4.13. Magnetische Suszeptibilität

Größe: px
Ab Seite anzeigen:

Download "4.13. Magnetische Suszeptibilität"

Transkript

1 4.13 Magnetische Suszeptibilität Magnetische Suszeptibilität Ziel Ziele des Versuchs sind die Auseinandersetzung mit den unterschiedlichen Formen des Magnetismus, sowie die Bestimmung der magnetischen Suszeptibilität einiger Materialien. Hinweise zur Vorbereitung Die Antworten auf diese Fragen sollten Sie vor der Versuchdurchführung wissen. Sie sind die Grundlage für das Gespräch mit Ihrer Tutorin/Ihrem Tutor vor dem Versuch. Informationen zu diesen Themen erhalten Sie in der unten angegebenen Literatur. Was ist ein Elektromagnet? Wie hängen die magnetische Feldstärke H, die magnetische Flussdichte B und der magnetische Fluss Φ zusammen? Was ist die magnetische Suszeptibilität? Was versteht man unter Dia-, Para-, Ferro-, Ferri- und Antiferromagnetismus? Wie kommt es zu Ferromagnetismus? Wie funktioniert eine Hall-Sonde? Wie funktioniert eine gouysche Waage? Abbildung : Foto des Versuchsaufbaus.

2 Versuche zur Elektrizitätslehre Zubehör Elektromagnet (Windungszahl n Magnet =2 833) mit zylindrischen Polschuhen und veränderbarem Polschuhabstand; maximale Stromstärke für Langzeitbetrieb I max = 4A Kraftsensor Hall-Sonde auf Verschiebetisch mit zugehöriger Abstandsskala Sensor-CASSY mit zwei Eingängen zur Aufnahme der Messwerte durch den Kraftsensor und die Hall-Sonde Hochleistungs-Netzgerät für den Elektromagneten PC für die Steuerung des Netzgerätes, sowie für die Aufnahme der Messwerte durch das CASSY-Modul Frequenzgenerator und Oszilloskop zur Entmagnetisierung der Polschuhe Stoffproben verschiedener Materialien in kleinen Plastikröhrchen (Masse leer 1 g, Füllmenge ca. 0.7mL), Küvetten (Schichtdicke: 2 mm) oder als Plättchen: Mangan(II)chlorid MnCl 2 (magnetische Suszeptibilität χ = )[Lid04] Kupfer Cu (Kupfer ist diamagnetisch. 1 ) Kupfer(II)chlorid-Dihydrat CuCl 2 2H 2 O (magnetische Suszeptibilität χ = )[Lid04] pyrolytischer Graphit C Wasser H 2 O Waage zur Bestimmung der Masse der einzelnen Proben Schieblehre zum Ausmessen der Probenplättchen zwei Abstandshalter aus Messing zur Einstellung des Polschuhabstandes (7 mm und 10 mm) 1 Es ist dabei keineswegs selbstverständlich, dass ein elektrisch leitfähiges Material wie Kupfer diamagnetisches Verhalten zeigt. Aufgrund der Leitungselektronen würde man eigentlich Paramagnetismus erwarten, was bei den meisten Metallen auch zu finden ist. Kupfer, Silber und Gold bilden hier jedoch aufgrund ihrer besonderen Elektronenkonfiguration eine Ausnahme. Eine genauere Erläuterung würde aber an dieser Stelle den Rahmen sprengen.

3 4.13 Magnetische Suszeptibilität 559 Grundlagen Magnetische Suszeptibilität Die magnetische Suszeptibilität χ ist eine materialabhängige Konstante, die beschreibt, wie gut sich ein Material magnetisieren lässt. Das bedeutet, die Suszeptibilität ist größer, je leichter sich die magnetischen Dipole eines Materials in Richtung eines externen Magnetfeldes ausrichten lassen. Mathematisch gesehen geht die Suszeptibilität daher in die Magnetisierung eines Stoffes ein. Mit der magnetischen Materialgleichung M = χ H (4.13.1) B = μ 0 ( H + M) (4.13.2) ergibt sich dann auch der Zusammenhang zur magnetischen Permeabilität μ r : B = μ 0 H(1 + χ) (4.13.3) Durch Vergleichen mit B = μ 0 μ r H erhält man μ r =1+χ (4.13.4) Kraft auf magnetischen Dipol im inhomogenen Magnetfeld Bringt man verschiedene Materialien in ein Magnetfeld ein, so können sie sich unterschiedlich verhalten. Die magnetischen Eigenschaften, die sie besitzen, bestimmen, wie ein Material magnetisiert wird. Man unterscheidet zwischen Dia-, Para-, Ferro-, Ferriund Antiferromagneten. Diese Kategorien unterscheiden sich in der magnetischen Suszeptibilität χ, diefür jedes Material eine spezifische Größe besitzt. Ist das externe Magnetfeld inhomogen, so stellt man fest, dass in jedem Fall eine Kraft auf die eingebrachte Probe wirkt. Diese Kraft ist abhängig davon, zu welcher magnetischen Kategorie das Material zählt, und damit auch von seiner magnetischen Suszeptibilität χ: F = M V grad B (4.13.5) mit M = Magnetisierung der Probe und V = Volumen der Probe. 2 MitHilfevon H = 1 μ B (4.13.6) und M = χ H (4.13.7)

4 Versuche zur Elektrizitätslehre ergibt sich daraus F = ( ) χ V μ B gradb (4.13.8) Dies ist die Gleichung, die die exakte Berechnung der Kraft ermöglicht. Experimentell ist es allerdings nicht so einfach, einzelne Komponenten zu bestimmen, deswegen muss sie dafür etwas angepasst werden. Zunächst soll hier die magnetische Flussdichte innerhalb der Probe bestimmt werden. Aus offensichtlichen Gründen ist das mit Hilfe einer Hall-Sonde nicht möglich. Man misst die Flussdichte also direkt neben der Probe in Luft und bedient sich dann erneut der Beziehung B = μ 0 μ rh. Hier gilt allerdings μr,luft 1. Für die Auswertung greift man also nicht auf die magnetische Flussdichte, sondern auf die magnetische Feldstärke zurück, da diese inner- und außerhalb der Probe gleich groß ist. 3 Wir erhalten also: ( ) χ F = V B gradb da μ r 1 (4.13.9) und weiter μ 0 F = χμ 0 V H grad H da B = μ0 μ r H ( ) In diesem Versuchsaufbau wird die Inhomogenität des Magnetfeldes außerdem dadurch erreicht, dass die Probe nicht komplett, sondern nur zu einem gewissen Anteil von einem homogenen Magnetfeld durchsetzt wird. Ein klassisches inhomogenes Magnetfeld brächte die Schwierigkeit mit sich, dass man nie genau weiß, wie groß der Gradient am Ort der Probe ist. Auch ein genaues Ausmessen des Magnetfeldes erweist sich als eher schwierig. Mit Hilfe der Methode des begrenzten homogenen Feldes hingegen sind die Beträge des Magnetfeldes an den Enden der Probe leicht zu bestimmen. Da ein Ende der Probe komplett vom Magnetfeld durchsetzt wird, entspricht die Flussdichte an dieser Stelle der des homogenen Magnetfeldes. Am anderen Ende sollte idealerweise gar kein Feld mehr vorliegen, so dass die Flussdichte an dieser Stelle Null ist. Dies vereinfacht die obige Rechnung folgendermaßen weiter: Zur Berechnung der Kraft F wird über das Probenvolumen V integriert, mit der Annahme, dass das Magnetfeld H innerhalb des Probenquerschnitts A jeweils konstant ist (der zweite Vorteil im Vergleich zu einem inhomogenen Magnetfeld, der die Berechnung 2 Gemeint ist hier nicht der sonst häufig verwendete skalare Gradient, sondern der Vektorgradient. Dieser entspricht mathematisch gesehen der Jacobi-Matrix des Vektors auf den er angewendet wird. Ein Eintrag der Jacobi-Matrix J ij ist die partielle Ableitung der i-ten Komponente des Vektors, nach seiner j-ten Koordinatenrichtung. In diesem Zusammenhang spielt der Vektorgradient allerdings keine größere Rolle, da uns nur die Differentiation in z-richtung interessiert, wie in den folgenden Schritten klar wird. Aus diesem Grund soll er, und auch die Jacobi-Matrix, hier nicht weiter erläutert werden. 3 Beachten Sie aber, dass Sie mit der Hall-Sonde natürlich trotzdem nur die magnetische Flussdichte messen können!

5 4.13 Magnetische Suszeptibilität 561 deutlich erleichtert). Es wird dabei nur in z-richtung integriert, da aus dieser Annahme auch folgt, dass das Magnetfeld in x- und y-richtung jeweils konstant bleibt. Gleiches gilt für den Vektorgradienten, bei dem nur die z-komponente betrachtet werden muss, und der daher zu dh dz wird. z2 F = χμ 0 A = χμ 0 A = χμ 0A 2 z 1 H(z2 ) H(z 1 ) H dh dz ( ) dz HdH ( ) [ H 2 (z 2 ) H 2 (z 1 ) ] ( ) Wie oben schon erwähnt, wird die Probe an einem Ende vom Magnetfeld maximaler Stärke durchsetzt. Das andere Ende sollte möglichst gar nicht im Magnetfeld liegen. Da dies aber bei der Länge der Probe fast nicht möglich ist, kann man auch in guter Näherung annehmen, dass H(z 2 ) H(z 1 ) gilt, und der zweite Summand in Gleichung ( ) daher vernachlässigbar ist. Wir bezeichnen dann H(z 2 ) nur noch mit H, dadiesder Stärke des angelegten Magnetfeldes entspricht. Es folgt: und daraus dann schließlich für die Suszeptibilität χ: Gouysche Waage F = χμ 0A H 2 ( ) 2 χ = 2F μ 0 AH 2 ( ) Die gouysche Waage nutzt genau diese Kraft aus, um die magnetische Suszeptibilität verschiedener Materialien bestimmen zu können. Der Aufbau in diesem Versuch entspricht dem Prinzip einer solchen Waage und ist in Abbildung zu sehen. Die gleichzeitige Aufnahme der Messwerte für die magnetische Flussdichte durch die Hall-Sonde, sowie der Werte der wirkenden Kraft durch den Kraft-Sensor, ermöglichen die Bestimmung der Abhängigkeit der beiden Größen voneinander. Die Proportionalitätskonstante, die daraus erhalten werden kann, enthält, nach obiger Gleichung ( ), die magnetische Suszeptibilität. Versuchsdurchführung 1. Schalten Sie das Netzgerät ein, fahren Sie den PC hoch und starten Sie das Programm Suszeptibilität.vi in LabVIEW zur Steuerung des Versuchsaufbaus. 2. Machen Sie sich mit der Bedienoberfläche vertraut und fragen Sie gegebenenfalls Ihren Betreuer bei noch offenen Fragen.

6 Versuche zur Elektrizitätslehre Abbildung : Skizze des Versuchsaufbaus. 3. Kalibrieren Sie zuallererst die Hall-Sonde, nachdem Sie diese über den PC auf tangentiale Messung umgeschaltet haben. Schließen Sie hierfür den Frequenzgenerator an den Magneten an und entmagnetisieren Sie den Kern durch langsames Herunterdrehen der Amplitude bei einer Frequenz von etwa 3 Hz, während Sie den Signalverlauf am Oszilloskop beobachten. Wählen Sie dann den momentanen Messwert der magnetischen Flussdichte als Nullpunkt. Das zurückbleibende Feld kann dem Erdmagnetfeld zugeordnet und in diesem Versuch vernachlässigt werden. Achten Sie darauf, im weiteren Versuchsverlauf keinen neuen Nullpunkt zu setzen, sonst müssen Sie die Kalibrierung wiederholen! 4. Untersuchen Sie nun das Magnetfeld des Elektromagneten in Abhängigkeit vom Magnetspulenstrom I Magnet. Schließen Sie dazu das Netzgerät an den Magneten an. Nehmen Sie für zehn verschiedene Werte von I Magnet die magnetische Flussdichte B auf. 5. Messen Sie dann das konstante Magnetfeld des Elektromagneten aus. Stellen Sie dazu das Netzgerät auf einen festen Wert ein und bringen Sie die Hall-Sonde zwischen die Polschuhe des Elektromagneten. 6. Bewegen Sie die Hall-Sonde langsam aus den Polschuhen heraus und beobachten Sie dabei die Werte für die magnetische Flussdichte auf dem PC. Nehmen Sie mit Hilfe der Abstandsskala Messungen in Schritten von 0.5cm vor. 7. Beurteilen Sie selbst, wann sich die Hall-Sonde weit genug außerhalb des Magnetfeldes befindet, um die Flussdichte an dieser Stelle im Verhältnis zur Flussdich-

7 4.13 Magnetische Suszeptibilität 563 te zwischen den Polschuhen vernachlässigen zu können. Notieren Sie sich Ihren Grenzwert. 8. Messen Sie die Kupferprobe mit Hilfe der Schieblehre aus. Notieren Sie sich die erhaltenen Werte. 9. Befestigen Sie die Probe am Kraftsensor. Achtung: Achten Sie dabei darauf, nicht unnötig viel Kraft auf den Sensor auszuüben, da dieser sehr empfindlich ist! 10. Stellen Sie sicher, dass die Probe möglichst nicht schwingt und setzen Sie anschließend die Anzeige des Kraftsensors am PC wieder auf null. 11. Stellen Sie eine Stromstärke I Magnet =0.5 A am Netzgerät ein und nehmen Sie die resultierenden Flussdichte- und Kraft-Messwerte vom PC auf. Die Messwerte werden vom Programm eigenständig gemittelt, um die deutlich auftretenden Schwankungen auszugleichen. 12. Wiederholen Sie Punkt 11 in Schritten von 0.5A für die Stromstärke I Magnet bis zu einer Maximalstromstärke I max =5A. 13. Stellen Sie das Netzgerät für den restlichen Versuch mit Hilfe des Programms am PC auf Remote Control. 14. Lösen Sie nun die Probe vorsichtig vom Kraftsensor und ersetzen Sie sie durch eine der verbleibenden Proben, nachdem sie auch diese ausgemessen haben. Achten Sie darauf, eventuell den Polschuhabstand mit Hilfe der Abstandshalter zu verändern, wenn sie eine Probe verwenden, die einen größeren Abstand benötigt. Vergessen Sie nicht, die Anzeige des Kraftsensors am PC anschließend wieder auf null zu stellen, sobald die Probe ruhig zwischen den Polschuhen hängt. 15. Verwenden Sie dann die Schaltfläche Sweep Control am PC. Stellen Sie 0 A und 5 A als Grenzen, sowie geeignete Werte für die Schrittweite und die Messdauer an jedem Punkt ein. Die von Ihnen gerade noch manuell vorgenommene Messung wird vom PC nun automatisch ausgeführt. 16. Wiederholen Sie die Punkte 14 bis 15 für drei weitere Stoffproben. Auswertung 1. Zeichnen Sie den Betrag der magnetischen Flussdichte als Funktion von I Magnet. 2. Zeichnen Sie den Betrag der magnetischen Flussdichte als Funktion des Abstands d von den Polschuhmitten. Markieren Sie den von Ihnen bestimmten Grenzwert, ab dem die im Theorieteil beschriebene Näherung angewendet werden kann. 3. Zeichnen Sie die auftretende Kraft auf die Stoffproben als Funktion der magnetischen Flussdichte B.

8 Versuche zur Elektrizitätslehre 4. Berechnen Sie die magnetische Suszeptibilität χ für alle getesteten Stoffproben. Achten Sie darauf, dass Sie im Falle von MnCl 2 und CuCl 2 2H 2 O nicht das Volumen des Gefäßes verwenden können, sondern das Volumen der Proben selbst erst berechnen müssen! Fragen und Aufgaben 1. Wie erklären Sie sich die deutlich stärkere Kraft, die während der Änderung des Magnetspulenstroms bei der Kupferprobe auftritt? Warum tritt sie nicht auch bei anderen Proben auf? 2. Ist die Flussdichte B wirklich eine lineare Funktion von I Magnet? Hinweis: Was ist eine Hystereseschleife? 3. In Abbildung sind die magnetischen Feldlinien eines Stabmagneten zu sehen. Abgebildet sind die magnetische Feldstärke H, die magnetische Flussdichte B,sowie die Magnetisierung M. Ordnen Sie zu und begründen Sie! Abbildung : Magnetische Feldlinien eines Stabmagneten [Rai06]. Ergänzende Informationen Alte Bezeichnungen Die Untersuchung magnetischer Phänomene hat eine lange Tradition und es haben sich viele Konventionen erhalten. Auch findet man insbesondere in älterer Literatur oft andere Bezeichnungen, wie z. B. magnetische Erregung für die magnetische Feldstärke H, magnetische Induktion für die magnetische Flussdichte B oder magnetischer Kraftfluss für den magnetischen Fluss Φ. Literaturhinweise [Dem06]

9 4.13 Magnetische Suszeptibilität 565 Literaturverzeichnis [Dem06] Demtröder, Wolfgang: Experimentalphysik 2 Elektrizität und Optik. Springer-Verlag, Berlin, 4. Auflage, [Lid04] Lide, David R. (editor): CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton London New York Washington, D.C., 85. edition, [Rai06] Raith, Wilhelm: Bergmann-Schaefer Lehrbuch der Experimentalphysik, Band II: Elektromagnetismus. Walter de Gruyter, Berlin, 9. Auflage, 2006.

5.13. Magnetische Suszeptibilität

5.13. Magnetische Suszeptibilität 5.13 Magnetische Suszeptibilität 579 5.13. Magnetische Suszeptibilität SICHERHEITSHINWEIS: Ziel Bei diesem Versuch werden starke Magnetfelder verwendet. Diese können bei Herzschrittmachern zu Fehlfunktionen

Mehr

E19 Magnetische Suszeptibilität

E19 Magnetische Suszeptibilität Aufgabenstellung: 1. Untersuchen Sie die räumliche Verteilung des Magnetfeldes eines Elektromagneten und dessen Abhängigkeit vom Spulenstrom. 2. Bestimmen Sie die magnetische Suszeptibilität vorgegebener

Mehr

v q,m Aufgabensammlung Experimentalphysik für ET

v q,m Aufgabensammlung Experimentalphysik für ET Experimentalphysik für ET Aufgabensammlung 1. E-Felder Auf einen Plattenkondensator mit quadratischen Platten der Kantenlänge a und dem Plattenabstand d werde die Ladung Q aufgebracht, bevor er vom Netz

Mehr

3. Magnetostatik 3.1. Grundbegriffe

3. Magnetostatik 3.1. Grundbegriffe 3. Magnetostatik 3.1. Grundbegriffe In der Natur existieren magnetische Felder. Es gibt allerdings keine Quellen des magnetischen Feldes, d. h. es wurden noch nie magnetischen Ladungen (magnetische Monopole)

Mehr

Hysteresekurve und magnetische Suszeptbilität

Hysteresekurve und magnetische Suszeptbilität M.Links & R.Garreis Hysteresekurve und magnetische Suszeptbilität Anfängerpraktikum SS 2013 Martin Link und Rebekka Garreis 10.06.2013 Universtität Konstanz bei Phillip Knappe 1 M.Links & R.Garreis Inhaltsverzeichnis

Mehr

Versuch 15 Dia- und Paramagnetismus

Versuch 15 Dia- und Paramagnetismus Physikalisches A-Praktikum Versuch 15 Dia- und Paramagnetismus Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 07.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

Oersteds Erkenntnis: Ströme erzeugen Magnetfelder

Oersteds Erkenntnis: Ströme erzeugen Magnetfelder Kapitel 8 Oersteds Erkenntnis: Ströme erzeugen Magnetfelder Im Jahre 1819 beobachtete der dänische Physiker Hans Christian Oersted (vgl. Abb. 8.1), dass sich Kompassnadeln ausrichten, wenn in ihrer Nähe

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Repetitionen Magnetismus

Repetitionen Magnetismus TECHNOLOGISCHE GRUNDLAGEN MAGNETISMUS Kapitel Repetitionen Magnetismus Θ = Θ l m = H I I N H µ µ = 0 r N B B = Φ A M agn. Fluss Φ Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1,

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Ein Kondensator besteht aus zwei horizontal angeordneten, quadratischen

Mehr

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla

Sofern der Stromdurchflossene Leiter Senkrecht zu den Feldlinien steht gilt: B ist die magnetische Flussdichte, sie hat die Einheit Tesla Magnetfelder und orentz-kraft Magnetfelder & magnetische Flussdichte a. Jeder stromdurchflossene eiter erzeugt ein Magnetfeld, die Richtung dieses Magnetfeldes hängt von der Fließrichtung des Stromes ab.

Mehr

Ph12c: Praktikum Hall-Effekt und Magnetfeldmessungen

Ph12c: Praktikum Hall-Effekt und Magnetfeldmessungen Ph12c: Praktikum Hall-Effekt und Magnetfeldmessungen Zu jedem Versuch wird von jedem Gruppenmitglied ein Versuchsprotokoll angefertigt Material, Aufbau mit Skizze, Durchführung, Messwerte, Auswertung,

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

d = 1, 5cm ) liegt eine Spannung von

d = 1, 5cm ) liegt eine Spannung von Aufgabe E-Feld Blau 1: Elektronen werden in einem Plattenkondensator von der Geschwindigkeit m v 0 s 0 auf die Geschwindigkeit beschleunigt. An den Platten (Abstand U 120V an. Wie groß ist v? = 1 d = 1,

Mehr

Permanentmagnetismus

Permanentmagnetismus 1. Der Begriff Der Begriff Magnetismus ist abgeleitet von der in Griechenland gelegenen Landschaft Magnesia ( ), in der man bereits in der Antike Eisenerz fand, das magnetische Eigenschaften besaß. Der

Mehr

10. Versuch: Schiefe Ebene

10. Versuch: Schiefe Ebene Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 10. Versuch: Schiefe Ebene In diesem Versuch untersuchen Sie Mechanik der schiefen Ebene, indem Sie mithilfe dem statischen und dynamischen

Mehr

PD Para- und Diamagnetismus

PD Para- und Diamagnetismus PD Para- und Diamagnetismus Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Magnetfeld in Materie............................ 2 1.2 Arten von Magnetismus...........................

Mehr

Magnetismus. Prof. DI Michael Steiner

Magnetismus. Prof. DI Michael Steiner Magnetismus Prof. DI Michael Steiner www.htl1-klagenfurt.at Magnetismus Natürlicher Künstlicher Magneteisenstein Magnetit Permanentmagnete Stabmagnet Ringmagnet Hufeisenmagnet Magnetnadel Temporäre Magnete

Mehr

Experiment: Der Ørsted-Versuch (1)

Experiment: Der Ørsted-Versuch (1) Seite 1 Experiment: Der Ørsted-Versuch (1) Versuchsziel: Versuchsaufbau/- zubehör: Der Zusammenhang zwischen Elektrizität und Magnetismus wird deutlich. Versuchsdurchführung: Versuchserklärung: Fließt

Mehr

Versuch 19 Dia- und Paramagnetismus

Versuch 19 Dia- und Paramagnetismus Physikalisches Praktikum Versuch 19 Dia- und Paramagnetismus Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 12.02.2007 Katharina Rabe Assistent: Tobias Liese

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

2. Magnetisches Feld Stationäre und zeitabhängige magnetische Felder.

2. Magnetisches Feld Stationäre und zeitabhängige magnetische Felder. Stationäre und zeitabhängige magnetische Felder. Themen: Begriff des magnetischen Feldes Kraftwirkungen im magnetischen Feld Magnetische Flussdichte und magnetische Feldstärke, magnetischer Fluss Materie

Mehr

III Elektrizität und Magnetismus

III Elektrizität und Magnetismus 20. Vorlesung EP III Elektrizität und Magnetismus 19. Magnetische Felder 20. Induktion Versuche: Diamagnetismus, Supraleiter Induktion Leiterschleife, bewegter Magnet Induktion mit Änderung der Fläche

Mehr

10. Spezielle Relativitätstheorie

10. Spezielle Relativitätstheorie 10. Spezielle Relativitätstheorie Die Masse eines Teilchens ist abhängig von seiner Geschwindigkeit. m = m = γ m γ = 1, 1 v c 0 = 1 1 β 1 m 0 v β = c v c c: Lichtgeschwindigkeit im Vakuum mo: Ruhemasse

Mehr

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 5 - Magnetfeld

PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 5 - Magnetfeld Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER Versuch: E 5 - Magnetfeld 1. Grundlagen Magnetfeld einer Kreisspule (magnetische Feldstärke, magnetische Induktion, Biot-Savartsches

Mehr

Physik 4 Praktikum Auswertung Hall-Effekt

Physik 4 Praktikum Auswertung Hall-Effekt Physik 4 Praktikum Auswertung Hall-Effekt Von J.W., I.G. 2014 Seite 1. Kurzfassung......... 2 2. Theorie.......... 2 2.1. Elektrischer Strom in Halbleitern..... 2 2.2. Hall-Effekt......... 3 3. Durchführung.........

Mehr

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum

V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:

Mehr

Schülerübungen zum Elektromagnetismus

Schülerübungen zum Elektromagnetismus Schülerübungen zum Elektromagnetismus Themen 1. Magnete 2. Magnetische Materialien 3. Die Polarität von Magneten 4. Der schwebende Magnet 5. Magnetisierung 6. Das Magnetfeld 7. Die Feldlinien des magnetischen

Mehr

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B

Aufgaben zu elektrischen und magnetischen Feldern (aus dem WWW) a) Feldstärke E b) magnetische Flussdichte B Aufgabe 73 (Elektrizitätslehre, Lorentzkraft) Elektronen treten mit der Geschwindigkeit 2,0 10 5 m in ein homogenes elektrisches Feld ein s und durchlaufen es auf einer Strecke von s = 20 cm. Die Polung

Mehr

M5 Viskosität von Flüssigkeiten

M5 Viskosität von Flüssigkeiten Christian Müller Jan Philipp Dietrich M5 Viskosität von Flüssigkeiten I. Dynamische Viskosität a) Erläuterung b) Berechnung der dynamischen Viskosität c) Fehlerrechnung II. Kinematische Viskosität a) Gerätekonstanten

Mehr

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann.

Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Expertengruppenarbeit Sonnenentfernung Das ist unsere Aufgabe: Wir sollen erarbeiten, wie man mit Hilfe der Mondentfernung die Entfernung zur Sonne bestimmen kann. Konkret ist Folgendes zu tun: Lesen Sie

Mehr

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete

Magnetisches Feld. Grunderscheinungen Magnetismus - Dauermagnete Magnetisches Feld Grunderscheinungen Magnetismus - Dauermagnete jeder drehbar gelagerte Magnet richtet sich in Nord-Süd-Richtung aus; Pol nach Norden heißt Nordpol jeder Magnet hat Nord- und Südpol; untrennbar

Mehr

FORSCHERBUCH Magnetismus

FORSCHERBUCH Magnetismus FORSCHERBUCH Magnetismus Von Name: Klasse: Station 1: Anziehung Abstoßung Versuche bei jedem der 4 Paare die Magneten so aneinander zu halten, dass sie sich a) anziehen. b) abstoßen. Was vermutest du?

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Magnetisches Feld Lernziel:

Mehr

Das magnetische Feld

Das magnetische Feld Das Magnetfeld wird durch Objekte erzeugt und wirkt gleichzeitig auf Objekte repräsentiert die Kraftwirkung aufgrund des physikalischen Phänomens Magnetismus ist gerichtet und wirkt vom Nordpol zum Südpol

Mehr

Arbeitsblatt 19: Lösen von Gleichungen Sportplatz

Arbeitsblatt 19: Lösen von Gleichungen Sportplatz Erläuterungen und Aufgaben Zeichenerklärung: [ ] - Drücke die entsprechende Taste des Graphikrechners! [ ] S - Drücke erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücke erst die Taste

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Dia- und Paramagnetismus

Dia- und Paramagnetismus Physikalisches Praktikum für das Hauptfach Physik Versuch 19 Dia- und Paramagnetismus Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Arbeitsblatt Name: Magnetismus Datum: 1. Kreuze die richtigen Aussagen an! 1.1 Es gibt positive und negative elektrische Ladungen. 1.2 Es gibt positive und negative magnetische Pole. 1.3 Es gibt einzelne

Mehr

Stromwaage - Protokoll zum Versuch

Stromwaage - Protokoll zum Versuch Naturwissenschaft Jan Hoppe Stromwaage - Protokoll zum Versuch Praktikumsbericht / -arbeit Grundpraktikum, SoSe 8 Jan Hoppe Protokoll zum Versuch: Stromwaage (16.5.8) 1. Ziel Die Kraft auf einen stromdurchflossenen

Mehr

Grundlagen der Elektrotechnik 1 am

Grundlagen der Elektrotechnik 1 am Name: Matrikelnummer: Studienfach: Grundlagen der Elektrotechnik 1 am 19.7.2017 Fachbereich Elektrotechnik und Informatik Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter zur Vorlesung Grundlagen

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010 Inhalt Freier Fall ohne Luftwiderstand... 1 Herleitung des Luftwiderstandes... 3 Freier Fall mit Luftwiderstand... 4 Quellen... 9 Lässt man einen Körper aus einer bestimmt Höhe runter fallen, so wird er

Mehr

2. Musterklausur in K1

2. Musterklausur in K1 Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Musterklausur in K Die Klausur stellt nur eine kleine Auswahl der möglichen Themen dar. Inhalt der Klausur kann aber der gesamte

Mehr

Versuch P5: Elektromagnetische Induktion

Versuch P5: Elektromagnetische Induktion Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Name Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden die

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden I Dr. Malte Persike persike@uni-mainz.de

Mehr

Sachunterricht - Kartei zum Magnetismus

Sachunterricht - Kartei zum Magnetismus Sachunterricht - Kartei zum Magnetismus Angeboten wird eine liebevoll bebilderte (Uli Römer) Sachunterrichtskartei zum Selbstausdruck. Sie eignet sich für den Einsatz in den Klassen 3-4. Inhalte der Kartei:

Mehr

5 Elektrizität und Magnetismus

5 Elektrizität und Magnetismus 5.1 Elektrische Ladung q Ursprung: Existenz von subatomaren Teilchen Proton: positive Ladung Elektron: negative Ladung besitzen jeweils eine Elementarladung e = 1.602 10 19 C (Coulomb) Ladung ist gequantelt

Mehr

Aufgaben. 2 Physikalische Grundlagen

Aufgaben. 2 Physikalische Grundlagen Der Verdampfungs- oder Kondensationspunkt jedes Stoffes ist von der Temperatur und dem Druck abhängig. Für jede Verdampfungstemperatur gibt es nur einen zugehörigen Verdampfungsdruck und für jeden Verdampfungsdruck

Mehr

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl

Mechanik. LD Handblätter Physik. Erzwungene harmonische und chaotische Drehschwingungen P1.5.3.4. Schwingungslehre Drehpendel nach Pohl YS 2013-08 Mechanik Schwingungslehre Drehpendel nach Pohl LD Handblätter Physik P1.5.3.4 Erzwungene harmonische und chaotische Drehschwingungen Aufzeichnung und Auswertung mit CASSY Versuchsziele Aufnahme

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A1 - Messung der Lichtgeschwindigkeit» Martin Wolf Betreuer: Dr. Beddies Mitarbeiter: Martin Helfrich

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Versuch 10: Siedediagramm

Versuch 10: Siedediagramm Versuch 10: Siedediagramm 1 Messung von Siedekurven binärer Stoffgemische 1. Theorie und Methode 1.1 Theorie Die Siedetemperatur eines Stoffes ist eine stoffspezifische Eigenschaft und hängt von der Größe

Mehr

Schulinternes Curriculum für das Fach Physik Klasse 8

Schulinternes Curriculum für das Fach Physik Klasse 8 Gesamtschule Brüggen. Schulinternes Curriculum für das Fach Physik Klasse 8 Unterrichtseinheit: Kraft und mechanische Energie Zeitbedarf: erstes Schulhalbjahr Skizze der Unterrichtseinheit und Schwerpunkte

Mehr

Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators

Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators Grundpraktikum der Physik Versuch Nr. 25 TRANSFORMATOR Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators 1 1. Einführung Für den Transport elektrischer Energie über weite Entfernungen

Mehr

Ph Oberstufe Einführung Magnetismus. Phänomenologie:

Ph Oberstufe Einführung Magnetismus. Phänomenologie: Ph Oberstufe Einführung Magnetismus Phänomenologie: o Es gibt natürliche Eisenmagnete o Kraft eindeutig von Gravitation und Elektrizität unterscheidbar (unabh. Ladung) o Zwei Magnete: Kraft anziehend und

Mehr

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter :

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter : Mathematik MB Übungsblatt Termin Lösungen Themen: Grundlagen Vektoren und LGS ( Aufgaben) DHBW STUTTGART WS / Termin SEITE VON Aufgabe (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden

Mehr

Elektromagnetische Felder und Wellen

Elektromagnetische Felder und Wellen Elektromagnetische Felder und Wellen Name : Matrikelnummer : Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Aufgabe 6: Aufgabe 7: Aufgabe 8: Aufgabe 9: Aufgabe 10: Aufgabe 11: Gesamtpunktzahl:

Mehr

1. Balkenwaage. Du erhältst folgende Information: Die Masse einer Büroklammer beträgt 1,33g.

1. Balkenwaage. Du erhältst folgende Information: Die Masse einer Büroklammer beträgt 1,33g. Nr: Name: 1. Balkenwaage Du bekommst ein Lineal (40cm) mit Loch in der Mitte, einen Nagel, einen Klebestreifen, Büroklammern, eine Beilagscheibe und einen Faden. Ein Stück Plastilin liegt bereit, Becher

Mehr

Physik, grundlegendes Anforderungsniveau

Physik, grundlegendes Anforderungsniveau Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

Funktionen mit mehreren Variablen. Voraussetzungen:

Funktionen mit mehreren Variablen. Voraussetzungen: Funktionen mit mehreren Variablen Voraussetzungen: Grundlegende Kenntnisse über Ableiten (Zu inden in dem Artikel Dierential und Integralrechnung au www.antigauss.de), sowie eine Vorstellung davon, was

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

Klassenarbeit Nr. 2. Mechanik (2), Elektrizitätslehre

Klassenarbeit Nr. 2. Mechanik (2), Elektrizitätslehre Klassenarbeit Nr. 2 Mechanik (2), Elektrizitätslehre 30.06.2015 Der GTR ist als Hilfsmittel gestattet, bitte alle Lösungen auf diesen Arbeitsbogen. Auf der letzten Seite ist Platz für Nebenrechnungen.

Mehr

Magnetismus Name: Datum:

Magnetismus Name: Datum: Magnetismus Name: Datum: Magnetismus Laufblatt Infos zur Postenarbeit: Es gibt Pflichtposten ( ) und freiwillige Posten ( ). Die einzelnen Posten werden in Partnerarbeit durchgearbeitet. Bei jedem Posten

Mehr

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( )

Abb. 5.10: Funktion und Tangentialebene im Punkt ( ) ( ) ( ) 3.) Die Zahlenwerte und in Gleichung (Def. 5.11) berechnen sich durch ( ) ( ) Abb. 5.0: Funktion und Tangentialebene im Punkt Aus der totalen Differenzierbarkeit folgt sowohl die partielle Differenzierbarkeit als auch die Stetigkeit von : Satz 5.2: Folgerungen der totalen Differenzierbarkeit

Mehr

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen

Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Ferienkurs Experimentalphysik II Elektrodynamik - Übungen Lennart Schmidt, Steffen Maurus 07.09.2011 Aufgabe 1: Leiten Sie aus der integralen Formulierung des Induktionsgesetzes, U ind = d dt A B da, (0.1)

Mehr

Dia- und Paramagnetismus. Brandner Hannes Schlatter Nicola

Dia- und Paramagnetismus. Brandner Hannes Schlatter Nicola Dia- und Paramagnetismus Brandner Hannes Schlatter Nicola Ursachen des magnetischen Moments eines freien Atoms Spin der Elektronen (paramagn.) Deren Bahndrehimpuls bezüglich ihrer Bewegung um den Kern

Mehr

316 - Magnetfeldmessungen

316 - Magnetfeldmessungen 316 - Magnetfeldmessungen 1. Aufgaben 1.1 Die magnetische Induktion B eines Elektromagneten auf der Polschuhachse ist mit einer Hall- Sonde in Abhängigkeit vom Magnetisierungsstrom für unterschiedliche

Mehr

Magnetismus- Lernstationen

Magnetismus- Lernstationen Magnetismus- Lernstationen Station 11: Was wird vom Magneten angezogen? Station 12: Wie viel Kraft hat ein Magnet? Station 13: Kann die Magnetkraft Stoffe durchdringen? Station 14: Hat ein Magnet an jeder

Mehr

Experimentelle Bestimmung der magnetischen Flussdichte

Experimentelle Bestimmung der magnetischen Flussdichte Experimentelle Bestimmung der magnetischen Flussdichte Vorversuch: Um die magnetische Flussdichte zu bestimmen führen wir einen Vorversuch durch um die Kräftewirkung im magnetischen Feld zu testen. B F

Mehr

Handbuch zu den Schlüsselexperimenten des KLP Physik Grundkurs Qualifikationsphase

Handbuch zu den Schlüsselexperimenten des KLP Physik Grundkurs Qualifikationsphase Handbuch zu den Schlüsselexperimenten des KLP Physik Grundkurs Qualifikationsphase Schlüsselexperiment 12: Generator 1. Bezug zu den Kompetenzen des Lehrplans Folgende Kompetenzerwartung mit direktem Bezug

Mehr

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 18. Magnetische Quadrupole

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 18. Magnetische Quadrupole Montag, 26.4.1999 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Fortgeschrittenen-Praktikum) zu Versuch 18 Magnetische Quadrupole 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische Grundlagen

Mehr

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient

Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Deskriptive Statistik Kapitel IX - Kontingenzkoeffizient Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de Agenda 1. Untersuchung der Abhängigkeit 2.

Mehr

E2: Wärmelehre und Elektromagnetismus 18. Vorlesung

E2: Wärmelehre und Elektromagnetismus 18. Vorlesung E2: Wärmelehre und Elektromagnetismus 18. Vorlesung 21.06.2018 Barlow-Rad Heute: Telefon nach Bell - Materie im Magnetfeld: Dia-, Para-, Ferromagnetismus - Supraleitung - Faradaysches Induktionsgesetz

Mehr

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe

Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, Karlsruhe Feldlinienbilder: nur die halbe Wahrheit! H. Hauptmann, F. Herrmann Abteilung für Didaktik der Physik, Universität, 76128 Karlsruhe Einleitung Ein Feldlinienbild ist wohl die am häufigsten benutzte Methode

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2005

1. Laboreinheit - Hardwarepraktikum SS 2005 1. Versuch: Gleichstromnetzwerk Ohmsches Gesetz Kirchhoffsche Regeln Gleichspannungsnetzwerke Widerstand Spannungsquelle Maschen A B 82 Ohm Abbildung 1 A1 Berechnen Sie für die angegebene Schaltung alle

Mehr

Schulversuchspraktikum. Lotte Bautzmann. Sommersemester. Klassenstufen 5 & 6. Elektrische Leitfähigkeit & magnetische Eigenschaften

Schulversuchspraktikum. Lotte Bautzmann. Sommersemester. Klassenstufen 5 & 6. Elektrische Leitfähigkeit & magnetische Eigenschaften Schulversuchspraktikum Lotte Bautzmann Sommersemester Klassenstufen 5 & 6 Elektrische Leitfähigkeit & magnetische Eigenschaften 1 Konzept und Ziele 1 Auf einen Blick: Dieses Protokoll umfasst Lehrer- sowie

Mehr

Magnetische Induktion

Magnetische Induktion Dr. Angela Fösel & Dipl. Phys. Tom Michler Revision: 12.10.2018 Abbildung 1: Historischer Induktionsapparat aus dem Physikunterricht Unter elektromagnetischer Induktion versteht man das Entstehen einer

Mehr

Zusammenstellung möglicher Aufgaben einer Lernerfolgskontrolle gegen Ende des Schuljahres der 9. Klassenstufe im Fach Physik

Zusammenstellung möglicher Aufgaben einer Lernerfolgskontrolle gegen Ende des Schuljahres der 9. Klassenstufe im Fach Physik Friedrich-Engels-Gymnasium Fachbereich PHYSIK Zusammenstellung möglicher Aufgaben einer Lernerfolgskontrolle gegen Ende des Schuljahres der 9. Klassenstufe im Fach Physik P1 Wege des Stroms 1. Stelle in

Mehr

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment: 4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld

Mehr

Physikalisches Anfaengerpraktikum. Hysteresie

Physikalisches Anfaengerpraktikum. Hysteresie Physikalisches Anfaengerpraktikum Hysteresie Ausarbeitung von Constantin Tomaras & David Weisgerber (Gruppe 10) Montag, 28. November 2005 email: Weisgerber@mytum.de 1 (1) Einleitung Eines der interessantesten

Mehr

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...

Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2005 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Magnetismus der Materie. Bernd Fercher David Schweiger

Magnetismus der Materie. Bernd Fercher David Schweiger Magnetismus der Materie Bernd Fercher David Schweiger Einleitung Erste Beobachtunge in China und Kleinasien Um 1100 Navigation von Schiffen Magnetismus wird durch Magnetfeld beschrieben dieses wird durch

Mehr

Rechenregeln für Summen

Rechenregeln für Summen Rechenregeln für Summen Im Umgang mit Summen sind gewisse Regeln zu beachten. 1 Summe gleicher Summanden Betrachten wir folgende Summe: x Hier enthält x keinen Summationsindex, d.h. es wird x einfach n-mal

Mehr

1. Thermodynamik magnetischer Systeme

1. Thermodynamik magnetischer Systeme 1. Thermodynamik magnetischer Systeme 1 1.1 Thermodynamische Potentiale 2 1.2 Magnetische Modellsysteme G. Kahl (Institut für Theoretische Physik) Statistische Physik II Kapitel 1 5. April 2013 1 / 15

Mehr

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen.

Das stationäre Magnetfeld Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. Das stationäre Magnetfeld 16 4 Stationäre Magnetfelder 4.1 Potentiale magnetischer Felder 4.1 Ein sehr langer Leiter mit dem Durchmesser D werde von einem Gleichstrom I durchflossen. a) Berechnen Sie mit

Mehr

Physik Klausur

Physik Klausur Physik Klausur 12.1 2 15. Januar 2003 Aufgaben Aufgabe 1 Ein Elektron wird mit der Geschwindigkeit v = 10 7 m s 1 von A aus unter 45 in ein begrenztes Magnetfeld geschossen. Der Geschwindigkeitsvektor

Mehr

Spannung und Stromstärke bei Reihen- und Parallelschaltung von Solarzellen

Spannung und Stromstärke bei Reihen- und Parallelschaltung von Solarzellen Spannung und Stromstärke bei Reihen- und ENT Schlüsselworte Sonnenenergie, Fotovoltaik, Solarzelle, Reihenschaltung, Parallelschaltung Prinzip Eine einzelne Solarzelle liefert nur eine Spannung von 0,5

Mehr

Materie im Magnetfeld

Materie im Magnetfeld . Stromschleifen - Permanentmagnet Materie im Magnetfeld EX-II SS007 = > µmag = I S ˆn S = a b µ bahn = e m L µ spin = e m S Stromschleife im Magnetfeld Magnetisierung inhomogenes Magnetfeld = D = µmag

Mehr

10 - Elementare Funktionen

10 - Elementare Funktionen Kapitel 1 Mathematische Grundlagen Seite 1 10 Elementare Funktionen Definition 10.1 (konstante Funktion) Konstante Funktionen sind nichts weiter als Parallelen zur xachse, wenn man ihren Graphen in das

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung

Klausur 12/1 Physik LK Elsenbruch Di (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung Klausur 12/1 Physik LK Elsenbruch Di 18.01.05 (4h) Thema: elektrische und magnetische Felder Hilfsmittel: Taschenrechner, Formelsammlung 1) Elektronen im elektrischen Querfeld. Die nebenstehende Skizze

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Blatt 2 WS 2014/2015 24.03.2015 Ferienkurs Experimentalphysik 1 ( ) - leicht ( ) - mittel

Mehr