Hrubesch. März 00 Maxwellgleichungen a) Leiten Sie aus den Maxwellgleichungen im Vakuum die Wellengleichung im Vakuum her. Zeigen Sie, dass E, B und k senkrecht aufeinander

Mehr

X.4 Elektromagnetische Wellen im Vakuum

X.4 Elektromagnetische Wellen im Vakuum X.4 Elektromagnetische Wellen im Vakuum 173 X.4 Elektromagnetische Wellen im Vakuum In Abwesenheit von Quellen, ρ el. = 0 j el. = 0, nehmen die Bewegungsgleichungen (X.9) (X.11) für die elektromagnetischen

Mehr

Aufgabe 1 (2+8=10 Punkte)

Aufgabe 1 (2+8=10 Punkte) Klausur zu Theoretische Physik 3 Elektrodynamik 21. März 217 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 6 Aufgaben mit insgesamt 5 Punkten. Die Klausur ist

Mehr

Ferienkurs der Experimentalphysik II Musterlösung Übung 3

Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Ferienkurs der Experimentalphysik II Musterlösung Übung 3 Michael Mittermair 29. August 213 1 Aufgabe 1 Wie groß ist die Leistung, die von einem geladenen Teilchen mit der Ladung q abgestrahlt wird, das

Mehr

XII. Elektromagnetische Wellen in Materie

XII. Elektromagnetische Wellen in Materie XII. Elektromagnetische Wellen in Materie Unten den wichtigsten Lösungen der makroskopischen Maxwell-Gleichungen (XI.1) in Materie sind die (fortschreitenden) Wellen. Um die zugehörigen Wellengleichungen

Mehr

Elektromagnetische Feldtheorie 2

Elektromagnetische Feldtheorie 2 Diplom-Vorprüfung Elektrotechnik und Informationstechnik Termin Sommersemester 08 Elektromagnetische Feldtheorie 2 Montag, 28. 07. 2008, 9:00 10:00 Uhr Zur Beachtung: Zugelassene Hilfsmittel: Originalskript

Mehr

20 Elektrodynamische Potentiale, Electrodynamic Potentials

20 Elektrodynamische Potentiale, Electrodynamic Potentials G Elektrodynamishe Potentiale Eletrodynami Potentials 2003 Franz Wegner Universität Heidelberg 20 Elektrodynamishe Potentiale, Eihtransformationen In der Elektrostatik haben wir bereits das elektrishe

Mehr

Wellengleichung Für die Fourier-transformierten Felder lauten die Maxwell-Gleichungen (XI.1) in Abwesenheit von externen Ladungsträgern

Wellengleichung Für die Fourier-transformierten Felder lauten die Maxwell-Gleichungen (XI.1) in Abwesenheit von externen Ladungsträgern XII.2.4 Dispersion und Absorption Der Einfahheit halber wird im Weiteren nur der Fall eines homogenen isotropen Mediums diskutiert. Dieses wird durh eine dielektrishe Funktion ɛ() harakterisiert, sowie

Mehr

KLASSISCHE ELEKTRODYNAMIK

KLASSISCHE ELEKTRODYNAMIK KLASSISCHE ELEKTRODYNAMIK Frühjahrsemester 2009 Matthias R. Gaberdiel Institut für Theoretishe Physik Hönggerberg, KIT 23.1 ETH Zürih CH-8093 Zürih Email: [email protected] Contents 1 Einleitung

Mehr

Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen

Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen Aufgaben zur Experimentalphysik II: Elektromagnetische Schwingungen und Wellen Musterlösung William Hefter - 10/09/009 1. Elektromagnetische Schwingungen 1. Die dafür benötigte Zeit ist t = T 4, wobei

Mehr

11. David Bohm und die Implizite Ordnung

11. David Bohm und die Implizite Ordnung David Bohm und die Implizite Ordnung Mathematisher Anhang 1 11 David Bohm und die Implizite Ordnung Mathematisher Anhang Streng stetig, streng kausal, streng lokal Relativitätstheorie In der speziellen

Mehr

Einführung in die Grundlagen der Stringtheorie

Einführung in die Grundlagen der Stringtheorie Einführung in die Grundlagen der Stringtheorie Patrik Mangat Juni 11 Inhaltsverzeihnis 1 Der relativistishe String 1 Quantisierung des relativistishen Strings 18 Zusammenfassung In der vorliegenden Einführung

Mehr

Lichtgeschwindigkeit

Lichtgeschwindigkeit Vorbereitung Lihtgeshwindigkeit Carsten Röttele 2. Dezember 20 Inhaltsverzeihnis Drehspiegelmethode 2. Vorbereitung auf den Versuh......................... 2.2 Justierung der Apparatur und Messung...................

Mehr

16 Elektromagnetische Wellen

16 Elektromagnetische Wellen 16 Elektromagnetische Wellen In den folgenden Kapiteln werden wir uns verschiedenen zeitabhängigen Phänomenen zuwenden. Zunächst werden wir uns mit elektromagnetischen Wellen beschäftigen und sehen, dass

Mehr

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt

Q 1. d 2 e x. welche den Zusammenhang zwischen Stromdichte und Ladungsdichte beschreibt. Da die Stromdichte hier nur eine x-komponente besitzt, gilt Elektromagnetische Felder Wellen: Lösung zur Klausur Herbst 999 Aufgabe Das Potential einer Punktladungen Q am Ort r lautet V { r} = Q 4πɛɛ 0 r r Hier soll das Potential einer gegebenen Raumladung ρ v

Mehr

a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile.

a) Zeigen Sie, dass es sich um ein Orthonormalsystem handelt und diskutieren Sie die geraden und ungeraden Anteile. Elektromagnetische Wellen 141372 Wintersemester 2016/2017 Prof. Thomas Mussenbrock ID 1/131 Website: http://www.ei.rub.de/studium/lehrveranstaltungen/694/ Übungsaufgaben Aufgabe 1 Diskutieren Sie den Helmholtz-Zerlegungssatz.

Mehr

12. Lagrange-Formalismus III

12. Lagrange-Formalismus III Übungen zur T: Theoretishe Mehanik, SoSe3 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45. Lagrange-Formalismus III Dr. James Gray [email protected] Übung.: Eine Gitarrensaite Wir betrahten

Mehr

24 Herleitung der Maxwell-Gleichungen

24 Herleitung der Maxwell-Gleichungen 24 Herleitung der Maxwell-Gleichungen In dieser Vorlesung werden wir die Maxwell-Gleichungen aus rein theoretischen Erwägungen herleiten. Dabei muß der Begriff Herleitung allerdings mit Vorsicht betrachtet

Mehr

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN

PHYSIK FÜR MASCHINENBAU SCHWINGUNGEN UND WELLEN 1 PHYSIK FÜR MASCHINENBAU SCHWINUNEN UND WELLEN Vorstellung: Professor Kilian Singer und Dr. Sam Dawkins (Kursmaterie teilweise von Dr. Saskia Kraft-Bermuth) EINFÜHRUN Diese Vorlesung behandelt ein in

Mehr

6 Bilanz - Gleichungen

6 Bilanz - Gleichungen 36 II. Allgemeine Grundlagen der Maxwell-Theorie 6 Bilanz - Gleichungen 6.1 Bilanz der elektromagnetischen Energie Durchflutungs- und Induktionsgesetz werden in folgender Weise miteinander kombiniert:

Mehr

Fourier-Transformation

Fourier-Transformation Fourier-ransformation Im Folgenden werden die schon bekannten Eigenschaften der Fourier-Reihen zur Darstellung periodischer Funktionenn zusammengefasst und dann auf beliebige Funktionen verallgemeinert.

Mehr

5 Relativistische Mechanik

5 Relativistische Mechanik 5 Relativistishe ehanik Nah dem Relativitätsprinzip müssen die Naturgesetze, also insbesondere die Gesetze der ehanik, in jedem IS die gleihe Form annehmen. Zur Formulierung der Impulserhaltung etwa benötigt

Mehr