Mathematik für Informatiker 1 Tutorium

Größe: px
Ab Seite anzeigen:

Download "Mathematik für Informatiker 1 Tutorium"

Transkript

1 Mathematik für Informatiker 1 Tutorium Malte Isberner M. Isberner MafI1-Tutorium / 12

2 Thema heute Thema heute: Verbände M. Isberner MafI1-Tutorium / 12

3 Verbände Was ist ein Verband? M. Isberner MafI1-Tutorium / 12

4 Verbände Was ist ein Verband? Ordnungstheoretisch Eine halbgeordnete Menge (V, ) heißt (ordnungstheoretischer) Verband wenn zu je zwei Elementen u, v V eine größte untere Schranke (Infimum) sowie eine kleinste obere Schranke (Supremum) existieren. M. Isberner MafI1-Tutorium / 12

5 Verbände Was ist ein Verband? Ordnungstheoretisch Eine halbgeordnete Menge (V, ) heißt (ordnungstheoretischer) Verband wenn zu je zwei Elementen u, v V eine größte untere Schranke (Infimum) sowie eine kleinste obere Schranke (Supremum) existieren. Algebraisch Eine Struktur (V,, ) heißt (algebraischer) Verband wenn die Verknüpfungen und assoziativ und kommutativ sind, und ferner die Absorptionsgesetze gelten. M. Isberner MafI1-Tutorium / 12

6 Verbände Was ist ein Verband? Ordnungstheoretisch Eine halbgeordnete Menge (V, ) heißt (ordnungstheoretischer) Verband wenn zu je zwei Elementen u, v V eine größte untere Schranke (Infimum) sowie eine kleinste obere Schranke (Supremum) existieren. Algebraisch Eine Struktur (V,, ) heißt (algebraischer) Verband wenn die Verknüpfungen und assoziativ und kommutativ sind, und ferner die Absorptionsgesetze gelten. Ordnungstheoretischer vs. algebraischer Verband Jeder algebraische Verband ist ein ordnungstheoretischer Verband (und umgekehrt) (Sätze 7.3 bzw. 7.5) M. Isberner MafI1-Tutorium / 12

7 Verbände Typische Aufgaben Typische Aufgaben zum Thema Verbände: Sei V eine Menge und V V eine Relation mit v 1 v 2 :.... Weisen Sie nach, dass (V, ) ein [vollständiger] Verband ist. Sei V eine Menge, und seien : V V V und : V V V Operationen auf V. Weisen Sie nach, dass (V,, ) ein Verband ist. Sei (V, ) ein Verband, und sei U = df... V eine Teilmenge von V. Weisen Sie nach, dass (U, ) ein Verband ist. Sei (V,, ) ein Verband, und sei U = df... V eine Teilmenge von V. Weisen Sie nach, dass (U,, ) ein Verband ist. Sei (V, ) bzw. (V,, ) ein Verband. Ist dieser Verband distributiv? M. Isberner MafI1-Tutorium / 12

8 Verbände Ordnungstheoretischer Verbandsnachweis Nachweisen, dass (V, ) ein (ordnungstheoretischer) Verband ist. Herangehensweise Was ist zu zeigen? ist part. Ordnung auf V (!) Bekannt... u, v V. inf{u, v} existiert Nimm u, v als beliebig (aber fest) gewählt an. Wähle dann ein Element w, welches das (vermeintliche) Infimum von u und v ist (Achtung: Kein Kochrezept, abhängig von. Allerdings Halbordnung oft über andere Verbandsordnungen definiert... ) Beweise die Infimumseigenschaft für w: Beweis, dass w untere Schranke ist (oft einfach) Beweis, dass w größte untere Schranke ist: Nimm an, dass untere Schranke w mit w w existiert und zeige Widerspruch. u, v V. sup{u, v} existiert. Beweis analog zu inf M. Isberner MafI1-Tutorium / 12

9 Verbände Algebraischer Verbandsnachweise Nachweisen, dass (V,, ) ein Verband ist. Herangehensweise Was ist zu zeigen? Verbandseigenschaften von und :, sind assoziativ, sind kommutativ Es gelten die Absorptionsgesetze für, M. Isberner MafI1-Tutorium / 12

10 Verbandsnachweis Beispiele Beispielaufgabe ordnungstheoretisch Seien (U, U ) und (V, V ) (vollständige) Verbände. Auf U V sei die Relation U V wie folgt definiert: (u, v) U V (u, v ) : u U u v V v Zeigen Sie: (U V, U V ) ist ebenfalls ein (vollständiger) Verband. M. Isberner MafI1-Tutorium / 12

11 Verbandsnachweis Beispiele Beispielaufgabe ordnungstheoretisch Seien (U, U ) und (V, V ) (vollständige) Verbände. Auf U V sei die Relation U V wie folgt definiert: (u, v) U V (u, v ) : u U u v V v Zeigen Sie: (U V, U V ) ist ebenfalls ein (vollständiger) Verband. Beispielaufgabe algebraisch Seien (U, U, U ) und (V, V, V ) Verbände. Die Operationen U V und U V seien als binäre innere Verknüpfungen wie folgt definiert: (u, v) U V (u, v ) = df (u U u, v V v ) (u, v) U V (u, v ) = df (u U u, v V v ) Zeigen Sie: (U V, U V, U V ) ist ebenfalls ein Verband. M. Isberner MafI1-Tutorium / 12

12 Verbände Teilverband Sei (V, ) ein Verband. Sei U = df... V eine Teilmenge von V. Weisen Sie nach, dass (U, ) ein (vollständiger) Verband ist. Herangehensweise Im Prinzip wie Verbandsnachweis, aber: ist part. Ordnung auf V, also insbesondere auch auf U. Infima und Suprema müssen bzgl. in U existieren. Achtung: Infima und Suprema für Elemente u, v V können in U anders sein! Oft: Infima/Suprema in V lassen sich eindeutig ergänzen zu/reduzieren auf Elemente in U. Beispiel: Menge T (M) der transitiven Relationen auf einer Menge M mit Inklusionsbeziehung (Teilverband von (P(M M), ). M. Isberner MafI1-Tutorium / 12

13 Verbände Unterverband Sei (V,, ) ein Verband. Sei U = df... V eine Teilmenge von V. Weisen Sie nach, dass (U,, ) ebenfalls ein Verband ist. Herangehensweise Wichtiges Prinzip: Abschlussbeweis! Assoziativität, Kommutativität und Absorption gelten für und auf ganz V, also insbesondere auch auf U. Aber: Definitionsbereich ist : V V V ( analog) Zu zeigen: Abgeschlossenheit, d.h.: für alle u, v U ist auch u v U ( analog) Beispiel: Menge der endlichen und co-endlichen Teilmengen von N (Unterverband von (P(N),, ). M. Isberner MafI1-Tutorium / 12

14 Verbände Distributivität Sei (V,, ) ein Verband. Ist dieser Verband distributiv? Herangehensweise Distributivität bedeutet: u, v, w V.u (v w) = (u v) (u w) Möglichkeit 1: Über die Definition von und (axiomatisch) nachweisen, dass dies gilt bzw. Elemente u, v, w finden, für die das nicht gilt. Möglichkeit 2: Wenn ein endlicher Verband explizit (z.b. als Hasse-Diagramm) gegeben ist: ausprobieren oder (eleganter) prüfen, ob ein kleinster nichtdistributiver Verband ein Unterverband ist M. Isberner MafI1-Tutorium / 12

15 Kleinste nichtdistributive Verbände Kleinste nichtdistributive Verbände 1 a b c 0 a b 1 0 c a (b c) = a 1 = a (a b) (a c) = 0 0 = 0 b (a c) = b 0 = b (b a) (b c) = a 1 = a M. Isberner MafI1-Tutorium / 12

16 Kleinste nichtdistributive Verbände Kleinste nichtdistributive Verbände 1 a b c 0 a b 1 0 c a (b c) = a 1 = a (a b) (a c) = 0 0 = 0 b (a c) = b 0 = b (b a) (b c) = a 1 = a Jeder nichtdistributive Verband enthält einen dieser beiden Verbände als Unterverband! M. Isberner MafI1-Tutorium / 12

17 Verbände Weitere Beispiele Sei (A, A ) ein Verband und M eine Menge. Zeigen Sie: (A M, A M ) ist ebenfalls ein Verband, wobei A M A M wie folgt definiert sei: f A M g df m M.f (m) g(m) Sei (V,, ) ein distributiver Verband und sei v V beliebig. Es sei die Funktion f v : V V definiert als f v (u) = df u v Zeigen Sie: (Bild(f v ),, ) ist ein Verband. Sei (V,, ) ein distributiver Verband und sei v V beliebig. Es sei die Funktion g v : V V definiert als g v (u) = df u v Zeigen Sie: (Bild(g v ),, ) ist ein Verband. Sei (V, ) ein distributiver Verband und seien v 1, v 2 V mit v 1 v 2. Zeigen Sie: Die Menge {x v 1 x v 2 } bildet mit einen Verband. M. Isberner MafI1-Tutorium / 12

7. Ordnungsstrukturen - Themenübersicht

7. Ordnungsstrukturen - Themenübersicht 7. Ordnungsstrukturen - Themenübersicht Ordnungsstrukturen Verbände Algebraische Verbände Spezielle Verbände Boolesche Verbände Vollständige Verbände Ordnungserhaltende Abbildungen Prof. Dr. Bernhard Steffen

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Die Lösungshinweise dienen

Mehr

Mathematik für Informatiker 1 Tutorium

Mathematik für Informatiker 1 Tutorium Mathematik für Informatiker 1 Tutorium Malte Isberner 19.12.2013 M. Isberner MafI1-Tutorium 19.12.2013 1 / 15 Themen heute Zur Auswahl... Besprechung der Probeklausur Verbände Gruppen und Ringe M. Isberner

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 7

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 7 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 203/4 Übungsblatt 7 Die

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

Algebraische Strukturen und Verbände

Algebraische Strukturen und Verbände KAPITEL 4 Algebraische Strukturen und Verbände Definition 4.1. Sei M eine Menge. Eine Abbildung : M M M nennt man eine (zweistellige) Verknüpfung in M. Man schreibt dafür auch a b := (a, b) mit a, b M.

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften. In dieser Ausarbeitung handelt es sich es um die Menge der natürlichen Zahlen und deren Eigenschaften. In der Analysis werden häug zunächst die reellen Zahlen als vollständig geordneter Körper betrachtet

Mehr

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 2. Information

Repetitorium Mathematik für Informatiker I, Sommersemester Probeklausur Nr. 2. Information Prof. Dr. Bernhard Steffen Dawid Kopetzki Repetitorium zur Vorlesung Mathematik für Informatiker 1 Sommersemester 2015 Probeklausur Nr. 2 Information Diese Aufgaben dienen als Grundlage zur Wiederholung

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Die natürlichen Zahlen Damit kann man, beginnend mit der leeren Menge, eine unendliche Folge von Mengen bilden: Mathematik I für Informatiker Zahlen p.1/12 Kürzt man ab so erhält man,,,..., allgemeiner

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2013/2014 1/61 Anmerkung Änderung im Wintersemester 2013/2014:

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Exkurs: Elementare Verbandstheorie. Exkurs: Elementare Verbandstheorie Sommersemester / 20

Exkurs: Elementare Verbandstheorie. Exkurs: Elementare Verbandstheorie Sommersemester / 20 Exkurs: Elementare Verbandstheorie Exkurs: Elementare Verbandstheorie Sommersemester 2008 1 / 20 Halbordnungen Definition Eine binäre Relation auf einer Menge M heisst Halbordnung, wenn sie reflexiv, transitiv

Mehr

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen Ordnungsrelationen auf Mengen! Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Ordnungsrelationen auf Mengen

Ordnungsrelationen auf Mengen Ordnungsrelationen auf Mengen Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Mathematik I für Informatiker Zahlen p. 1 Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}. Damit kann man, beginnend mit der leeren Menge Ø, eine unendliche

Mehr

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) 15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9

Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt (Probeklausur) 9 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Wir starten mit der Entwicklung einer algebraischen Struktur, welche u.a. gut zur Kennzeichnung von Geometrien geeignet ist.

Wir starten mit der Entwicklung einer algebraischen Struktur, welche u.a. gut zur Kennzeichnung von Geometrien geeignet ist. 2 Verbände Wir starten mit der Entwicklung einer algebraischen Struktur, welche u.a. gut zur Kennzeichnung von Geometrien geeignet ist. 2.1 Verbandsdefinition. Beispiele 2.1.1 Definition (Verband): Sei

Mehr

Geordnete Mengen. Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist.

Geordnete Mengen. Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Mathematik I für Informatiker Ordnungsrelationen p. 1 Geordnete Mengen Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Ist R eine Ordnungsrelation

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 013/1 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 2013/14 24.10.2013 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2013/14 Relationalstrukturen 59 Definition Sei A eine nichtleere Menge, R ist eine k-stellige

Mehr

Axiomatik der reellen Zahlen

Axiomatik der reellen Zahlen Kapitel 13 Axiomatik der reellen Zahlen 13.1 Motivation Analysis beschäftigt sich mit Grenzwerten, Differentiation und Integration. Viele Phänomene in den Natur- und Ingenieurswissenschaften lassen sich

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

Überabzählbarkeit der reellen Zahlen

Überabzählbarkeit der reellen Zahlen Überabzählbarkeit der reellen Zahlen Mathematik M4 Dozentin: Dr. Regula Krapf Jan Lukas Schallenberg Matr. Nr.: 214202241 November 2017 1 Inhaltsverzeichnis 1 Dedekindsche Schnitte 3 2 Addition und Multiplikation

Mehr

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist.

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Geordnete Mengen Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Ist eine Ordnungsrelation auf eine geordnete Menge., dann nennt man Die Namensgebung

Mehr

Ordnungsrelationen auf Mengen

Ordnungsrelationen auf Mengen Ordnungsrelationen auf Mengen Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Kapitel 6. Fixpunkte und semantische Bereiche

Kapitel 6. Fixpunkte und semantische Bereiche Kapitel 6 Fixpunkte und semantische Bereiche Sowohl bei der Definition der operationalen Semantik als auch bei der Definition der mathematischen Semantik haben wir mehr oder weniger explizit Fixpunkte

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 89 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

Grundbegriffe der Informatik Tutorium 14

Grundbegriffe der Informatik Tutorium 14 Grundbegriffe der Informatik Tutorium 14 Tutorium Nr. 16 Philipp Oppermann 11. Februar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014

Vorlesung Mathematik für Informatiker I. WS 2013/14 Klausur 29. März 2014 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen WS 2013/14 Klausur 29. März 2014 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Pseudonym (zur Veröffentlichung der Klausurergebnisse):

Mehr

Elementare Verbandstheorie. Elementare Verbandstheorie Sommersemester / 1

Elementare Verbandstheorie. Elementare Verbandstheorie Sommersemester / 1 Elementare Verbandstheorie Elementare Verbandstheorie Sommersemester 2009 1 / 1 Halbordnungen Definition Eine binäre Relation auf einer Menge M heisst Halbordnung, wenn sie reflexiv, transitiv und antisymmetrisch

Mehr

Grundlagen der linearen Algebra und analytischen Geometrie

Grundlagen der linearen Algebra und analytischen Geometrie Grundlagen der linearen Algebra und analytischen Geometrie Sascha Trostorff 27. Oktober 2017 Inhaltsverzeichnis I. Einführung in die Mengenlehre 3 1. Grundlagen der Aussagenlogik 4 2. Naive Mengenlehre

Mehr

4. Übung zur Linearen Algebra I -

4. Übung zur Linearen Algebra I - 4. Übung zur Linearen Algebra I - en Kommentare an Hannes.Klarner@Fu-Berlin.de FU Berlin. WS 2009-10. Aufgabe 13 Auf dem Cartesischen Produkt Z Z werden 2 Verknüpfungen, definiert durch: Man zeige: (a

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2016

HM I Tutorium 2. Lucas Kunz. 3. November 2016 HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Reelle Zahlen.................................. 2 1.2 Intervalle..................................... 2 1.3 Beträge.....................................

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 1 Mengen 2 Relationen 3 Abbildungen 4 Algebraische Strukturen Verknüpfungen Monoide Beispiel: Restklassen Exkurs: Formale

Mehr

Mathematik für Informatiker 1 Tutorium

Mathematik für Informatiker 1 Tutorium Mathematik für Informatiker 1 Tutorium Malte Isberner 30.1.2014 M. Isberner MafI1-Tutorium 30.1.2014 1 / 16 Thema heute Thema heute: Algebra (Teil 3) Kern Faktorstrukturen (für Ringe) Homomorphismen (für

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27

Mehr

Informatik 3 Übung 09 Georg Kuschk

Informatik 3 Übung 09 Georg Kuschk Informatik 3 Übung 09 Georg Kuschk 9.1) Das Tupel ( {1,2,3,5,6,10,15,}, kgv, ggt, inv,, 1 ) mit inv()=/ ist eine boolesche Algebra, wenn für alle,y,z M folgende 7 Regeln gelten ( Zur besseren Übersicht

Mehr

Analysis I - Reelle Zahlen

Analysis I - Reelle Zahlen November 17, 2008 Algebraische Grundbegriffe und Körper Definition Sei M eine Menge. Jede Funktion f : M M M heißt eine (binäre, innere) Verknüpfung oder eine Operation auf M. Wir schreiben für (a, b)

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

Kapitel 3 Fuzzy-Mengen und Relationen. 29. April 2005

Kapitel 3 Fuzzy-Mengen und Relationen. 29. April 2005 Kapitel 3 und Relationen 29. April 2005 Rückblick Tarski s Deduktionsbegriff, Verbandstheorie, Abstrakte Logik über Verbänden Wohldefinierte Eigenschaften P wohldefinierte Eigenschaft auf einer Menge M,

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 86 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt.

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. p 2istirrational Satz 1.15 Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. Beweis. Annahme: Es existiert x 2 Q mit x 2 = 2. Wegen x 2 Q folgt x = p q und p und q sind teilerfremde ganze Zahlen.

Mehr

3. Algebra und Begriffsverbände. Algebraische Strukturen

3. Algebra und Begriffsverbände. Algebraische Strukturen 3. Algebra und Begriffsverbände Algebraische Strukturen Def.: Eine n-stellige (n-äre) [algebraische] Operation [auch: Verknüpfung] auf einer Menge A ist eine Abbildung f : A n A. Der Spezialfall n = 0:

Mehr

Übungen zu Geometrie und Lineare Algebra für das Lehramt

Übungen zu Geometrie und Lineare Algebra für das Lehramt Übungen zu Geometrie und Lineare Algebra für das Lehramt zusammengestellt von Stefan Haller Sommersemester 2019 (UE250163) 2. Übungsblatt für die Woche vom 11. bis 15. März 2019 Aufgabe 2.1. Wiederhole

Mehr

Auswahlaxiom, Zornsches Lemma und Wohlordnungssatz. 14.Oktober 97

Auswahlaxiom, Zornsches Lemma und Wohlordnungssatz. 14.Oktober 97 Auswahlaxiom, Zornsches Lemma und Wohlordnungssatz Uwe Liebe Sven Hermann 14.Oktober 97 Inhaltsverzeichnis 1 Einleitung 3 2 Auswahlaxiom 4 3 Ordnung 5 4 Zornsches Lemma 9 5 Wohlordnungssatz 11 6 Zurück

Mehr

Mathematische Grundlagen der Computerlinguistik Algebren

Mathematische Grundlagen der Computerlinguistik Algebren Mathematische Grundlagen der Computerlinguistik Algebren Dozentin: Wiebke Petersen 5. Foliensatz Wiebke Petersen math. Grundlagen 116 Algebren (algebraische Strukturen) Eine Algebra A ist eine Menge A

Mehr

5 Intervalle, Metrik und Topologie für R

5 Intervalle, Metrik und Topologie für R 5 Intervalle, Metrik und Topologie für R 5.1 Intervalle in R 5.2 Charakterisierung der Intervalle 5.3 Die kanonische Metrik auf R 5.4 ε-umgebung 5.5 Offene und abgeschlossene Teilmengen von R 5.6 Die kanonische

Mehr

Vollständigkeit der reellen Zahlen

Vollständigkeit der reellen Zahlen Vollständigkeit der reellen Zahlen Vorlesung zur Didaktik der Analysis Oliver Passon Vollständigkeit von R 1 take home message I Wollte man mit Zahlen nur rechnen, könnte man mit den rationalen Zahlen

Mehr

Diskrete Strukturen. Vorlesung 7: Fixpunkte & Kardinalität. 27. November 2018

Diskrete Strukturen. Vorlesung 7: Fixpunkte & Kardinalität. 27. November 2018 Diskrete Strukturen Vorlesung 7: Fixpunkte & Kardinalität 27. November 2018 Nächste Termine Modul Diskrete Strukturen Hörsaalübung (Mo. 9:15) Vorlesung (Di. 17:15) 26.11. 27.11. Fixpunkte + Kardinalitäten

Mehr

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Ordnungsrelationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Geordnete Mengen Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv,

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

3.3 Der Seitenverband

3.3 Der Seitenverband Diskrete Geometrie (Version 3) 10. Januar 2012 c Rudolf Scharlau 217 3.3 Der Seitenverband Wir setzen die Untersuchung der Relation ist Seite von auf der Menge aller konvexen Polytope in einem gegebenen

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/77 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]

Mehr

Die Vorlesung behandelt (voraussichtlich) die folgenden Themen:

Die Vorlesung behandelt (voraussichtlich) die folgenden Themen: Algebra II LVA 405.370 C. Fuchs Inhaltsübersicht 26.06.2015 Inhaltsübersicht Es werden algebraische Grundkenntnisse aus Sicht der universellen Algebra ergänzt und somit in breiteren Kontext gestellt. Die

Mehr

6. Boolesche Algebren

6. Boolesche Algebren 6. Boolesche Algebren 6.1 Definitionen Eine Boolesche Algebra ist eine Algebra S,,,, 0, 1,, sind binäre, ist ein unärer Operator, 0 und 1 sind Konstanten. Es gilt: 1 und sind assoziativ und kommutativ.

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN

2 Grundstrukturen. 2.1 Gruppen. Prof. Dr. Peter Schneider. Vorlesung WS Lineare Algebra 1 2 GRUNDSTRUKTUREN Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 2 Grundstrukturen Notation: Sind M und N zwei Mengen, so heißt die Menge M N := {(m, n) : m M, n N} das cartesische Produkt oder auch die

Mehr

Logik und Künstliche Intelligenz

Logik und Künstliche Intelligenz Logik und Künstliche Intelligenz Kurze Zusammenfassung (Stand: 14. Januar 2010) Prof. Dr. V. Stahl Copyright 2007 by Volker Stahl. All rights reserved. V. Stahl Logik und Künstliche Intelligenz Zusammenfassung

Mehr

Vorlesung Mathematik für Informatiker I. WS 11/12 Klausur 27. März 2012

Vorlesung Mathematik für Informatiker I. WS 11/12 Klausur 27. März 2012 Vorlesung Mathematik für Informatiker I Prof. Dr. B. Steffen und Prof. Dr. G. Kern-Isberner WS 11/12 Klausur 27. März 2012 Name: Vorname: Matrikelnummer: Studiengang: Unterschrift: Kennwort (zur Veröffentlichung

Mehr

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist:

Gruppe. Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: Gruppe Unter einer Gruppe (G, ) versteht man eine Menge G, auf der eine binäre Operation definiert ist: : G G G, d.h. jedem Elementepaar (a, b): a, b G ist ein Element a b G zugeordnet. Gruppe 1-1 Gruppe

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/76 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Klassische Algebra. Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n a 1 x + a 0 = 0 (a 0,...

Klassische Algebra. Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n a 1 x + a 0 = 0 (a 0,... Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n {1, 2, 3, 4} sind bekannt. Abel, Galois: Für n N mit

Mehr

Die rationalen Zahlen. Caterina Montalto Monella

Die rationalen Zahlen. Caterina Montalto Monella Die rationalen Zahlen Caterina Montalto Monella 07.12.2016 1 1 Die Konstruktion der rationalen Zahlen In dieser Ausarbeitung konstruieren wir die rationalen Zahlen aus den ganzen und den natürlichen Zahlen.

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Infimum und Supremum. Definition ) Eine Menge M R heißt nach oben bzw. nach unten beschränkt, falls ein u bzw. o existieren, so dass

Infimum und Supremum. Definition ) Eine Menge M R heißt nach oben bzw. nach unten beschränkt, falls ein u bzw. o existieren, so dass 1.5 Teilmengen in R Infimum und Supremum Definition 1.33 1) Eine Menge M R heißt nach oben bzw. nach unten beschränkt, falls ein u bzw. o existieren, so dass u m m M bzw. o m m M. In diesem Fall heiß u

Mehr

Mathematische Methoden für Informatiker

Mathematische Methoden für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 13.07.2018 Klassische Algebra Gesucht sind die Lösungsmengen der folgenden Gleichungen: x n + a n 1 x n 1 + + a 1 x + a 0 = 0 (a 0,..., a n 1 Q) Formeln für n

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Reelle Zahlen. 2-a Die Körperaxiome

Reelle Zahlen. 2-a Die Körperaxiome 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

1.2 Klassen und Mengen

1.2 Klassen und Mengen 14 1.2 Klassen und Mengen Als undefinierten Grundbegriff verwenden wir den Begriff der Klasse. Dieser ist allgemeiner als der Mengenbegriff und wird in der Algebra zur Definition sogenannter Kategorien

Mehr