Algorithmische Bioinformatik I

Größe: px
Ab Seite anzeigen:

Download "Algorithmische Bioinformatik I"

Transkript

1 Ludwig-Maximilians-Universität Münhen Institut für Informatik Prof. Dr. Volker Heun Sommersemester 2016 Wiederholungsklausur 19. Oktoer 2016 Algorithmishe Bioinformatik I Vorname Name Matrikelnummer Reihe Platz Untershrift Hiermit stimme ih einer Veröffentlihung meines Klausurergenisses dieser Semestralklausur unter Verwendung meiner Matrikelnummer im Internet zu. Ja Nein (Untershrift) Allgemeine Hinweise zur Semestralklausur Vor der Prüfung ist diese Seite mit Vornamen, Namen, Matrikelnummer, Reihe und Platz leserlih mit Drukuhstaen zu versehen und zu untershreien. Bitte niht in roter oder grüner Fare zw. niht mit Bleistift shreien. Der Studentenausweis und ein amtliher Lihtildausweis sind ereit zu halten. Die reine Beareitungszeit eträgt 120 Minuten. Es sind insgesamt 40 Punkte zu erreihen, zum Bestehen sind 17 Punkte nötig. Viel Erfolg! Hörsaal verlassen von... is... von... is... Vorzeitig agegeen um... Hz A1 A2 A A4 A5 Erstkorrektur Nahkorrektur Zweitprüfer

2 Aufgae 1 (8 Punkte) Gi das Master-Theorem aus der Vorlesung an. Spezifiziere hierzu insesondere die drei vershiedenen Fälle und gi an, welhe Lösung der jeweilige Fall esitzt. Bestimme die Asymptotik von T(n) mithilfe des Master-Theorems aus der Vorlesung unter Angae einer der drei Fälle (siehe oen) mit Begründung zw. egründe, warum das Master-Theorem niht anwendar ist. Es gilt daei immer T(1) = 1: a) T(n) = 2 T(n/4)+ n, ) T(n) = 4 T(n/)+n 2. ) T(n) = T(n/)+n/log(n). Seien a,,d N mit > 1, sei f(n) eine Funktion und sei T(n) definiert durh die Rekursionsgleihung T(n) = a T(n/)+f(n) für n > 1 und T(1) = d. Dann gilt: Θ(n log (a) ) falls f(n) = O(n log (a) e ) für ein konstantes e > 0 Θ(n T(n) = log (a) log(n)) falls f(n) = Θ(n log (a) ) Θ(f(n)) falls f(n) = Ω(n log (a)+e ) für ein konstantes e > 0 und a f(n/) f(n) für ein konstantes < 1 a) Für das Master-Theorem erhalten wir a = 2, = 4 und f(n) = n. Es gilt log 4 (2) = 1 2 und somit f(n) = n = n 1/2 = Θ(n log 2 (4) ) = Θ(n log (a) ). Also gilt der zweite Fall des Master-Theorems und es ist T(n) = Θ(f(n)log(n)) = Θ( nlog(n)). ) Für das Master-Theorem erhalten wir a = 4, = und f(n) = n 2. Da offensihtlih 1 < log (4) < 2 gilt, gilt auh log (4) = 1 + e für ein geeignetes e (0,1). Damit erhalten wir f(n) = n 2 = Ω(n 1+e ) = Ω(n log (a)+e ) für das oige e (0,1/2). Weiter ist 4 ) n2! f(n) und somit gilt der dritte Fall des Master-Theorems mit = 4 9 T(n) = Θ(f(n)) = Θ(n 2 ). < 1 und wir erhalten ) Für das Master-Theorem erhalten wir a =, = und f(n) = n/log(n). Es gilt log (a) = log () = 1. Es gilt n/log(n) = ω(n 1 e ) für alle e > 0. Also ist f(n) = n/log(n) = ω(n 1 e ) und damit f(n) O(n 1 e ) = O(n log (a) e ) für alle e > 0 und Fall 1 ist niht zutreffend. Weiter ist f(n) = n/log(n) = ω(n) und daher f(n) Θ(n) = Θ(n log (a) ). Fall 2 trifft also niht zu. Da n/log(n) = o(n), ist auh f(n) = n/log(n) Ω(n 1+e ) für alle e > 0. Das Master- Theorem ist also auh im Fall niht anwendar. [SS16] 2

3 Aufgae 2 (8 Punkte) Betrahte die folgende Suhwortmenge S = {a, a,, a,, a}. a) Konstruiere einen Suhwort-Baum für S nah Aho-Corasik; ) Konstruiere die Failure-Links in diesem Suhwort-Baum; ) Markiere nah dem in der Vorlesung angegeenen Algorithmus von Aho und Corasik alle Knoten darin, die einem Suhwort aus S entsprehen; d) Markiere nah dem in der Vorlesung angegeenen Algorithmus von Aho und Corasik die Knoten, für die Treffer ausgegeen werden und gee die zugehörigen Hit-Links an. e) Wende den Algorithmus von Aho-Corasik mit dem konstruierten Suhwort-Baum auf das folgende Wort an: t 1 t 11 = aa. Hinweis: Verwende vershiedene Faren, aus denen ersihtlih wird, welhe Teile des Baumes(zw. welhe Annotationen) zu welhem Aufgaenteil gehören(zeihne ggf. den Baum mehrmals). 1 5 a 2 Failure-Links sind orange und gestrihelt, Hit- Links grün und gepunktet dargestellt. Die laue Zahl i git den Knoten an, an dem versuht wird, mit s i weiterzuareiten; Bei * efindet sih der Algorithmus am Ende. 6 Es werden daei die folgenden Treffer an der entsprehenden Endposition ausgegeen: a * Der Lesarkeit wegen werden hier die Worte der Treffermenge ausgegeen, normalerweise wird die Länge zw. die daraus erehnete Startposition ausgegeen. 11 [SS16]

4 Aufgae (8 Punkte) Betrahte die Wörter s = BAHAMA und t = OBAMA. Berehne den ersten Shritt des Hirsherg-Algorithmus ei einem gloalen Sequenzen-Alignment für s und t zur Rekonstruktion des Traeaks. Bestimme insesondere den zw. die Shnittpunkte der Wörter s und t, d.h. die Teilwörter, für die der Hirsherg-Algorithmus rekursiv aufgerufen wird und gi das zw. die zugehörigen Alignments an. Gi dazu sowohl die eiden Taellen zur Ermittlung der Shnittpunkte an und zeihne in diesen Taellen auh die Traeak-Pfeile ein (die vom Hirsherg-Algorithmus niht verwendet werden). Die enötigten rekursiv konstruierten Alignments dürfen aus diesen Taellen agelesen werden. Die Kostenfunktion für ein Distanzmaß sei daei mit 0 für ein Math, mit für eine Sustitution und mit 2 für eine Indel-Operation gegeen. Begründe kurz in eigenen Worten, warum die Rekonstruktion eines optimalen Alignments eim Hirsherg-Algorithmus linearen Platz enötigt. B A H A M A O B A M A =10 =9 =6 =6 =9 = Damit liegt der Shnittpunkt ei (, 2), d.h. BAH AMA versus OB AMA, oder (, ), d.h. BAH AMA versus OBA MA. Die eiden Alignments lauten: ( ) ( ) BAHAMA BAHAMA zw.. OB AMA OBA MA Der Divide-Shritt enötigt jeweils linearen Platz O(n), da nur die letzten eiden Zeilen der DP-Matrix zu speihern sind. Da der Platz in den rekursiven Aufrufen wiederverwendet werden kann ist der Platzedarf hierfür insgesamt linear. Im Conquer-Shritt wird nur das Alignment aufgeaut, das insgesamt linearen Platz O(n + m) enötigt. [SS16] 4

5 Aufgae 4 (8 Punkte) Zeige, dass gilt: i 4 (n i+1) 4 Θ(n 9 ). Hinweis: Verwende daei geeignete Ashätzungen. Es gilt: i 4 (n i+1) 4 Also ist n i4 (n i+1) 4 O(n 9 ). Weiter gilt n 4 n 4 = n 8 = n 9. i 4 (n i+1) 4 = 2n i= n 2n i= n 2n i= n 2n i= n i 4 (n i+1) 4 n ) 8 4 ( n ) 4 ( n 2n ) 4 2n +1 ) 4 ( 2n n (( ) 2n ) 1 +1 ) 8 1 ) n 1 n für n 6 6 n 8 6 ) 9 6) ) +1 ) ) +1 ) Also gilt n i4 (n i+1) 4 Ω(n 9 ). Zusammen gilt also n i4 (n i+1) 4 Θ(n 9 ). [SS16] 5

6 Aufgae 5 (8 Punkte) Für ein Wort w = w 1 w m Σ m ezeihnet w R = w m w 1 Σ m das gespiegelte Wort zu w. Konstruiere einen möglihst effizienten Algorithmus, der für ein Wort t Σ n ein längstes Teilwort von t findet, dessen gespiegeltes Wort eenfalls in t vorkommt. Hinweis: Korrektheitseweis und Laufzeitanalyse niht vergessen! Wir konstruieren nun für t t R $ mit,$ / Σ mit $ den zugehörigen Suffix-Baum T. Die Größe des Suffix-Baumes eträgt O(2n) = O(n). Mit einer Tiefensuhe entfernen wir alle Teiläume, die üer das Zeihen erreihar sind. Somit enden nun alle Pfade im Suffix-Baum mit dem Zeihen oder $. Mit einer weiteren Tiefensuhe markieren wir alle Knoten des Baumes, von denen sowohl ein Blatt erreihar ist, dessen Kantenlael mit endet, als auh ein Blatt erreihar ist, dessen Kantenlael mit $ endet. Somit ist jedes Wort w, das zu einem Pfad von der Wurzel zu einem markierten Knoten des Suffix-Baumes korrespondiert, sowohl ein Präfix eines Suffixes von t als auh ein Präfix eines Suffixes von t R. Das Wort w ist also sowohl Teilwort von t als auh von t R. Damit tauht neen dem Wort w in t auh w R in (t R ) R = t auf, da w auh in t R auftauht. Somit müssen wir mit einer weiteren Tiefensuhe nur einen tiefsten(zgl. der String-Tiefe) Knoten in diesem Suffix-Baum finden. Da sowohl die Konstruktion des Suffix-Baumes in Zeit O(2n) als auh die drei Tiefensuhen nur jeweils O(n) Zeit enötigen, ist die Gesamtaufzeit O(n). [SS16] 6

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Mximilins-Universität München Institut für Informtik Prof. Dr. Volker Heun Sommersemester 2016 Semestrlklusur 21. Juli 2016 Algorithmische Bioinformtik I Vornme Nme Mtrikelnummer Reihe Pltz Unterschrift

Mehr

Technische Universität München Zentrum Mathematik

Technische Universität München Zentrum Mathematik Tehnishe Universität Münhen Zentrum Mathematik Mihael Stroel Geometriekalküle WS 7/8 http://www-m.ma.tum.de/geometriekalkuelews78 Lösungen zu Aufgaenlatt 5 (8. Dezemer 7 Aufgae. Dualisieren und Doppelverhältnis.

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Paarweises

Mehr

2. Klausur Datenstrukturen und Algorithmen SS 2014

2. Klausur Datenstrukturen und Algorithmen SS 2014 Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 2. Klausur Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik

Mehr

Algorithmentheorie. 15 Suchen in Texten (1)

Algorithmentheorie. 15 Suchen in Texten (1) Algorithmentheorie 15 Suhen in Texten (1) Prof. Dr. S. Alers Suhe in Texten Vershiedene Szenrien: Sttishe Texte Literturdtennken Biliothekssysteme Gen-Dtennken WWW-Verzeihnisse Dynmishe Texte Texteditoren

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Sommersemester 2018 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Christian Rieck Arne Schmidt Klausur Algorithmen

Mehr

Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer

Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer Präsenzübung Datenstrukturen und Algorithmen (SS 2013) Prof. Dr. Leif Kobbelt Thomas Ströder, Fabian Emmes, Sven Middelberg, Michael Kremer Dienstag, 28. Mai 2013 Nachname: Vorname: Matrikelnummer: Studiengang:

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Präsenzübung Datenstrukturen und Algorithmen SS 2014

Präsenzübung Datenstrukturen und Algorithmen SS 2014 Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder Präsenzübung Datenstrukturen und Algorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik

Mehr

2. Präsenzübung Datenstrukturen und Algorithmen SS 2014

2. Präsenzübung Datenstrukturen und Algorithmen SS 2014 Prof. aa Dr. E. Ábrahám F. orzilius, S. Schupp, T. Ströder 2. Präsenzübung Datenstrukturen und lgorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 5 Approximative Textsuhe Weseite zur Vorlesung http://ls11-www.s.tu-dortmund.de/people/rahmann/teahing/ss2008/algorithmenaufsequenzen

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Teile & Herrsche: Divide & Conquer Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Probleme: Wie setzt man zusammen? [erfordert algorithmisches Geschick

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Algorithmen auf Sequenzen Volltext-Indexdatenstrukturen: Suffixbäume

Algorithmen auf Sequenzen Volltext-Indexdatenstrukturen: Suffixbäume Algorithmen uf Sequenzen Volltext-Indexdtenstrukturen: Suffixäume Sven Rhmnn Genominformtik Universitätsklinikum Essen Universität Duisurg-Essen Universitätsllinz Ruhr Motivtion Bei wiederholten Suhen

Mehr

Über-/Rückblick. F3 01/02 p.269/294

Über-/Rückblick. F3 01/02 p.269/294 Über-/Rükblik Algorithmenbegriff: Berehenbarkeit Turing-Mashine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentehniken Algorithmenanalyse (Berehnung der Komplexität) Rekursion Iteration

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Präsenzübung Musterlösung Dienstag, 28.05.2013 Aufgabe 1 (Allgemeine Fragen [20 Punkte]) 1. Tragen Sie in der folgenden Tabelle die Best-, Average- und Worst-Case-

Mehr

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1

Würde man nun versuchen die Aufgabe 6.2 des vorigen Abschnittes rechnerisch zu lösen, so stößt man auf folgende noch unlösbare Gleichung: h 1 0 Die Logarithmusfunktion Würde man nun versuhen die Aufgae 6. des vorigen Ashnittes rehnerish zu lösen, so stößt man auf folgende noh unlösare Gleihung: h 0,88 www.etremstark.de 0,88 h Gesuht ist also

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1 Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner. Musterlösung Problem : Average-case-Laufzeit vs. Worst-case-Laufzeit ** (a) Im schlimmsten Fall werden für jedes Element

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS November 2008

Algorithmen und Datenstrukturen 1 VL Übungstest WS November 2008 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2008 07. November

Mehr

Suche in Texten: Suffix-Bäume

Suche in Texten: Suffix-Bäume Suhe in Texten: Suffix-Bäume Prof. Dr. S. Alers Prof. Dr. Th. Ottmnn 1 Suhe in Texten Vershiedene Szenrios: Dynmishe Texte Texteditoren Symolmnipultoren Sttishe Texte Literturdtennken Biliothekssysteme

Mehr

4.9.7 Konstruktion der Suffixbäume

4.9.7 Konstruktion der Suffixbäume .9.7 Konstruktion der Suffixbäume Beipiel: xabxa (siehe Abbildung.27) Man beginnt mit der Konstruktion eines Suffixbaumes für gesamten String und schreibt eine 1 am Blatt, weil der Suffix xabxa an der

Mehr

Mathe an Stationen. Mathe an Stationen 10 Inklusion. Trigonometrie am rechtwinkligen Dreieck. Bernard Ksiazek. Klasse

Mathe an Stationen. Mathe an Stationen 10 Inklusion. Trigonometrie am rechtwinkligen Dreieck. Bernard Ksiazek. Klasse Bernard Ksiazek Mathe an Stationen 10 Inklusion Trigonometrie am rehtwinkligen Dreiek Sekundarstufe ufe I Bernard Ksiazek Downloadauszug aus dem Originaltitel: Mathe an Stationen Klasse Materialien zur

Mehr

4.4 Anwendungen von Suffixbäumen und Suffix-Arrays

4.4 Anwendungen von Suffixbäumen und Suffix-Arrays 4.4 Anwendungen von Suffixbäumen und Suffix-Arrays exakte Suche in unveränderlichen Texten (schon besprochen) inexakte Suche in unveränderlichen Texten Finden von Regelmäßigkeiten (z.b. längste Wiederholungen)

Mehr

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2 Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Wintersemester 2017/2018 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Christian Rieck Arne Schmidt Klausur Algorithmen

Mehr

7. Grassmannsche Vektoren und die Drehungen im Raum.

7. Grassmannsche Vektoren und die Drehungen im Raum. 7. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen im vorigen Kapitel gesehen, wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005 Prof. Dr. Shmidt-Thieme / Mihael Rottmann Areitslatt Algera SS 2005 Gruppen Lösungen.) i) Die ist neutrales Element der Multiplikation. (M, é ) ist damit keine Gruppe, denn es git keine inversen Elemente

Mehr

Kapitel 3: Sortierverfahren Gliederung

Kapitel 3: Sortierverfahren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015 Lösungsvorschläge

Klausur zur Vorlesung Grundbegriffe der Informatik 14. September 2015 Lösungsvorschläge Klausur zur Vorlesung Grundegriffe der Informatik 14. Septemer 2015 svorschläge Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GBI Email-Adr.: nur falls 2.

Mehr

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 2. März 2016

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 2. März 2016 Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundegriffe der Informatik 2. März 2016 Klausurnummer Nachname: Vorname: Matr.-Nr.: Diese Klausur ist mein 1. Versuch 2. Versuch in GI Email-dr.:

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Wintersemester 2014/2015 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Dr. Christian Scheffer Klausur Algorithmen

Mehr

1. Klausur Datenstrukturen und Algorithmen SS 2014

1. Klausur Datenstrukturen und Algorithmen SS 2014 Prof. aa Dr. E. Ábrahám F. Corzilius, S. Schupp, T. Ströder 1. Klausur Datenstrukturen und lgorithmen SS 2014 Vorname: Nachname: Studiengang (bitte genau einen markieren): Informatik Bachelor Informatik

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Wintersemester 2016/2017 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Phillip Keldenich Arne Schmidt Klausur Algorithmen

Mehr

Wirtschaftsmathematik - Übungen WS 2018

Wirtschaftsmathematik - Übungen WS 2018 Wirtshftsmthemtik - Üungen WS 8 Bltt : Linere Alger. Gegeen ist eine eine 3 3 Mtrix C =( ij ) mit un eine Mtrix B = A ) Shreien Sie ie Mtrix C n! Y _] j i für ij

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das Kreisgeobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das Kreisgeobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Maro Bettner, Erik Dinges Mathe an Stationen Das in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Maro Bettner Erik Dinges Mathe an Stationen Umgang mit dem Geobrett

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 3.1 (P) Master-Theorem

Abgabe: (vor der Vorlesung) Aufgabe 3.1 (P) Master-Theorem TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 3 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 4 Abgabe: Montag, 13.05.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes Gruppenmitglieds

Mehr

Relationen: Verkettungen, Wege, Hüllen

Relationen: Verkettungen, Wege, Hüllen FH Gießen-Frieerg, Sommersemester 00 Lösungen zu Üungsltt 9 Diskrete Mthemtik (Informtik) 9./. Juni 00 Prof. Dr. Hns-Ruolf Metz Reltionen: Verkettungen, Wege, Hüllen Aufge. Es ezeihne R ie Reltion {(,

Mehr

Bitte füllen Sie den untenstehenden Abschnitt nicht aus

Bitte füllen Sie den untenstehenden Abschnitt nicht aus Institut für Informatik Prof. Dr. Michael Böhlen Binzmühlestrasse 14 8050 Zurich Telefon: +41 44 635 4333 Email: boehlen@ifi.uzh.ch AlgoDat Midterm1 Frühjahr 2014 28.03.2014 Name: Matrikelnummer: Hinweise

Mehr

Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten

Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten Semester: AI2, WI2 Bearbeitungszeit: 90 Min. Hilfsmittel: kein prog. C SS 2010, 07.07.2010 90% Punkte entspr. Note 1,0 50% Punkte entspr.

Mehr

Wirtschaftsmathematik - Übungen SS 2018

Wirtschaftsmathematik - Übungen SS 2018 Wirtshftsmthemtik - Üungen SS 8 Bltt : Linere Alger. Gegeen sin ie Punkte P =( 3, ) un =(6, ). Bestimmen Sie ie Prmeterrstellung er Geren urh iese Punkte! Zeihnen Sie iese Gere! Wie lutet ie Koorintenrstellung

Mehr

ÜBUNGSKLAUSUR Studienhalbjahr: 2. Semester. Datum: 20. Juli 2016 Bearbeitungszeit: 90 Minuten. Modul: T2INF Dozent: Stephan Schulz

ÜBUNGSKLAUSUR Studienhalbjahr: 2. Semester. Datum: 20. Juli 2016 Bearbeitungszeit: 90 Minuten. Modul: T2INF Dozent: Stephan Schulz Matrikelnummer: Fakultät Studiengang: Jahrgang / Kurs : Technik Angewandte Informatik 01 B/C/K ÜBUNGSKLAUSUR Studienhalbjahr:. Semester Datum: 0. Juli 01 Bearbeitungszeit: 90 Minuten Modul: TINF100.1 Dozent:

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. Vorrechnen von Aufgabenblatt 1. Wohlgeformte Klammerausdrücke 3. Teile und Herrsche Agenda 1.

Mehr

SS 2018 Torsten Schreiber

SS 2018 Torsten Schreiber SS 08 orsten Shreier 8 Beim inneren Produkt ) wird komponentenweise multipliziert und die entstehenden Produkte nshließend. Somit hndelt es sih um keine d nur eine Zhl Sklr) ls Lösung heruskommt. Ds Sklrprodukt

Mehr

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise

Diskrete Strukturen. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift ... Allgemeine Hinweise Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 7 Prof. Dr. Javier Esparza Wintersemester 2008/09 Abschlussklausur 7. Februar 2009 Diskrete Strukturen Name Vorname Studiengang

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Name: Vorname: Matrikelnr.: Tutorium: Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) [2 Punkte] Nennen Sie zwei Konzepte,

Mehr

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2018 Dienstag 5.6. $Id: dreieck.tex,v /06/05 15:41:51 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mthemtishe Proleme, SS 2018 Dienstg 5.6 $Id: dreiek.tex,v 1.43 2018/06/05 15:41:51 hk Exp $ 2 Dreieke 2.1 Dreiekserehnung mit Seiten und Winkeln Am Ende der letzten Sitzung htten wir den sogennnten Kongruenzstz

Mehr

Wirtschaftsmathematik - Übungen WS 2015/16

Wirtschaftsmathematik - Übungen WS 2015/16 Wirtshftsmthemtik - Üungen WS 25/6 Bltt 2: Linere Alger. Gegeen sin ie Punkte P =( 2, 2) un =(4, ). ) Bestimmen Sie ie Prmeterrstellung er Geren urh iese Punkte! Zeihnen Sie ie Gere! Wie lutet ie Koorintenrstellung

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Klausur Wichtige Hinweise: 2.7.07, Beginn 9 Uhr Bitte spätestens 8:4 Uhr vor Ort sein Sporthalle + Audimax Informationen

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 13.02.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal 100 Punkte erreicht

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Klausur Algorithmen und Datenstrukturen

Klausur Algorithmen und Datenstrukturen Technische Universität Braunschweig Wintersemester 2013/2014 Institut für Betriebssysteme und Rechnerverbund Abteilung Algorithmik Prof. Dr. Sándor P. Fekete Stephan Friedrichs Klausur Algorithmen und

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS November 2007

Algorithmen und Datenstrukturen 1 VL Übungstest WS November 2007 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2007 16. November

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Effiziente Algorithmen SS 2008 Grundlagen: Algorithmen und Datenstrukturen Midterm-Klausur Prof. Dr. Christian Scheideler, Dr. Stefan

Mehr

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat.

P 2. Bemerkung 3: Im Folgenden wird das Konstruktionsverfahren beschrieben. Die Beweise überlassen wir dem der Lust hat. Hans Walser, [20150318] Brennpunkte der Ellipse 1 Worum geht es? Eine Ellipse sei durh fünf Punkte,...,P 5 gegeben (Abb. 1). P5 P 4 P 3 Abb. 1: Eine Ellipse durh fünf Punkte Gesuht sind die Brennpunkte

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Der Begriff der Stammfunktion

Der Begriff der Stammfunktion Lernunterlgen Integrlrehnung Der Begriff der Stmmfunktion Wir gehen von folgender Frgestellung us: welhe Funktion F x liefert ls Aleitung eine gegeene Funktion f x. Wir suhen lso eine Umkehrung der Aleitung

Mehr

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper

1. Überlege, ob die gegebenen Körper mit einem geometrischen Grundkörper 1 Anwendungsaufgaen Geh ei Anwendungsaufgaen zu Körpererehnungen folgendermaßen vor: 1. Üerlege, o die gegeenen Körper mit einem geometrishen Grundkörper üereinstimmen.. Findest du keine Üereinstimmung,

Mehr

Lösungsvorschlag 1. Vorlesung Algorithmentechnik im WS 09/10

Lösungsvorschlag 1. Vorlesung Algorithmentechnik im WS 09/10 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Lösungsvorschlag Vorlesung Algorithmentechnik im WS 09/0 Problem : Dynamisches Array (Amortisierte Analyse) [vgl. Kapitel 0.3 im Skript]

Mehr

Laufzeitanalyse (1) demogr.

Laufzeitanalyse (1) demogr. Laufzeitanalyse (1) demogr. int i=1; for (int j = 1; j

Mehr

Tutorium 23 Grundbegriffe der Informatik (9. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (9. Sitzung) Tutorium 23 Grundbegriffe der Informatik (9. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Übungsaufgaben zur Klausurvorbereitung

Übungsaufgaben zur Klausurvorbereitung Üungsaufgaen zur Klausurvorereitung Üungsaufgaen zur Klausurvorereitung. Ein Plattenkondensator esteht aus zwei quadratishen Metallplatten der Seitenlänge m. Der Plattenastand eträgt 8, 0 mm. Die Anordnung

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 24.02.2011 M. Poloczek Klausur Algorithmentheorie WS 2010/2011 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Shufhprinzip (Folie 137) Automten und formle Sprhen Notizen zu den Folien Im Blok Ds Shufhprinzip für endlihe Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl von

Mehr

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015 Datenstrukturen und Algorithmen Vorlesung 8: (K6) 1 Joost-Pieter Katoen Lehrstuhl für Informatik Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 7. Mai 015 3 Joost-Pieter

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Weitere Grundlagen Maike Buchin 20.4.2017 Wiederholung wir interessieren uns für effizienten Algorithmen und Datenstrukturen Laufzeiten messen wir asymptotisch in der Oh-Notation

Mehr

Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten

Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten Klausur Grundlagen der Informatik Hochschule Ravensburg-Weingarten Semester: AI2, WI2 Bearbeitungszeit: 90 Min. Hilfsmittel: kein prog. C WS 09/10, 16.02.2010 90% Punkte entspr. Note 1,0 50% Punkte entspr.

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Suffixbäume Ulf Leser Wissensmanagement in der Bioinformatik Ziele Perspektivenwechsel: Von Online zu Offline-Stringmatching Verständnis von Suffix-Bäumen als Datenstruktur

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

Auswertung von Operatorbäumen Huffman-Code

Auswertung von Operatorbäumen Huffman-Code Datenstrukturen: Bäume 4 Bäume 4. Terminologie und Grundlagen: Modelle für Graphen und Bäume 4.. Spezifikation und einfahe Algorithmen 4. Anwendungen - 4.. Auswertung von Operatoräumen - 4.. Huffman-Code

Mehr

Übersicht. Datenstrukturen und Algorithmen. Die Teile-und-Beherrsche-Methode. Übersicht. Vorlesung 3: Rekursionsgleichungen (K4)

Übersicht. Datenstrukturen und Algorithmen. Die Teile-und-Beherrsche-Methode. Übersicht. Vorlesung 3: Rekursionsgleichungen (K4) Datenstrukturen und Algorithmen Vorlesung 3: (K4) 1 e für rekursive Algorithmen Prof. Dr. Erika Ábrahám 2 Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Informatik 3 Theoretische Informatik WS 2015/16

Informatik 3 Theoretische Informatik WS 2015/16 Probeklausur 20. November 2015 Informatik 3 Theoretische Informatik WS 2015/16 Prof. Dr. Peter Thiemann Albert-Ludwigs-Universität Freiburg Institut für Informatik Name: Matrikel-Nr.: Schreiben Sie Ihren

Mehr

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist.

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Aufgabe 1 (O-Notation): Beweisen oder widerlegen Sie die folgenden Aussagen: (3 + 3 + 4 = 10 Punkte)

Mehr

4. Tries und kd-bäume

4. Tries und kd-bäume 4. Tries und kd-bäume Digitale Suchbäume (Tries) kd-bäume Prof. Dr. O. Bittel, HTWG Konstanz Algorithmen und Datenstrukuren Tries und kd-bäume SS 2019 4-1 Tries (1) Problem mit den bisherigen Suchbäumen

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Informatik II: Algorithmen und Datenstrukturen SS 2015

Informatik II: Algorithmen und Datenstrukturen SS 2015 Informatik II: Algorithmen und Datenstrukturen SS 2015 Vorlesung 8b, Mittwoch, 17. Juni 2015 (Balancierte Suchbäume) Prof. Dr. Hannah Bast Lehrstuhl für Algorithmen und Datenstrukturen Institut für Informatik

Mehr

Σ /6 /6 /6 /6 /24

Σ /6 /6 /6 /6 /24 DECKBLATT IN DRUCKSCHRIFT AUSFÜLLEN! Name: Vorname: Matrikelnr.: Tutor: Johanna Lena Max Michael Klausur zur Vorlesung Informatik B ( Dr. Frank Hoffmann) Sommersemester 2006 19. Juli 2006 Beginn: 8 30

Mehr

Algorithmen und Datenstrukturen VO UE 2.0 Nebentermin Vorlesungsprüfung / 4. Übungstest SS

Algorithmen und Datenstrukturen VO UE 2.0 Nebentermin Vorlesungsprüfung / 4. Übungstest SS Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 8.089 VO.0 + 8. UE.0 Nebentermin Vorlesungsprüfung

Mehr

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten!

Name Vorname Fachrichtg. Matrikelnr. Punkte Klausur Aufgabe max. Punkte Punkte. Bitte beachten! Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Mihael Höding Modulprüfung Mathematik III Fahrihtung: Computer Siene in Engineering, Computervisualistik, Informatik,

Mehr

2.2 Der Algorithmus von Knuth, Morris und Pratt

2.2 Der Algorithmus von Knuth, Morris und Pratt Suchen in Texten 2.1 Grundlagen Ein Alphabet ist eine endliche Menge von Symbolen. Bsp.: Σ a, b, c,..., z, Σ 0, 1, Σ A, C, G, T. Wörter über Σ sind endliche Folgen von Symbolen aus Σ. Wörter werden manchmal

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16

Datenstrukturen & Algorithmen Lösungen zu Blatt 2 FS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérle de Zurich Politecnico federle di Zurigo Federl Institute of Technology t Zurich Institut für Theoretische Informtik 9. März 2016

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 28 (Algorithmen & Datenstrukturen) Vorlesung 22 (6.7.28) Greedy Algorithmen II (Datenkompression) Algorithmen und Komplexität Datenkompression Reduziert Größen von Files Viele Verfahren

Mehr

112 C.1 Aufbau der Blasenkammer. ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die Aufgaben der einzelnen Bestandteile.

112 C.1 Aufbau der Blasenkammer. ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die Aufgaben der einzelnen Bestandteile. 112 C.1 Aufbau der Blasenkammer C Arbeitsblätter C.1 Aufbau der Blasenkammer Der Aufbau der Blasenkammer Abbildung 1: Aufbau der Blasenkammer ˆ Aufgabe 1: Funktionsweise einer Blasenkammer Erkläre die

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 11 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 11 Peter Hartmann Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel Verständnisfragen. Ein zusammenhängender Graph ist ein Baum, wenn er einen Knoten mehr hat als Kanten. Warum ist in diesem Satz der Zusammenhang

Mehr

Klausur - Informatik I SS 05. Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel

Klausur - Informatik I SS 05. Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Klausur - Informatik I SS 05 Aufgabe 1 2 3 4 Punkte 40 30 40 10 Gesamtpunkte (max. 120): Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Tragen Sie als erstes Ihren vollständigen Namen und Ihre Matrikelnummer

Mehr

A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.2 Quicksort. A7.

A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.1 Untere Schranke. Algorithmen und Datenstrukturen. A7.2 Quicksort. A7. Algorithmen und Datenstrukturen 14. März 2018 A7. III Algorithmen und Datenstrukturen A7. III Marcel Lüthi and Gabriele Röger Universität Basel 14. März 2018 A7.1 Untere Schranke A7.2 Quicksort A7.3 Heapsort

Mehr

Markieren Sie die Integralausdrücke, die den Flächeninhalt der markierten Fläche berechnen:

Markieren Sie die Integralausdrücke, die den Flächeninhalt der markierten Fläche berechnen: Aufge C (X/N) Mrkieren Sie ie Integrlusrüke, ie en Fläheninhlt er mrkierten Flähe erehnen: A) f () g() g() f () B) ( f () g() ) + ( f () g() ) C) f () g() D) ( f () g() ) ( g() f () ) E) f () g() F) f

Mehr

Rekursionsbäume Aufstellen eines Baumes dessen Knoten die Laufzeit auf jeder Rekursionsstufe darstellen und Aufsummieren

Rekursionsbäume Aufstellen eines Baumes dessen Knoten die Laufzeit auf jeder Rekursionsstufe darstellen und Aufsummieren Algorithmen und Datenstrukturen 74 3 Rekursionen Vor allem bei rekursiven Algorithmen besitzt die Laufzeitfunktion eine naheliegende rekursive Formulierung, d.h. die Laufzeitfunktion ist konstant für den

Mehr

Kapitel 1: Endliche Automaten Gliederung 1. Endliche Automaten

Kapitel 1: Endliche Automaten Gliederung 1. Endliche Automaten Gliederung 0. Grundegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechenarkeitstheorie 4. Komplexitätstheorie 1.1. Grundlagen 1.2. Minimierungsalgorithmus 1.3. 1/3, S. 1 Git es Sprachen, die nicht

Mehr

1.3 Erinnerung: Mergesort

1.3 Erinnerung: Mergesort Mergesort 1.3 Erinnerung: Mergesort Um n Zahlen/Objekte a 1,..., a n zu sortieren, geht der Mergesort-Algorithmus so vor: Falls n n 0 : Sortiere mit einem naiven Algorithmus (z. B. Insertion Sort). Sonst:

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen Jedes Programm verwendet Datenstrukturen und Algorithmen um seine Aufgabe zu erfüllen Diese müssen offenbar zunächst sorgfältig dem speziellen Problem entsprechend ausgewählt

Mehr

Klausur Algorithmentheorie

Klausur Algorithmentheorie Prof. Dr. G. Schnitger Frankfurt, den 06.04.2009 Klausur Algorithmentheorie WS 2008/2009 Name: Vorname: Geburtsdatum: Studiengang: BITTE GENAU LESEN Die Klausur besteht aus 4 Aufgaben, in denen maximal

Mehr

Mathematik I für MB/ME

Mathematik I für MB/ME Mathematik I für MB/ME Fahbereih Grundlagenwissenshaften Prof. Dr. Viola Weiÿ Wintersemester /6 Übungsaufgaben Serie : Vektorrehnung. Gegeben seien die Vektoren a =, b =, = (a) Berehnen Sie a + b und a

Mehr

Laufzeitanalyse (1) demogr.

Laufzeitanalyse (1) demogr. Laufzeitanalyse (1) demogr. for (int j = 1; j

Mehr

Analysis. Tangenten, Normalen, Änderungsraten. Schaubilder von Ableitungsfunktionen

Analysis. Tangenten, Normalen, Änderungsraten. Schaubilder von Ableitungsfunktionen Analysis Shaubilder von Ableitungsfunktionen Allg. Gymnasien: ab Klasse 0 Beruflihe Gymnasien: ab Klasse Berufskolleg: Aufgaben ohne *) Hilfsmittel: wissenshaftliher Tashenrehner Alexander Shwarz Juli

Mehr