Orthografische Projektion!
|
|
|
- Wilhelm Gottlob Adenauer
- vor 9 Jahren
- Abrufe
Transkript
1 Kartenprojektionen!
2 Orthografische Projektion!
3 Immer der Nase nach! Großkreise statt Geraden! α = 15 Blick von der Seite! Steigungswinkel α { 15, 45, 75 }
4 Was ist denn das?!
5 Verzerrungsellipsen (Indikatrix von Tissot)!
6 Carl Friedrich Gauß! ! Theorema egregium:!! Es gibt keine isometrische Abbildung! von der Kugel auf die Ebene.!
7 verzerrungsfreie! Theorema egregium:!! Es gibt keine isometrische Abbildung! von der Kugel auf die Ebene.! Carl Friedrich Gauß! !
8 Carl Friedrich Gauß! ! Theorema egregium:!! Es gibt keine isometrische Abbildung! von der Kugel auf die Ebene.!! Hingegen gibt es:!! flächentreue Karten (equivalent)! winkeltreue Karten (conformal)!
9 Typische Kartenträger :!! Tangentialebene! Azimutalentwurf!! Berührender Zylinder! Zylinderentwurf!! Berührender Kegel! Kegelentwurf!
10 Abstandstreue (mittelstandstreue) Entwürfe:!! Meridiane längentreu!
11 Plattkarte: Abstandstreuer Zylinderentwurf! Meridiane und Äquator längentreu!
12 Plattkarte: Abstandstreuer Zylinderentwurf! Meridiane und Äquator längentreu! Aufgabe 4.2a!
13 Abstandstreuer Azimutalentwurf!
14 Abstandstreuer Azimutalentwurf! Andere Tangentialebene?!
15 Abstandstreuer Azimutalentwurf! Andere Tangentialebene!
16 Abstandstreuer Azimutalentwurf! Andere Tangentialebene!
17 Abstandstreuer Kegelentwurf!
18 Abstandstreuer Kegelentwurf!
19 Abstandstreuer Kegelentwurf!
20 Abgewickelter Kegelmantel!
21 Abgewickelter Kegelmantel!
22 Abgewickelter Kegelmantel!
23 Gnomonische Projektion! N ϑ M tan( ϑ ) P P S
24 Gnomonische Projektion!
25 Gnomonische Projektion! Würfelmodell!
26 Gnomonische Projektion! Würfelmodell!
27 Flächentreue und winkeltreue Karten!
28 Theorie! Flächentreue und winkeltreue Karten! Zylinderentwurf: Netzvierecke vergleichen! u ϕ ( ) =? N π 0 π λ S
29 Theorie! Flächentreue und winkeltreue Karten! Zylinderentwurf: Netzvierecke vergleichen! u ϕ ( ) =? N π 0 π λ S dϕ du cos( ϕ)dλ dλ
30 Theorie! Flächentreue Karten! Netzvierecke gleicher Flächeninhalt! dϕ du cos( ϕ)dλ dλ
31 Theorie! Flächentreue Karten! Netzvierecke gleicher Flächeninhalt! dϕ cos( ϕ)dλdϕ = dλdu du cos( ϕ)dλ du = cos( ϕ)dϕ u( ϕ) = du = cos ϕ ( )dϕ dλ = sin( ϕ) + C u( 0) = 0 C = 0 u( ϕ) = sin( ϕ)
32 Theorie! Flächentreue Karten! Netzvierecke gleicher Flächeninhalt! dϕ cos( ϕ)dλdϕ = dλdu du cos( ϕ)dλ du = cos( ϕ)dϕ u( ϕ) = du = cos ϕ ( )dϕ dλ = sin( ϕ) + C u( 0) = 0 C = 0 u( ϕ) = sin( ϕ)
33 Theorie! Flächentreue Karten! Netzvierecke gleicher Flächeninhalt! dϕ cos( ϕ)dλdϕ = dλdu du cos( ϕ)dλ du = cos( ϕ)dϕ u( ϕ) = du = cos ϕ ( )dϕ dλ = sin( ϕ) + C u( 0) = 0 C = 0 u( ϕ) = sin( ϕ)
34 Theorie! Flächentreue Karten! Netzvierecke gleicher Flächeninhalt! dϕ cos( ϕ)dλdϕ = dλdu du cos( ϕ)dλ du = cos( ϕ)dϕ u( ϕ) = du = cos ϕ ( )dϕ dλ = sin( ϕ) + C u( 0) = 0 C = 0 u( ϕ) = sin( ϕ)
35 Theorie! Winkeltreue Karten! Netzvierecke gleiche Form! cos( ϕ)dλ dϕ dϕ cos( ϕ)dλ = du dλ du = dϕ cos ϕ ( ) u( ϕ) = du = dϕ cos ϕ = ln tan ϕ 2 + π 4 ( ) du dλ ( ( )) + C u( 0) = 0 C = 0 ( ) = ln tan ϕ 2 + π 4 u ϕ ( ( ))
36 Theorie! Winkeltreue Karten! Netzvierecke gleiche Form! cos( ϕ)dλ dϕ dϕ cos( ϕ)dλ = du dλ du = dϕ cos ϕ ( ) u( ϕ) = du = dϕ cos ϕ = ln tan ϕ 2 + π 4 ( ) du dλ ( ( )) + C u( 0) = 0 C = 0 ( ) = ln tan ϕ 2 + π 4 u ϕ ( ( ))
37 Theorie! Winkeltreue Karten! Netzvierecke gleiche Form! cos( ϕ)dλ dϕ dϕ cos( ϕ)dλ = du dλ du = dϕ cos ϕ ( ) u( ϕ) = du = dϕ cos ϕ = ln tan ϕ 2 + π 4 ( ) du dλ ( ( )) + C ( ) = 0 C = 0 u 0 Formelsammlung! ( ) = ln tan ϕ 2 + π 4 u ϕ ( ( ))
38 Theorie! Winkeltreue Karten! Netzvierecke gleiche Form! cos( ϕ)dλ dϕ dϕ cos( ϕ)dλ = du dλ du = dϕ cos ϕ ( ) u( ϕ) = du = dϕ cos ϕ = ln tan ϕ 2 + π 4 ( ) du dλ ( ( )) + C u( 0) = 0 C = 0 ( ) = ln tan ϕ 2 + π 4 u ϕ ( ( ))
39 Theorie: Zusammenfassung! dϕ du cos( ϕ)dλ dλ Flächentreu:!!! Winkeltreu:! u ϕ u( ϕ) = sin( ϕ) ( ( )) ( ) = ln tan ϕ 2 + π 4
40 Praxis! Flächentreue Karten! Zylinderentwurf! u( ϕ) = sin( ϕ) N P P ϕ sin( ϕ) S
41 Flächentreue Karten! Zylinderentwurf! u( ϕ) = sin( ϕ) Archimedes / Lambert! Aufgabe 4.2c!
42 Flächentreue Karten! Zylinderentwurf! u( ϕ) = sin( ϕ) Winkeltreu am Äquator! Archimedes / Lambert! Aufgabe 4.2c!
43 Flächentreue Karten! Zylinderentwurf! u( ϕ) = sin( ϕ) Archimedes! BC! Johann Heinrich Lambert! !
44 Winkeltreue Karten! Zylinderentwurf! ( ) = ln tan ϕ 2 + π 4 u ϕ ( ( ))
45 u ϕ Vergleich mit Tangenskurve! ( ( )) u ϕ ( ) = ln tan ϕ 2 + π 4 ln tan ϕ 2 + π 2 ( ) = tan( ϕ) ( ( )) tan ϕ ( ) ϕ ϕ
46 Winkeltreue Karten! Zylinderentwurf! ( ) = ln tan ϕ 2 + π 4 u ϕ ( ( )) Mercator-Karte! Aufgabe 4.2b! Aufgabe 4.3!
47 Winkeltreue Karten! Zylinderentwurf! ( ) = ln tan ϕ 2 + π 4 u ϕ ( ( )) Gerhard Mercator! !
48 Winkeltreu (conformal), Mercator, 1569! Loxodrome:! Kurve mit konstantem Winkel α gegenüber Meridianen! Konstanter Kurs! α = 80 Aufgabe 4.4!
49 Quer und schief!
50 Querachsige Mercatorkarte!
51 Querachsige Mercatorkarte!
52 Querachsige Mercatorkarte!
53 Bezugsmeridiane! 30 -Segmente! Querachsige Mercatorkarte!
54 Querachsige Mercator-Karte(n)! Beispiel mit 6 Zylindern! Gauß-Krüger: Bezugsmeridiane 3 Abstand, 60 Zylinder! früher: Deutschland, Österreich! UTM (universale transversale Mercator-Karte):! Bezugsmeridiane 6 Abstand, 30 Zylinder! heute weit verbreitet!
55 Querachsige Mercator-Karte(n)! Beispiel mit 6 Zylindern! Gauß-Krüger: Bezugsmeridiane 3 Abstand, 60 Zylinder! früher: Deutschland, Österreich! UTM (universale transversale Mercator-Karte):! Bezugsmeridiane 6 Abstand, 30 Zylinder! heute weit verbreitet!
56 Querachsige Mercator-Karte(n)! Beispiel mit 30 Zylindern! Gauß-Krüger: Bezugsmeridiane 3 Abstand, 60 Zylinder! früher: Deutschland, Österreich! UTM (universale transversale Mercator-Karte):! Bezugsmeridiane 6 Abstand, 30 Zylinder! heute weit verbreitet!
57 Querachsige Mercator-Karte(n)! Beispiel mit 30 Zylindern! Gauß-Krüger: Bezugsmeridiane 3 Abstand, 60 Zylinder! früher: Deutschland, Österreich! UTM (universale transversale Mercator-Karte):! Bezugsmeridiane 6 Abstand, 30 Zylinder! heute weit verbreitet!
58 Sonderfall Schweiz: Schiefachsige Mercator-Karte! Bern!
59 Sonderfall Schweiz: Schiefachsige Mercator-Karte! Die Schweizerkarte, global erweitert!
60 Sonderfall Schweiz: Schiefachsige Mercator-Karte! Die Schweizerkarte, global erweitert!
61 Flächentreue Karte von Mercator / Sanson!
62 Plattkarte! an den Polen zu Punkt einbrutzeln!
63 an den Polen zu Punkt einbrutzeln!
64 Plattkarte! an den Polen zu Punkt einbrutzeln!
65 an den Polen zu Punkt einbrutzeln!
66 Flächentreue Karte von Mercator / Sanson! Auch als sinusoidale Projektion bezeichnet!
67 Erinnerung an die Schule!! Kreis und Dreieck!
68 Erinnerung an die Schule!! Kreis und Dreieck! Grundlinie = 2rπ Höhe = r Flächeninhalt = 2rπ r 2 = r 2 π
69 Erinnerung an die Schule!! Kreis und Dreieck! Grundlinie = 2rπ Höhe = r Flächeninhalt = 2rπ r 2 = r 2 π
70 Erinnerung an die Schule!! Kreis und Dreieck!
71 Flächentreu (equivalent), Herzkarte von Stab / Werner 1514!
72 Flächentreu (equivalent), Herzkarte von Stab / Werner 1514!
73 Flächentreu (equivalent), Herzkarte von Stab / Werner 1514!
74 Flächentreu (equivalent), Herzkarte von Stab / Werner 1514! Johannes Stabius! vor !
75 Flächentreu (equivalent), Herzkarte von Stab / Werner 1514! Aufgabe 4.1!
76 Etwas größeres Dreieck!
77 Etwas größeres Dreieck! Karte von Bonne!
78 Etwas größeres Dreieck! Karte von Bonne!
79 Bildsequenz!
80 Bildsequenz!
81 Bildsequenz!
82 Bildsequenz!
83 Bildsequenz!
84 Bildsequenz!
85 Bildsequenz!
86 Bildsequenz!
Orthografische Projektion!
Kartenprojektionen! Orthografische Projektion! Immer der Nase nach! Großkreise statt Geraden! α = 15 Blick von der Seite! Steigungswinkel α { 15, 45, 75 } Was ist denn das?! Verzerrungsellipsen (Indikatrix
Hans Walser. Maßstab 1:1! www.walser- h- m.ch/hans
Hans Walser Maßstab :! www.walser- h- m.ch/hans Literarische Literatur!! Grommes, Wieland (2009): Vermessungen, Vermessenheiten.!!Kartografische Fragmente. Essay.!!Frauenfeld: Waldgut Verlag. ISBN 978-3-03740-372-3.!
Kartografie I. Hans Walser. Kartenprojektionen Lernumgebung
Kartografie I Hans Walser Kartenprojektionen Lernumgebung Hans Walser: Kartenprojektionen. Lernumgebung ii Inhalt Parameterdarstellung der Kugel... 2 Geodätische Linien... 3 Kegelprojektion: Variante mit
Formelsammlung zur Vorlesung. Kartenentwürfe. Hans Havlicek
Formelsammlung zur Vorlesung Kartenentwürfe Hans Havlicek Institut für Diskrete Mathematik und Geometrie der TU Wien Forschungsgruppe Differentialgeometrie und Geometrische Strukturen Internet: www.geometrie.tuwien.ac.at/havlicek/
Gekrümmte Erdkugel Flache Landkarte Geometrie und Kartenentwürfe
Gekrümmte Erdkugel Flache Landkarte Geometrie und Kartenentwürfe 29. Fortbildungstagung für Geometrie Bundesinstitut für Erwachsenenbildung, St. Wolfgang, 6. November 2008 HANS HAVLICEK FORSCHUNGSGRUPPE
Einhundert Projektionsprobleme ein Programm zum Zeichnen von Karten
Einhundert Projektionsprobleme ein Programm zum Zeichnen von Karten Enter Cartography Universität für Angewandte Kunst Wien, 16. Juni 2011 HANS HAVLICEK FORSCHUNGSGRUPPE DIFFERENTIALGEOMETRIE UND GEOMETRISCHE
Gekrümmte Erdkugel Flache Landkarte Geometrie und Kartenentwürfe
Gekrümmte Erdkugel Flache Landkarte Geometrie und Kartenentwürfe Arge DG/GZ Wien TU Wien, 5. März 2008 HANS HAVLICEK FORSCHUNGSGRUPPE DIFFERENTIALGEOMETRIE UND GEOMETRISCHE STRUKTUREN INSTITUT FÜR DISKRETE
2.1 Steigung 1. Die Geraden mit Steigung ±1 folgen den Diagonalen der Netzquadrate (Abb. 2). Abb. 1: Plattkarte. Abb. 2: Situation auf der Karte
Hans Walser, [20131216a], [20140308] Sphärische Spiralen 1 Idee Die Idee ist einfach: Wir zeichnen auf einer Weltkarte eine schräg ansteigende Gerade und studieren deren Bild auf der Kugel. Je nach Kartentyp
Karten, Projektionen und Referenzsysteme
Karten, Projektionen und Referenzsysteme Dr. Thomas Schwotzer 23. Oktober 2013 Zusammenfassung In der praktischen Arbeit benötigt man Karten. Die Erde ist aber leider keine Scheibe, sondern (in einer gewissen
Mathematik und Landkarten
Mathematik und Landkarten Hans Havlicek Einleitung Die Kartenentwurfslehre beschäftigt sich mit der Darstellung der (gekrümmten) Erdoberfläche in einer (ebenen) Karte. In diesem Beitrag sollen einige mathematische
Differentialgeometrie II (Flächentheorie) WS
Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 10 8. Januar 2014 c Daria Apushkinskaya 2014 () Flächentheorie: Lektion 10 8. Januar 2014 1 / 21 10. Konforme Abbildungen 10. Konforme Abbildungen
Hans Walser. Maßstab 1:1. Tag der Mathematik. Karl-Franzens-Universität Graz. Donnerstag, 5. Februar 2015
Hans Walser Maßstab 1:1 Tag der Mathematik Karl-Franzens-Universität Graz Donnerstag, 5. Februar 2015 Zusammenfassung Es werden exemplarisch geometrische Beispiele aus der Ausbildung Studierender in Geomatik,
Abb. 1: St. Galler-Brot. 2.1 Formelsammlung In der Formelsammlung finden wir für den Flächeninhalt A einer Kugelzone: A = 2πRh (1)
Hans Walser, [20180112] Brotkruste Anregungen: Sebastian Baader, Bern, und Anselm Lambert, Saarbrücken 1 Worum geht es? In einigen Gegenden der Schweiz gibt es ein annähernd kugelförmiges Brot, das so
Ebene Schnitte einer Kugel
Ebene Schnitte einer Kugel Eine Kugel Φ(M,r) und eine Ebene Σschneiden sich in einem Kreis k(σ, M k, r k ), falls der Abstand d des Kugelmittelpunkts von Σ kleiner r ist. Φ Φ k r=r k d M k r k M=M k k
Äquivalenz der winkeltreuen Kartenentwürfe der Kugel
Äquivalenz der winkeltreuen Kartenentwürfe der Kugel Dipl.-Ing.(FH Kapt.(AG Wolf Scheuermann Bremen, Herbst 001 Abstract Mathematisch gesehen gibt es nur einen winkeltreuen Entwurf: den konformen Lambert
Georeferenzierung, Koordinatensysteme
Georeferenzierung, Koordinatensysteme Georeferenzierung = Verortung von Informationen im Raum => Zuordnung von Koordinaten Problem: wünschenswert wäre ein rechteckiges Koordinatensystem, die Erde ist aber
x2. Sphärische Trigonometrie Ein sphärisches Dreieck wird durch 3 Grössen bestimmt. Das Ziel der sphärischen Trigonometrie ist es, Beziehungen zwische
Kapitel II Sphärische Geometrie x1. Sphärische Dreiecke Die 2-dimensionale (Einheit-)Sphäre ist die Fläche S 2 Φ P 2 R 3 jj! OPj 1 Ψ : Zwei Punkte A; B 2 S 2, welche verschieden und nicht antipodal sind,
Kürzester Abstand. Abb.1
Kürzester Abstand Im Januar 2011 meldete die Lufthansa, dass eines ihrer Flugzeuge des Typs Boeing 747 über Grönland den Flug nach San Francisco wegen Ölverlustes in einem der vier Triebwerke abgebrochen
5 Sphärische Trigonometrie
$Id: sphaere.tex,v 1.17 016/07/1 16:3:40 hk Exp $ 5 Sphärische Trigonometrie 5.5 Geographische Koordinaten Wir beschäftigen uns gerade mit der Berechnung des Weges zwischen zwei in geographischen Koordinaten
Kartenprojektion. gnonomische Projektion. Zylinderentwürfe
Grundsätze der Kartographie Um die Erdoberfläche für die u. a. navigatorische Nutzung darzustellen, macht es sich erforderlich, mit den Grundlagen der Kartographie vertraut zu sein. Der Globus (lat. Kugel)
Algorithmen für geographische Informationssysteme
Algorithmen für geographische Informationssysteme. Vorlesung:. Oktober 01 Jan-Henrik Haunert Bezugssysteme und Kartenabbildungen Welche Form hat die Erde? Wie gebe ich eine Position an? Wie bilde ich die
Der Entwurf von Winkel oder "Wieviel Geometrie steckt in einer Schulwandkarte?" Von Hans Havlicek, Wien.
Der Entwurf von Winkel oder "Wieviel Geometrie steckt in einer Schulwandkarte?" Von Hans Havlicek, Wien. In vielen Schulklassen hängen geographische Karten, insbesondere dürfte die in Figur 1 abgebildete
KARTENNETZENTWÜRFE. Grundlagen, Gliederung und Bezeichnung der Netzentwürfe, Literaturverzeichnis. Grundlagen der Kartographie
HOCHSCHULE FÜR TECHNIK UND WIRTSCHAFT DRESDEN (FH) Fachbereich Vermessungswesen/Kartographie Studiengang Kartographie Prof. Dr.-Ing. Martina Müller KARTENNETZENTWÜRFE Grlagen, Gliederung Bezeichnung der
Funktionen mehrerer Variablen: Integralrechnung. Aufgaben mit Lösungen. Jörg Gayler, Lubov Vassilevskaya
Funktionen mehrerer Variablen: Integralrechnung ufgaben mit Lösungen Jörg Gayler, Lubov Vassilevskaya Inhaltsverzeichnis ii Doppelintegrale. Doppelintegrale.. Doppelintegrale mit konstanten Integrationsgrenzen
(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.
13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene
Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89
Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis...2 2. Leitfaden...3 3.
Koordinatensysteme.
Koordinatensysteme http://wwwiuk.informatik.uni-rostock.de/ [email protected] Klassifizierung Symbolische Koordinatensysteme Adressen (Land, Stadt, Straße, Hausnummer, Etage, Raum) Referenzen
GPS - Anwendungen. im Zusammenhang mit satellitengestützter Ortung
im Zusammenhang mit satellitengestützter Ortung Gestalt der Erde und Darstellungsmöglichkeiten auf Karten : Die Erde hat annähernd Kugelform. Durch die Erdrotation entsteht eine Abplattung an den Polen
Tutorial: Kartennetzentwürfe und Koordinatensysteme
Tutorial: Kartennetzentwürfe und Koordinatensysteme Kartennetzentwürfe und Koordinatensysteme In dieser Lerneinheit soll das Problem der Abbildung der gekrümmten Erdfigur auf eine Ebene oder eine andere
Mathematik II: Übungsblatt 01: Lösungen
N.Mahnke Mathematik II: Übungsblatt 01: Lösungen Verständnisfragen: 1. Was versteht man unter einer parametrisierten ebenen Kurve? Eine parametrisierte ebene Kurve ist eine auf dem offenen Intervall ]t
Triangulierungen und Kartographie
Triangulierungen und Kartographie Ein Einblick in geometrische und topologische Methoden Stefan Krauss, Clara Löh Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg 30. Oktober 2015 Was
Triangulierungen und Kartographie
Triangulierungen und Kartographie Ein Einblick in geometrische und topologische Methoden Stefan Krauss, Clara Löh Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg 23. Juli 2014 Was verraten
Kartografie I. Hans Walser. Koordinatensysteme und Transformationen
Kartografie I Hans Walser Koordinatenssteme und Transformationen Hans Walser: Koordinatenssteme und Transformationen ii Inhalt Koordinatenssteme.... Kartesische Koordinaten....2 Polarkoordinaten... 2.3
Die Kugel. Mathematische Betrachtungen von Peter Franzke
Die Kugel Mathematische Betrachtungen von Die Einheitssphäre S 1. Die Kugel Geometrie: gekrümmte geschlossene Fläche, deren Punkte von einem festen Punkt M (Kugelmittelpunkt) einen festen Abstand r (Kugelradius)
Dreh- und Schraubflächen
Vorlesung 9 Dreh- und Schraubflächen 9.1 Drehflächen Betrachte eine in der Ebene {y = 0} liegende reguläre Kurve c(r) = (r,0,f(r)). Denken wir uns diese um die z-achse gedreht, erhalten wir eine Dreh-
Betrachtungen zur Kartographie unter besonderer Berücksichtigung der Stereographischen Projektion
Richard Mertenbacher Betrachtungen zur Kartographie unter besonderer Berücksichtigung der Stereographischen Projektion 1. Die Anfänge der Kartographie Kartenähnliche Darstellungen und Skizzen zur Orientierung
D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Lösungen zu Serie 8. F n ds = (0 + 0) dx dy = 0. (1 ( 1)) dx dy = 2
D-EDW, D-HET, D-UY Mathematik II F Dr. Ana annas Lösungen zu erie 8. a) Wir berechnen den Fluss von F mittels Green F n ds + ) dx dy und die Zirkulation F T ds )) dx dy wobei Vol ) den Flächeninhalt des
Übung Digitale Kartographie 2007/2008
Physische Geographie Uni Augsburg Übung Digitale Kartographie 2007/2008 Andreas Philipp Physische Geographie Uni Augsburg Inhalt: Einüben von Techniken zur Erstellung einer digitalen Karte: 1.) 2.) 3.)
Die Neugestaltung der topographischen Karten Österreichs basierend auf dem UTM-Referenzsystem
Die Neugestaltung der topographischen Karten Österreichs basierend auf dem UTM-Referenzsystem Walter Gruber Institut für Geographie und angewandte Geoinformatik der Universität Salzburg Die Neugestaltung
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen 1. Juni 13 *Aufgabe 1. erechnen Sie durch Übergang zu Polar-, Kugel- oder Zylinderkoordinaten die Fläche bzw. das Volumen (a) der von der Lemniskate x y (x + y ) = umschlossenen
A. N. Danilewsky 31. Fortsetzung von Kapitel 2
A. N. Danilewsky 31 Fortsetzung von Kapitel 2 2.3 Darstellung von Körpern... 32 2.3.1 Othogonale Parallelprojektion... 32 2.3.2 Stereographische Projektion... 34 2.3.3 Gnomonische Projektion... 42 32 Kristallographie
Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89
Transformation von Gauß-Krüger(GK)- Koordinaten des Systems MGI in Universal Transversal Mercator(UTM)- Koordinaten des Systems ETRS89 Inhaltsverzeichnis Leitfaden... 3 Ellipsoidparameter und abgeleitete
Die stereografische Projektion. Hans Walser
Die stereografische rojektion Hans Walser Die stereografische rojektion ii Inhalt 1 Worum geht es?...1 2 Die stereografische rojektion ist winkeltreu...3 3 Die stereografische rojektion ist kreistreu...5
Sinus- und Kosinussatz
Sinus- und Kosinussatz Aufgabe 1 Bestimme für 0 α 360 die zwei Winkel, für die gilt a) sin α = 0,2 b) sin α = -0,74 c) cos α = 0,84 d) cos α = -0,05 e) tan α = 21 f) tan α = -0,51 g) cos α = -0,9 h) tan
Differentialgeometrie II
Differentialgeometrie II Zusammenfassung von Tilmann Bitterberg HfT-Stuttgart, den 9. Juli 2001 Inhaltsverzeichnis 15 Regelflächen 3 15.1 Darstellung von Regelflächen......................... 3 15.2 Begleitendes
Kurventheorie. 1.1 Parameterdarstellung. 1.2 Reguläre Kurven
Diese kleine Formelsammlung ist ein Hilfsmittel für die studienbegleitende Prüfung am 30. August 2012. Sie ist kein Ersatz für eine Vorlesungsmitschrift. Die Formelsammlung wird einseitig im Format DIN
Koordinatensysteme der Erde
Koordinatensysteme der Erde Es gibt verschiedene Arten, die Position eines Punktes auf der Oberfläche einer Kugel (manchmal auch Sphäre genannt) darzustellen, jede hat ihre Vor-und Nachteile und ist für
Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.
Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden
6.4 Oberflächenintegrale 1. und 2. Art
6.4 Oberflächenintegrale. und. Art 6.4. Integration über Flächen im Raum Es gibt verschiedene Möglichkeiten der arstellung von Flächen im Raum:. explizite arstellung als Graph z = f(x, y), was aber eigentlich
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion
Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt
BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/6
Aufgabe : BMS Mathematik T Abschlussprüfung_ Seite: / a) Bestimmen Sie die Funktionsgleichungen der folgenden Graphen..5P b) Bestimmen Sie die Funktionsgleichung der Umkehrfunktion f - () zur Funktion
Kartenkunde und GPS Teil 1. Pfadfinder Siedlung Hallimasch
Kartenkunde und GPS Teil 1 Pfadfinder Siedlung Hallimasch Karte was ist das? Karten sind verkleinerte vereinfachte inhaltlich ergänzte und erläuterte Grundrissbilder der Erdoberfläche oder Teilen davon
Die Luftfahrtkarte ICAO 1 : ist a) nur winkeltreu b) nur streckentreu c) flächen-, strecken- und winkeltreu d) nur flächentreu
NAV K1. Welche Aussage ist nicht richtig? a) Die äquatorständige stereographische Projektion findet in der Navigation keine besondere Anwendung b) Die Mercatorkarte dient besonders in niedrigen Breiten
Projektionssysteme und Bezugsrahmen der Gegenwart
armasuisse Projektionssysteme und Bezugsrahmen der Gegenwart geosuisse nordwest "Leonhard Euler als Geograph" Urs Marti, Basel, 7. November 2007 Inhalt Historischer Überblick Generelles zu Projektionen
Analysis 3 - Klausur - Lösung
Wintersemester 23/24, Universität Bonn Analysis 3 - Klausur - Lösung Aufgabe : Sigma-Algebren (4+6 Punkte) a) Sei X eine Menge. Sei F = {{} : X}. Bestimmen Sie σ(f). b) Sei X eine Menge, Sei S P(X). Zeigen
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3
Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung
5 Sphärische Trigonometrie
$Id: sphaere.tex,v 1.15 2016/07/08 13:57:53 hk Exp $ 5 Sphärische Trigonometrie 5.3 Kleinkreise als sphärische Kreise In der letzten Sitzung hatten wir eingesehen das die sphärischen Kreise auf einer Sphäre
Ptolemäus (2. Jhdt. n. Chr.) gilt als erster Hersteller eines Globus und führt Längen- und Breitengrade zur Positionsangabe ein.
Die Gestalt der Erde Früheste Vorstellung: Ebene ( Erdscheibe ) Spätestens seit Pythagoras (6. Jhdt. v. Chr.) bzw. Aristoteles (4. Jhdt. v. Chr.) setzte sich die Ansicht durch, die Erde sei kugelförmig.
Koordinatensysteme und GPS
Koordinatensysteme und GPS Koordinatensysteme und GPS Koordinatensysteme: Definition Ein Koordinatensystem ist ein Bezugssystem, mit dem die Positionen von geographischen Features, Bildern und Beobachtungen,
Ptolemäus (2. Jhdt. n. Chr.) gilt als erster Hersteller eines Globus und führt Längen- und Breitengrade zur Positionsangabe ein.
Die Gestalt der Erde Früheste Vorstellung: Ebene ( Erdscheibe ) Spätestens seit Pythagoras (6. Jhdt. v. Chr.) bzw. Aristoteles (4. Jhdt. v. Chr.) setzte sich die Ansicht durch, die Erde sei kugelförmig.
II Die Gaußsche konforme Abbildung des Erdellipsoids in die Ebene 2
Inhaltsverzeichnis I Grundlagen 1 II Die Gaußsche konforme Abbildung des Erdellipsoids in die Ebene 1 Die Gauß-Krügersche Abbildung 3 1.1 Zur Geschichte der Gauß-Krüger-Koordinaten.................. 3
Abb. 1: Stereografische Projektion
Hans Walser, [20160808] Stereografische Projektion 1 Ausgangslage Wir projizieren die Erde (Geodaten) vom Nordpol aus auf die Tangentialebene im Südpol. Die Abbildung 1 zeigt die Projektion exemplarisch
Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik
Vorbereitungsaufgaben zur Klausur Mathematik I für Studierende des Studienganges Elektrotechnik und Informationssystemtechnik (Aufgaben aus Klausuren). Bestimmen und skizzieren Sie in der Gaußschen Zahlenebene
Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung
Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.
a) Im Berührungspunkt müssen die y-werte und die Steigungen übereinstimmen:
. ANALYSIS Gegeben ist die kubische Parabel f: y = x 3 6x + 8x + a) Die Gerade g: y = k x + berührt die Parabel an der Stelle x = x 0 > 0. Bestimmen Sie den Parameter k. b) Berechnen Sie den Inhalt der
K A N T O N S S C H U L E I M L E E MATHEMATIK. Grafiktaschenrechner ohne CAS, beliebige Formelsammlung
K A N T O N S S C H U L E I M L E E W I N T E R T H U R MATURITÄTSPRÜFUNGEN 06 Klasse: 4g Profil: MN Lehrperson: Rolf Kleiner MATHEMATIK Zeit: 3 Stunden Erlaubte Hilfsmittel: Grafiktaschenrechner ohne
BMS Mathematik T1 Abschlussprüfung_11 Seite: 1/7. Der Teil 1 der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
BMS Mathematik T Abschlussprüfung_ Seite: /7 Abschlussprüfung Mathematik technische BMS Teil Prüfungsdauer 0 Minuten Der Teil der Prüfung ist ohne Hilfsmittel (Formelsammlung, Taschenrechner usw.) zu lösen.
GIS. Inst. für Stadt- und Regionalforschung. Arbeitsunterlagen SoSe 04 Einheit 3 Georeferenzierung
GIS methodische und technische Grundlagen Vorlesung / 266.772 Arbeitsunterlagen SoSe 04 Einheit 3 Georeferenzierung Inst. für Stadt- und Regionalforschung Robert Kalasek Vers.04 INHALT EINHEIT 3 - GEOREFERENZIERUNG
KORREKTURVORLAGE 4. MATHEMATIKSCHULARBEIT DER 4B
KORREKTURVORLAGE 4. MATHEMATIKSCHULARBEIT DER 4B - GRUPPE A GRUPPE A GRUPPE A Aufgabe 1. (3x Punkte) (a) (b) (c) Eine Kugel hat einen Radius r = 3cm. Berechne ihr Volumen. Ein Kreis hat einen Umfang U
5 Sphärische Trigonometrie
$Id: sphaere.tex,v 1.4 2013/06/24 23:05:24 hk Exp hk $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung Wir behandeln gerade die Berechnung sphärischer Dreiecke und haben zu diesem Zweck bereits
Modul 205 Schnecken und Spiralen!
Modul 205 Schnecken und Spiralen! Radiales Netz 2 Radiales Netz Diagonalen 3 Radiales Netz 4 Radiales Netz 5 Radiales Netz 6 Radiales Netz 7 Radiales Netz 8 Archimedische Spirale 9 Archimedische Spirale
5 Sphärische Trigonometrie
$Id: sphaere.tex,v 1.8 2015/07/09 15:09:47 hk Exp $ 5 Sphärische Trigonometrie 5.3 Geographische Koordinaten b γ a P α c β P 2 P 1 λ ϕ ϕ2 Längengrad λ und Breitengrad ϕ Abstand auf Großkreis Wir betrachten
Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 08 Blatt 9.06.08 Tutorium zur Vorlesung Lineare Algebra und analytische Geometrie II Bearbeitungsvorschlag 33. a Es ist cos ϕ sin ϕ cos
1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.
1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)
Stefan Ruzika. 24. April 2016
Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers
ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang
ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der
Parameterdarstellung einer Funktion
Parameterdarstellung einer Funktion 1-E Eine ebene Kurve Abb. 1-1: Die Kurve C beschreibt die ebene Bewegung eines Teilchens 1-1 Eine ebene Kurve Ein Teilchen bewegt sich in einer Ebene. Eine ebene Kurve
D-MAVT/D-MATL FS 2017 Dr. Andreas Steiger Analysis IILösung - Serie18
D-MAVT/D-MATL FS 7 Dr. Andreas Steiger Analysis IILösung - Serie8. Klicken Sie die falsche Aussage an. a) Der Operator div ) ordnet einem Vektorfeld v ein Skalarfeld div v zu. v b) div v = x, v y, v )
Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 2009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W.
Universität Karlsruhe Klassissche Theoretische Physik II (Theorie B) Sommersemester 009 V: PD. Dr. M. Eschrig Ü: Dr. habil. W. Lang Lösungen der Klausur vom 4. September 009 Aufgabe : Pendelnde Hantel
Brückenkurs Höhere Mathematik
Vorkurse der Hochschule Aalen Brückenkurs Höhere Mathematik Aufgabensammlung März 209 Das Grundlagenzentrum (GLZ) wird aus Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) unter dem Förderkennzeichen
Ausführliche Lösungen
Ausführliche Lösungen 11.1 Die Aussage gilt für a) Rechteck, Quadrat b) Raute, Quadrat, Drachen c) Parallelogramm, Raute, Rechteck, Quadrat d) Rechteck, Quadrat e) Parallelogramm 11.2 Bei einem Parallelogramm
2. Koordinatensysteme
Räumliche Bezugssysteme und Basismodelle Lernmodul 5 Projektpartner: Universität Karlsruhe - Institut für Photogrammetrie und Fernerkundung Datum: 04.09.2003 Einleitung Um mit Daten arbeiten und um sie
Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix
Mathematik 2 SS 2016
Mathematik 2 SS 2016 2. Übungsblatt Gruppe 1 18. Man zeige, dass die Gleichung f(x, y) = y 5 e y (2x 2 + 3) sin y + x 2 y 2 x cos x = 0 in einer Umgebung des Punktes P (0, 0) nach y aufgelöst werden kann,
Lösungsvorschlag RAP HT 2005
Lösungsvorschlag RAP HT 2005 Inhalt: Pflichtaufgabe 1:... 2 Pflichtaufgabe 2:... 2 Pflichtaufgabe 3:... 2 Pflichtaufgabe 4:... 3 Pflichtaufgabe 5 :... 3 Pflichtaufgabe 6 :... 4 Pflichtaufgabe 7 :... 4
Mathematik für Anwender II
Prof. Dr. H. Brenner Osnabrück SS 2012 Mathematik für Anwender II Vorlesung 57 Die ransformationsformel für Integrale Wir kommen zur ransformationsformel für Integrale, wofür wir noch eine Bezeichnung
Übungen zur Vorlesung Differentialgeometrie I
Sommersemester 2005 Blatt 12 1) Liouvillesche Flächen sind per definitionem solche, deren erste Fundamentalform sich in der Form E = G = U + V, F = 0, schreiben lassen, wobei U = U (u) bzw. V = V (v) in
