Flüsse, Schnitte, bipartite Graphen
|
|
|
- Berndt Fleischer
- vor 9 Jahren
- Abrufe
Transkript
1 Flüsse, Schnitte, bipartite Graphen Vlad Popa
2 Inhaltsverzeihnis 1. Flussnetzwerke und Flüsse 1.1 Ford- Fulkerson 1.2 Edmond Karp 1.3 Dinic 2. Schnitte 3. Maximaler Fluss bei minimalen Kosten 4. Bipartite Graphen 4.1 Matchings 4.2 Minimal vertex cover 4.3 Minimal edge cover 4.4 Maximal independent set 4.5 Eigenschaften bipartiter Graphen 5. Aufgaben
3 Flussnetzwerke und Flüsse Definition: Ein Flussnetzwerk G=(V, E) ist ein gerichteter Graph, in dem jede Kante (u, v) ϵ E eine nichtnegative Kapazität c(u, v) >= 0 hat. Zwei Knoten spielen eine besondere Rolle: Quelle s, Senke t. Ein Fluss in G ist die Funktion f: VxV -> R, die folgende Bedingungen erfüllt: - Kapazitätsbeschränkung: f(u, v) <= c(u, v) - Asymmetrie: f(u, v) = - f(v, u) - Flusserhaltung: Bei einem Knoten muss der Zufluss gleich dem Abfluss sein. (Ausnahme: Quelle und Senke)
4 Kleines Beispiel Technische Universität München
5 1. Ford- Fulkerson Algorithmen
6 Ford- Fulkerson Algorithmus 1. Der Algorithmus sucht einen Pfad (Erweiterungspfad) vom Start- zum Zielknoten im Restnetzwerk G. 2. Der Fluss wird mit der kleinsten Kapazität, cmin, entlang des Pfades erhöht. 3. Der Fluss auf einer Kante (u, v) des Pfades wird folgendermaßen aktualisiert: f[u, v] = f[u, v] + cmin; f[v, u] = -f[u, v]; 4. Falls es noch einen Erweiterungspfad gibt springe wieder zu 1.
7 Ford-Fulkerson(G; q; s) 1 for alle Kanten (u, v) ϵ E 2 do f [u, v] = 0 3 f [v, u] = 0 4 while es existiert ein Pfad p von Q nach S im Restnetzwerk G 5 do 6 c (p) = min{c (u, v) : (u, v) gehört zu p} 7 for alle Kanten (u, v) von p 8 do f [u, v] = f [u, v] + c(p) 9 f [v, u] = -f [v, u]
8 1. Ford- Fulkerson 2. Edmond Karp Algorithmen
9 Edmonds- Karp Algorithmus Benutzt dieselbe Idee wie Ford- Fulkerson. Unterschied: Jedes mal wird der Erweiterungspfad durch eine Breitensuche im Restnetzwerk gesucht.
10 Beispiel Forts. Technische Universität München
11
12
13
14
15 1. Ford- Fulkerson 2. Edmond Karp 3. Dinic Algorithmen
16 Dinic Algorithmus 1. Man modifiziert das Netzwerk G, so dass im neuen Netzwerk G nur diejenigen Kanten bleiben, die auf einem optimalen Weg von s nach t führen. (Durch BFS). Es entsteht ein DAG. 2. Durch eine DFS kann man rekursiv den Fluss auf mehreren Pfaden aktualisieren: Sei P1: s ->...d1...-> n->... -> t P2: s ->...d1...-> n ->... -> t. => Wenn in n für P1 B Fluss kommt und mit C kann man insgesamt aufpumpen => für P2: C B Fluss 3. Wenn 2. den Fluss verändert beginne wieder mit 1.
17 Komplexität Ford- Fulkerson: Hängt stark von der Wahl des erweiternden Weges ab. Grundsätzlich ist hier die Komplexität O(E * flow)
18 Ford-Fulkerson(G; q; s) 1 for alle Kanten (u, v) ϵ E 2 do f [u, v] = 0 3 f [v, u] = 0 4 while es existiert ein Pfad p von Q nach S im Restnetzwerk G -> O(flow) 5 do 6 c (p) = min{c (u, v) : (u, v) gehört zu p} 7 for alle Kanten (u, v) von p -> O(E) 8 do f [u, v] = f [u, v] + c(p) 9 f [v, u] = -f [v, u]
19 Komplexität Ford- Fulkerson: Hängt stark von der Wahl des erweiternden Weges ab. Grundsätzlich ist hier die Komplexität O(E * flow) Edmond- Karp: O(V * E^2)
20 Komplexität Ford- Fulkerson: Hängt stark von der Wahl des erweiternden Weges ab. Grundsätzlich ist hier die Komplexität O(E * flow) Edmond- Karp: O(V * E^2) Dinic: O(V^2 * E)
21 Schnitte Definition: ein q- s- Schnitt ist eine Aufteilung des Graphen in zwei Mengen, wobei die Knoten q und s in verschiedenen Mengen liegen. Minimaler Schnitt: Schnitt, bei dem die Gesamtkapazität über den Schnitt minimal ist. (c (s, t) - minimal)
22 Äquivalenz: Maximaler Fluss minimaler Schnitt Wenn f ein Fluss in einem Flussnetzwerk G = (V, E) mit der Quelle s und der Senke t ist, dann sind die folgenden Bedingungen äquivalent: 1. f ist ein maximaler Fluss in G. 2. Das Restnetzwerk Gf enthält keine Erweiterungspfade. 3. Es gilt f = c(s, T) (für einen Schnitt (S, T) von G).
23 Pseudocode MinCut(G; q; s) Berechne maximalen Fluss Starte DFS von q im Restnetzwerk A = von q erreichbare Knoten return A, G \ A
24 Maximaler Fluss bei minimalen Kosten Jede Kante besitzt zusätzlich Kosten, die angeben, wie teuer es ist, eine Einheit Fluss über diese Kante zu leiten. f[u, v] < 0 => cost[u, v] = -cost[v, u]. Endziel: (u, v) ϵ E f[u, v] * cost[u, v] soll minimal sein.
25 Standardaufgabe Es gibt n Arbeiter und n Aufgaben, die gelöst werden müssen. Jeder Arbeiter hat eine Liste, in welcher für jede Aufgabe, die Zeit für ihre Bearbeitung angegeben wird. Gesucht wird die minimale Endzeit nachdem alle Aufgaben bearbeitet wurden.
26 Graphmodellierung Technische Universität München
27 Definition: Bipartite Graphen Ein Graph G = (V, E) heißt bipartit, genau dann wenn V=V1 U V2 und V1 V2 = { } und für jede Kante e existieren zwei Knoten v1 ϵ V1, v2 ϵ V2, so dass e={v1,v2}.
28 Definitionen: Sei G = (V, E) ein Graph. Matchings - M heißt Matching in G, falls M eine Teilmenge von E ist und alle Kanten in M paarweise disjunkt sind (kein Knoten ist zu mehr als einer Kante inzident) - M heißt perfektes Matching, falls jeder Knoten durch genau eine Kante aus M überdeckt ist. ( M = V /2) - M ist die Größe des Matchings.
29 Das Heiratsproblem Gegeben seien heiratswillige Damen und Herren. Jede Dame gibt an, mit welchem der Herren sie sich eventuell vermählen würde. Das Problem besteht nun darin, möglichst viele Damen so zu verheiraten, dass jede Dame einen Herren ihrer Wahl erhält, und dass selbstverständlich keine zwei Damen mit demselben Herrn verheiratet sind.
30 Minimal vertex cover Definition: Ein Vertex Cover ist eine Menge von Knoten in einem beliebigen Graph, wobei jede Kante zu wenigstens einem Knoten inzident ist. Ein Vertex Cover ist minimal genau dann wenn es die minimale Anzahl von Knoten hat. Normalerweise ist das ein NP- hartes Problem. Ist das auch für bipartite Graphen so?
31 Minimal vertex cover Definition: Ein Vertex Cover ist eine Menge von Knoten in einem beliebigen Graph, wobei jede Kante zu wenigstens einem Knoten inzident ist. Ein Vertex Cover ist minimal genau dann wenn es die minimale Anzahl von Knoten hat. Normalerweise ist das ein NP- hartes Problem. Ist das auch für bipartite Graphen so? Nein!
32 Minimal edge cover Definition: Ein Edge Cover ist eine Menge von Kanten in einem beliebigen Graphen, wobei jeder Knoten wenigstens eine Kante hat die zu ihm inzident ist. Ein Edge Cover ist minimal genau dann wenn es die minimale Anzahl von Kanten hat. Für ein bipartiter Graph entspricht er einem Matching.
33 Maximum independent Set Definition: Ein Independent Set ist eine Menge von Knoten in einem Graph, wo keine zwei Knoten durch eine Kante verbunden sind. Ein Independent Set ist genau dann maximal, wenn beim Einfügen eines beliebigen Knotens die Definition verletzt wird. Der Komplement eines solcher Menge ist immer ein vertex cover => Komplement eines Maximum Independent Sets ist ein Minimal Vertex Cover
34 Eigenschaften bipartiter Graphen Ein Graph ist bipartit wenn er keinen Zyklus ungerader Länge enthält. (er enthält keine Clique >= 3) Größe des minimum vertex covers = Größe des maximalen Matchings. (König s Theorem) Maximum independent set + maximaler Matching = V Größe des minimum edge covers = Größe des maximalen independent sets. Jeder bipartite Graph ist mit zwei Farben färbbar.
35 int match (int n) { mark[n] = 1; Algorithmus für maximalen Matching for (int i = 0; i < G[n].size(); ++ i) if (!d[g[n][i]]) { d[g[n][i]] = n; p[n] = G[n][i]; return 1; } for (int i = 0; i < G[n].size(); ++ i) if (mark[d[g[n][i]]]!= 1 && match(d[g[n][i]])) { d[g[n][i]] = n; p[nod] = G[n][i]; return 1; } } return 0;
36 Joc4 Felinare Strazi Critice Two Shortest Dijkstra, Dijkstra Dominoes Ghizi Paznici Algola Aufgaben
Flüsse, Schnitte, bipartite Graphen
Flüsse, chnitte, bipartite Graphen Matthias Hoffmann 5.5.009 Matthias Hoffmann Flüsse, chnitte, bipartite Graphen 5.5.009 / 48 Übersicht Einführung Beispiel Definitionen Ford-Fulkerson-Methode Beispiel
Flüsse in Netzwerken. Seminar über Algorithmen SoSe 2005. Mike Rohland & Julia Schenk
Flüsse in Netzwerken Seminar über Algorithmen SoSe 2005 Mike Rohland & Julia Schenk Inhalt Einführung Definition Maximale Flüsse Schnitte Restgraphen Zunehmende Wege Max-Fluss Min-Schnitt Theorem Ford-Fulkerson
Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.
Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.
Flüsse in Netzwerken
Proseminar Theoretische Informatik, Prof. Wolfgang Mulzer, SS 17 Flüsse in Netzwerken Zusammenfassung Gesa Behrends 24.06.2017 1 Einleitung Unterschiedliche technische Phänomene wie der Flüssigkeitsdurchfluss
3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson
3.4 Maximale Flüsse und der Algorithmus von Ford Fulkerson Definition 3.4.1 Die Aufgabe, zu jedem Netzwerk N = (s, t, V, E, c o ) mit n = V Knoten und m = E Kanten den Fluß f IR m mit maximalem Wert zu
Wiederholung zu Flüssen
Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:
Algorithmen und Datenstrukturen Kapitel 10
Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann [email protected] 6. Januar 2016 Frank Heitmann [email protected] 1/8 Flüsse Graphen Grundlagen Definition
Netzwerkfluß. Gegeben ist ein System von Wasserrohren: Die Kapazität jedes Rohres ist 3, 5 oder 8 l/s.
Netzwerkfluß (Folie, Seite 78 im Skript) Gegeben ist ein System von Wasserrohren: Quelle s t Senke Die Kapazität jedes Rohres ist, oder 8 l/s. Frage: Wieviel Wasser kann von der Quelle zur Senke fließen?
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Graphenalgorithmen Maximaler Fluss Einleitung Flussnetzwerke Ford-Fulkerson Fulkerson Methode Maximales bipartites Matching
Flüsse und Zuordnungen. Kapitel 6. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296
Kapitel 6 Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/19 227 / 296 Inhalt Inhalt 6 Flussnetzwerke Berechnung maximaler Flüsse Max-Flow-Min-Cut Matchings Peter Becker (H-BRS) Graphentheorie
Flüsse, Schnitte, Bipartite Graphen
Flüsse, Schnitte, Bipartite Graphen Sebastian Hahn 4. Juni 2013 Sebastian Hahn Flüsse, Schnitte, Bipartite Graphen 4. Juni 2013 1 / 48 Überblick Flussnetzwerke Ford-Fulkerson-Methode Edmonds-Karp-Strategie
8 Das Flussproblem für Netzwerke
8 Das Flussproblem für Netzwerke 8.1 Netzwerke mit Kapazitätsbeschränkung Definition 15 Ein Netzwerk N = (V, E, γ, q, s) besteht aus einem gerichteten Graph G = (V, E), einer Quelle q V und einer Senke
Inhalt. 1. Flußprobleme. 2. Matching. 3. Lineares Programmieren. 4. Ganzzahliges Programmieren. 5. NP-Vollständigkeit. 6. Approximationsalgorithmen
Effiziente Algorithmen Einführung 1 Inhalt 1. Flußprobleme 2. Matching. Lineares Programmieren 4. Ganzzahliges Programmieren 5. NP-Vollständigkeit 6. Approximationsalgorithmen 7. Backtracking und Branch-and-Bound
Vorlesung Diskrete Strukturen Transportnetze
Vorlesung Diskrete Strukturen Transportnetze Bernhard Ganter WS 2013/14 1 Transportnetze Gerichtete Graphen Ein schlingenloser gerichteter Graph ist ein Paar (V, A), wobei V eine beliebige Menge ist, deren
6. Flüsse und Zuordnungen
6. Flüsse und Zuordnungen Flußnetzwerke 6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über diese Kante pro Zeiteinheit transportiert
Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck. 10 Matching-Probleme
10 Matching-Probleme 10.1 Definition von Matching-Probleme Definition 21 [2-dimensionales Matching] Sei G = (V, E) ein ungerichteter Graph und E E. E ist ein Matching, wenn für alle Kantenpaare e 1, e
Flüsse und Schnitte von Graphen
Flüsse und Schnitte von Graphen Christian Koch Friedrich-Alexander-Universität Erlangen-Nürnberg 2. Juni 27 Christian Koch Flüsse und Schnitte 2. Juni 27 / 29 Gliederung Flüsse Allgemeines Maximaler Fluss
Formale Grundlagen der Informatik
Formale Grundlagen der Informatik / 2015 1 Die Elemente einer (endlichen) Menge sollen den Elementen einer zweiten, gleichmächtigen Menge zugeordnet werden Problemstellung Bipartite Graphen Zuordnungsprobleme
Anwendungen von Netzwerkfluss. Wojciech Polcwiartek Institut für Informatik FU Berlin
Anwendungen von Netzwerkfluss Wojciech Polcwiartek Institut für Informatik FU Berlin 13. 01. 2009 Gliederung Einführung Netzwerk, Fluss und Schnitt Max-Flow-Min-Cut Theorem Algorithmen zum Bestimmen vom
6 Flüsse und Matchings
6. Flüsse in Netzwerken Flußnetzwerke 6 Flüsse und Matchings In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über diese Kante pro Zeiteinheit transportiert werden
Algorithmische Graphentheorie
Algorithmische Graphentheorie Vorlesung 13: Flüsse und Zuordnungen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca [email protected] 9. Juni 2017 DURCHSATZ D(e) ist die maximale Flussmenge,
Bipartites Matching. Gegeben: Ein bipartiter, ungerichteter Graph (V 1, V 2, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität.
Netzwerkalgorithmen Bipartites Matching (Folie 90, Seite 80 im Skript) Gegeben: Ein bipartiter, ungerichteter Graph (V, V, E). Gesucht: Ein Matching (Paarung) maximaler Kardinalität. Ein Matching ist eine
Flüsse in Netzwerken
Skript zum Seminar Flüsse in Netzwerken WS 2008/09 David Meier Inhaltsverzeichnis 1 Einführende Definitionen und Beispiele 3 2 Schnitte in Flussnetzwerken 12 2.1 Maximaler s t Fluss..........................
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe 3. Elementare Graphalgorithmen und Anwendungen 4. Minimal spannende Bäume 5. Kürzeste Pfade 6. Traveling Salesman Problem 7. Flüsse
Bipartite Graphen. Beispiele
Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
Flüsse, Schnitte, bipartite Graphen
Flüsse, Schnitte, bipartite Graphen Thomas Fersch [email protected] 11.06.2010 Seminar "Hallo Welt!" für Fortgeschrittene 1 Übersicht Maximale Flüsse in Netzwerken Worum geht s? Lösung nach Ford-Fulkerson
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem
Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 6: Matchings und TSP-Problem Dipl-Math. Wolfgang Kinzner 4.4.2012 Kapitel 6: Matchings und TSP-Problem Matching und Matchingproblem Flussalgorithmus
KAPITEL 4 FLÜSSE IN NETZWERKEN
KAPITEL 4 FLÜSSE IN NETZWERKEN F. VALLENTIN, A. GUNDERT 1. Das Max-Flow-Min-Cut Theorem Es sei D = (V, A) ein gerichteter Graph, s, t V zwei Knoten. Wir nennen s Quelle und t Senke. Definition 1.1. Eine
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm
Klausur zum Modul Einführung in die Diskrete Mathematik
Klausur zum Modul Einführung in die Diskrete Mathematik 11.2.2014 Aufgabe 1 [10 Punkte] Sei G ein ungerichteter Graph, k N und x, y, z V (G). Zeigen Sie: Gibt es k paarweise kantendisjunkte x-y-wege und
Klausurvorbereitung. 1 Zentrale Begriffe. 2 Bipartite Graphen. 2.1 Begriffe. Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S.
Vorlesung Graphen und Optimierung Sommersemester 2011 Prof. S. Lange Klausurvorbereitung Hier finden Sie alle Begriffe, Zusammenhänge und Algorithmen, die mit Blick auf die Klausur relevant sind. Um es
Anwendungen von Netzwerkfluss
Anwendungen von Netzwerkfluss Berlin, 13. 01. 2009 Wojciech Polcwiartek Institut für Informatik FU Berlin 1. Einführung/ Definitionen Modellieren der Probleme mit Hilfe von Netzwerken und Flüssen in den
Name:... Vorname:... Matr.-Nr.:... Studiengang:...
Technische Universität Braunschweig Sommersemester 2013 IBR - Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christiane Schmidt Stephan Friedrichs Klausur Netzwerkalgorithmen 16.07.2013 Name:.....................................
Trennender Schnitt. Wie groß kann der Fluss in dem folgenden Flussnetzwerk höchstens sein?
6. Flüsse und Zuordnungen max-flow min-cut Trennender Schnitt Wie groß kann der Fluss in dem folgenden Flussnetzwerk höchstens sein? a e s c d t b f Der Fluss kann nicht größer als die Kapazität der der
8 Diskrete Optimierung
8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von
8.4 Digraphen mit negativen Kantengewichten Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0.
8.4 Digraphen mit negativen Kantengewichten 8.4.1 Grundsätzliches Betrachte Startknoten s und einen Kreis C mit Gesamtlänge < 0. k 4 5 1 s 1 3 2 C k 0 k 3 1 1 1 k 1 k 2 v Sollte ein Pfad von s nach C und
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des
Algorithmentheorie. 13 - Maximale Flüsse
Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk
Flüsse, Schnitte, Bipartite Graphen II
Flüsse, Schnitte, Bipartite Graphen II Jonathan Hacker 06.06.2016 Jonathan Hacker Flüsse, Schnitte, Bipartite Graphen II 06.06.2016 1 / 42 Gliederung Einführung Jonathan Hacker Flüsse, Schnitte, Bipartite
Datenstrukturen & Algorithmen Lösungen zu Blatt 11 FS 14
Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 14. Mai
Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16)
Berlin, 14. April 2016 Name:... Matr.-Nr.:... Nachklausur Grundlagen der Algorithmik (Niedermeier/Froese/Chen/Fluschnik, Wintersemester 2015/16) 1 / 10 2 / 10 3 / 11 4 / 9 5 / 10 Σ / 50 Einlesezeit: Bearbeitungszeit:
Algorithmen und Datenstrukturen 2-2. Seminar -
Algorithmen und Datenstrukturen 2-2. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 2. Übungsserie: 3 Aufgaben, insgesamt 30 Punkte A4 Flußnetzwerk, Restgraphen
ADS: Algorithmen und Datenstrukturen 2
ADS: Algorithmen und Datenstrukturen Der Tragödie IV. Theyl Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Matchings)
WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Matchings) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Felix Brandt, Jan Johannsen. Vorlesung im Wintersemester 2008/09
Felix Brandt, Jan Johannsen Vorlesung im Wintersemester 2008/09 Übersicht Übersicht Definition Ein Matching in G = (V, E) ist eine Menge M E mit e 1 e 2 = für e 1, e 2 M, e 1 e 2 Ein Matching M ist perfekt,
Grundlagen Datenstrukturen Transitive Hülle Traversierung Kürzeste Wege Spannender Baum Max. Fluss Zuordnungen. 6. Graphen
. Graphen viele praktische (Optimierungs-)Probleme sind als graphentheoretische Probleme formulierbar z.b. in Produktionsplanung, Personaleinsatzplanung,.... Grundlagen gerichteter, ungerichteter und gewichteter
Tutoraufgabe 1 (Floyd-Warshall):
für Informatik Prof. aa r. Ir. Joost-Pieter Katoen atenstrukturen und lgorithmen SS hristian ehnert, Friedrich Gretz, enjamin Kaminski, Thomas Ströder Tutoraufgabe (Floyd-Warshall): etrachten Sie den folgenden
11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME
Algorithmen und Datenstrukturen 11. GRAPHEN 3 FLÜSSE UND SPANNBÄUME Algorithmen und Datenstrukturen - Ma5hias Thimm ([email protected]) 1 Algorithmen und Datenstrukturen 11.1. BERECHNUNG MAXIMALER FLÜSSE
Algorithmische Mathematik I
Algorithmische Mathematik I Wintersemester 2011 / 2012 Prof. Dr. Sven Beuchler Peter Zaspel Übungsblatt zur Wiederholung Teil 1. Abgabe am -. Aufgabe 1. a) Was ist eine B-adische Darstellung mit fixer
Mustererkennung: Graphentheorie
Mustererkennung: Graphentheorie D. Schlesinger TUD/INF/KI/IS D. Schlesinger () ME: Graphentheorie 1 / 9 Definitionen Ein Graph ist ein Paar G = (V, E) mit der Menge der Knoten V und der Menge der Kanten:
Matching. Organisatorisches. VL-18: Matching. (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger. Tanzabend
Organisatorisches VL-18: Matching (Datenstrukturen und Algorithmen, SS 2017) Gerhard Woeginger Vorlesung: Gerhard Woeginger (Zimmer 4024 im E1) Sprechstunde: Mittwoch 11:15 12:00 Übungen: Tim Hartmann,
12. Der Algorithmus von Dijkstra. Informatik II für Verkehrsingenieure
. Der Algorithmus von Dijkstra Informatik II für Verkehrsingenieure Problemstellung Gegeben: Graph G =(V, E, len) mit positiver Kantenfunktion len : E! R 0, Knoten s, t V Mögliche Aufgaben Berechne Distanz
Gemischt-ganzzahlige und Kombinatorische Optimierung
5. Präsenzaufgabenblatt, Sommersemester 2015 Übungstunde am 15.06.2015 Aufgabe J Betrachten Sie die LP-Relaxierung max c T x a T x b 0 x i 1 des 0/1-Knapsack-Problems mit n Gegenständen, c 0 und a > 0.
Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn
Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau
Effiziente Algorithmen I
9. Präsenzaufgabenblatt, WiSe 2013/14 Übungstunden am 13.01. & 15.01.2014 Aufgabe Q Gegeben sei ein Fluss-Netzwerk mit Digraph D = (V, A), Knotenkapazitäten c(u, v) 0, Quelle s und Senke t. Kann sich der
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz
VU Algorithmen auf Graphen Übungsblatt 2 - Aufgabe 2 Transformation einer MaxFlow- in eine MinCost Circulation Instanz Gruppe A: Bernhard Stader, Georg Ziegler, Andreas Zugaj 10. November 2004 Inhaltsverzeichnis
Maximaler Fluss = minimaler Schnitt
Maximaler Flu = minimaler Schnitt Oliver Junge Fakultät für Mathematik Techniche Univerität München Flüe in Netzwerken Mathematiche Abtraktion Kapazität 3 2 Quelle 5 Senke 1 2 Netzwerk gerichteter Graph
Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47
Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford
Algorithmen und Datenstrukturen 2. Stefan Florian Palkovits, BSc Juni 2016
Algorithmen und Datenstrukturen 2 Übung 1 Stefan Florian Palkovits, BSc 0926364 [email protected] 12. Juni 2016 Aufgabe 1: Es existiert eine Reduktion von Problem A auf Problem B in O(n 3 +
6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen
6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus
KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN
KAPITEL 3 MATCHINGS IN BIPARTITEN GRAPHEN F. VALLENTIN, A. GUNDERT 1. Definitionen Notation 1.1. Ähnlich wie im vorangegangenen Kapitel zunächst etwas Notation. Wir beschäftigen uns jetzt mit ungerichteten
Kapitel 8: Bipartite Graphen Gliederung der Vorlesung
Gliederung der Vorlesung 1. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege 4. Minimale spannende Bäume 5. Färbungen und Cliquen 6. Traveling Salesman Problem 7. Flüsse in Netzwerken
Algorithmen für schwierige Probleme
Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 24. November 2011 Farbkodierung Beispiel Longest Path Longest Path gegeben: G = (V, E) und k N. Frage: Gibt es einen einfachen Pfad
Kapitel 1: Flussalgorithmen
Netzwerke und Flüsse Ein Flussnetzwerk ist ein gerichteter Graph G = (V, E, c) mit zwei ausgewählten Knoten q, s V und einer Kapazitätsfunktion c : E N 0. Die Quelle q hat Eingangsgrad 0 und die Senke
1.Aufgabe: Minimal aufspannender Baum
1.Aufgabe: Minimal aufspannender Baum 11+4+8 Punkte v 1 v 2 1 3 4 9 v 3 v 4 v 5 v 7 7 4 3 5 8 1 4 v 7 v 8 v 9 3 2 7 v 10 Abbildung 1: Der Graph G mit Kantengewichten (a) Bestimme mit Hilfe des Algorithmus
Algorithmische Graphentheorie
Algorithmische Graphentheorie Sommersemester 204 4. Vorlesung Matchings / Paarungen Kombinatorische Anwendungen des Max-Flow-Min-Cut-Theorems Prof. Dr. Alexander Wolff 2 Paarungen (Matchings) Def. Sei
7. Der Entwurf von Algorithmen (Fortsetzung)
Prof. Dr. Norbert Blum M.Sc. Adrian Schmitz Informatik V BA-INF 041 - Algorithmen und Berechnungskomplexität II SS 2015 Mögliche Klausuraufgaben Stand 1. Juli 2015 Bitte beachten Sie, dass die tatsächlichen
15. Elementare Graphalgorithmen
Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen
FLÜSSE, SCHNITTE UND - TEIL 2 - BIPARTITE GRAPHEN. Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D.
FLÜSSE, SCHNITTE UND BIPARTITE GRAPHEN - TEIL 2 - Vortrag im Seminar Hallo Welt Für Fortgeschrittene Dozenten: Werth, T. & Brinkers, D. Lukas Dresel 17. Juni 215 Inhalt Problemstellung Lösungsmethode 1
Systems of Distinct Representatives
Rheinisch-Westfälische Technische Hochschule Aachen Lehr- und Forschungsgebiet Theoretische Informatik Prof. Dr. Peter Rossmanith Systems of Distinct Representatives Seminar: Extremal Combinatorics SS
Seminar: Einladung in die Mathematik
Seminar: Einladung in die Mathematik Marius Kling 11.11.2013 Übersicht 1. Königsberger Brückenproblem 2. Diskrete Optimierung 3. Graphentheorie in der Informatik 4. Zufällige Graphen 5. Anwendungen von
lässt sich auch ableiten, dass es einen augmentierenden Pfad der Länge höchstens
Praktikum Algorithmen-Entwurf (Teil 5)..5 Matchings in Graphen Es sei ein ungerichteter Graph G = (V, E) gegeben. Ein Matching in G ist eine Teilmenge M E, so dass keine zwei Kanten aus M einen Endpunkt
5. Musterlösung. Problem 1: Vitale Kanten * ω(f) > ω(f ). (a) Untersuchen Sie, ob es in jedem Netzwerk vitale Kanten gibt.
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 5. Musterlösung Problem : Vitale Kanten * In einem Netzwerk (D = (V, E); s, t; c) mit Maximalfluß f heißen Kanten e
Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm [email protected]
Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm [email protected] Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische
Bäume und Wälder. Definition 1
Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt
Lösungen zu Kapitel 5
Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V
Bäume und Wälder. Definition 1
Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt
Algorithmen zur Berechnung von Matchings
Algorithmen zur Berechnung von Matchings Berthold Vöcking 10. Oktober 2006 1 Einleitung Matchingprobleme sind Zuordnungsprobleme. Es geht darum z.b. Studierenden Plätze in Seminaren zuzuordnen, Bewerber
Das Heiratsproblem. Definition Matching
Das Heiratsproblem Szenario: Gegeben: n Frauen und m > n Männer. Bekanntschaftsbeziehungen zwischen allen Männern und Frauen. Fragestellung: Wann gibt es für jede der Frauen einen Heiratspartner? Modellierung
Diskrete Mathematik Graphentheorie (Übersicht)
Diskrete Mathematik Graphentheorie (Übersicht) Dr. C. Löh 2. Februar 2010 0 Graphentheorie Grundlagen Definition (Graph, gerichteter Graph). Ein Graph ist ein Paar G = (V, E), wobei V eine Menge ist (die
