Auswertung von Operatorbäumen Huffman-Code

Größe: px
Ab Seite anzeigen:

Download "Auswertung von Operatorbäumen Huffman-Code"

Transkript

1 Datenstrukturen: Bäume 4 Bäume 4. Terminologie und Grundlagen: Modelle für Graphen und Bäume 4.. Spezifikation und einfahe Algorithmen 4. Anwendungen Auswertung von Operatoräumen Huffman-Code 4.4 Ojektorientierte Implementierung... Suhäume, Heaps hs / fu alp -Tree- 4 Bäume Verallgemeinerung von Folgen: Verzweigung in jedem Knoten möglih Jeder Knoten genau auf einem Weg erreihar o entspriht den Folgen: o o o hs / fu alp -Tree-

2 Modellierung mit Bäumen Viele Beispiele - auh außerhal der Informtik Organisationsdiagramm FUB FB Physik FB Math&Inf... FB Germanistik Institut Math Institut f. Informatik Institut Math AG Theorie AG DB AG VSYS... AG Telematik hs / fu alp -Tree- Modellierung mit Bäumen Dokumentstruktur Buh Inhalt Kapitel Index Üersiht Hauptteil Zusammenfassung Ashnitt Hier: Aufau eines Buhes, niht ein konkretes Buh Metadaten <-> Daten hs / fu alp -Tree- 4

3 Modellierung mit Bäumen XML Textauszeihnung (Markup) <?xml version=".0"?> <rezept> <zutaten anzahl=""> <zutat>ei</zutat> <zutat>mehl</zutat> <zutat>salz</zutat> </zutaten> <anleitung> Alles zusammenrühren und aken. </anleitung> </rezept> { anzahl="" } zutaten zutat zutat zutat rezept anleitung Ei Mehl Salz Alles zusammenrühren und aken. Textuelle Darstellung Graphishe Darstellung hs / fu alp -Tree- 5 Modellierung mit Bäumen:XML Astraktes Dokumentmodell: Baum mit Knoten des Typs: root, element, attriute, text. hs / fu alp -Tree-

4 Pakages org.apahe.tools.ant org.apahe.tools.ant.taskdefs org.apahe.tools.ant.taskdefs.ompilers org.apahe.tools.ant.taskdefs.optional Klasseniliothek org.apahe.tools.ant.taskdefs.optional.learase org.apahe.tools.ant.taskdefs.optional.depend org.apahe.tools.ant.taskdefs.optional.depend.onstantpool org.apahe.tools.ant.taskdefs.optional.dotnet org.apahe.tools.ant.taskdefs.optional.ej org.apahe.tools.ant.taskdefs.optional.ide org.apahe.tools.ant.taskdefs.optional.java org.apahe.tools.ant.taskdefs.optional.jlink org.apahe.tools.ant.taskdefs.optional.jsp org.apahe.tools.ant.taskdefs.optional.junit org org.apahe.tools.ant.taskdefs.optional.metamata org.apahe.tools.ant.taskdefs.optional.net org.apahe.tools.ant.taskdefs.optional.perfore org.apahe.tools.ant.taskdefs.optional.sm org.apahe.tools.ant.taskdefs.optional.sound org.apahe.tools.ant.taskdefs.optional.vss org.apahe.tools.ant.types apahe tools sr sun... org.apahe.tools.ant.util org.apahe.tools.ant.util.regexp org.apahe.tools.mail org.apahe.tools.tar taskdefs util Symolishe IP-Adressierung Modellierung mit Bäumen: Sprahe Syntax natürliher Sprahe Satz Nominalphrase Veralphrase Artikel Nomen Ver Der Hund ellt Adver laut... und hs / fu alp -Tree- 8 4

5 Modellierung mit Bäumen: Sprahe... Syntax von Programmiersprahen Methode Parameter Anweisung Bezeihner Typ Bezeihner float myvar Lokale Vereinarung... Anweisungen... square hs / fu alp -Tree- 9 Modellierung mit Bäumen... Syntax arithmetisher Ausdrüke: Operatoraum * + - Infix: (a+)*(-d) Postfix: a + d - * a d Operatoraum: Endknoten ("Blätter") sind Argumente (a,,), die anderen ("inneren") Knoten sind Operatoren hs / fu alp -Tree- 0 5

6 Bäume: Spezialfall von Graphen 4. Modelle für Graphen und Bäume Siehe auh Math. für Informatiker, hier nur Wiederholung und Einführung der verwendeten Terminologie. Baum als Spezialfall von ungerihteten Graphen: Graph G = (V, K), K V X V gerihteter Graph oder K {{x,y} x,y V} ungerihteter Graph V : Knotenmenge ("vertex") K : Kantenmenge Shreiweise: auh für ungerihtete Graphen (x,y) K hs / fu alp -Tree- Bäume: Spezialfall von Graphen Weg (Pfad) p im Graphen G (V,K) von Knoten a nah Knoten : p = (v,v,...,v n ) mit v =a, v n = und (v i, v i+ ) K Shreiweise: p = a -> Pfadlänge = Anzahl durhlaufener Kanten, Beispiel: Pfadlänge von p = n- p heißt einfah, wenn v i!= v j für i!= j Beispiel: einfaher Pfad der Länge Beispiel: Pfad der Länge 4, niht einfah hs / fu alp -Tree-

7 Bäume: Spezialfall von Graphen G = (V,K), ungerihtet, heißt zusammenhängend, wenn es zu je zwei Knoten x, y einen Pfad (x->y) git G = (V, K) heißt azyklish (kreisfrei), wenn für alle Knoten x gilt: es git keinen Pfad (x->x) Beispiel: azylisher Graph hs / fu alp -Tree- Bäume Def: Freier Baum azyklisher, ungerihteter, zusammenhängender Graph Beispiel: Beh.: Hinzufügen einer weiteren Kante erzeugt Zyklus hs / fu alp -Tree- 4 7

8 Bäume Def: Wurzelaum Freier Baum mit ausgezeihnetem Knoten: Wurzel Beispiel: hs / fu alp -Tree- 5 Terminologie Vorgänger, Elternknoten w jeder Knoten außer der Wurzel hat genau einen direkten Vorgänger (Elternknoten) z.b.: Elternknoten von h ist d e f Vorgänger von Knoten x sind - der direkte Vorgänger und - dessen Vorgänger g h i j oder: alle Knoten auf dem Pfad von der Wurzel w is zum direkten Vorgänger von x z.b.: und w sind Vorgänger von g Ein Pfad (w -> x) von der Wurzel nah x heißt Wurzelpfad. Eigenshaft: x,y Knoten eines Baumes => (x->y) existiert und ist eindeutig. hs / fu alp -Tree- 8

9 Terminologie Kind, Nahfolger w d e f g h i j ein Knoten hat null, einen oder mehrere direkte Nahfolger (Kinder). y ist Nahfolger von x, wenn y direkter Nahfolger von x ist oder oder wenn y Nahfolger eines direkten Nahfolgers x' von x ist. Bsp: h, i sind Nahfolger von ; Alle Knoten is auf w sind Nahfolger von w. Ahtung: Manhmal wird die Nahfolgerrelation reflexiv definiert, so dass jeder Knoten Nahfolger (Nf) von sih selst ist. Dann Nf und ehte Nf untersheiden. hs / fu alp -Tree- 7 Terminologie Geshwister, Blätter, innere Knoten w d e f g h i j Sind x und y direkte Nahfolger von z, heißen sie Geshwisterknoten. Bsp.: h, i sind Geshwisterknoten. Ein Knoten ohne direkten Nahfolger heißt Blatt, alle anderen sind innere Knoten. Bsp.: g, h, i, j, f sind Blätter, w,, d, e sind innere Knoten. hs / fu alp -Tree- 8 9

10 Terminologie Grad, Höhe, Tiefe, Größe w d e f g h i j Grad grad (x) eines Knotens x = Anzahl der Kinder von x. Bsp.: grad () =, grad (w) = 5, grad (f) = 0. Grad eines Baums = maximaler Grad seiner Knoten. hs / fu alp -Tree- 9 w Eene 0: Knoten der Tiefe 0 d e f Eene Knoten der Tiefe g h i j Eene Knoten der Tiefe Tiefe d (x) von Knotens x = Anzahl der Kanten auf dem Wurzelpfad zu x. Bsp: d() =, d(w) = 0, d(h) =. Höhe h(t) eines Baums t = maximale Tiefe seiner Knoten. Eene (level) i = Menge der Knoten der Tiefe i Größe s(x) eines Knotens x = Anzahl Nahfolger + (für x selst) Größe S(t) eines Baums t = Anzahl der Knoten von t 0

11 Terminologie Def: Geordneter Baum T T 0 Ein Wurzelaum heißt geordnet, wenn für jeden Knoten die Menge der Kinder geordnet ist. Bsp: Die Bäume T und T sind als (ungeordnete) Wurzeläume gleih, als geordnete jedoh niht. hs / fu alp -Tree- Terminologie Def: Positionsaum T T 4 5 Ein Wurzelaum heißt n-ärer Positionsaum (n>), wenn jeder Knoten 0 <= k <= n Kinder hat, von denen jedes eine Position i, 0 <= i < n hat. Wihtigster Spezialfall n = : Binäraum Sprehweise: linkes Kind, rehtes Kind Beahte: T und T sind als geordnete Bäume gleih, aer niht als Binäräume. 4 5 hs / fu alp -Tree-

12 Terminologie Teilaum Ist x ein Kind des Knotens y, dann heißt der von den Nahfolgern von x geildete Baum mit Wurzel x Teilaum von y. Ein Knoten eines Binäraums esitzt einen linken und rehten Teilaum. 4 5 T Die Wurzel des Binäraums T hat den linken Teilaum mit Wurzel und den Knoten,4,5 und den rehten mit Wurzel und Knoten,. hs / fu alp -Tree- Binäraum als Positionsaum a T = {, a { (, { (,d) (, e { (, g) } ) } ), (, { (,f) } ) } T Positionsäume praktish immer nah Position geordnet. Damit geordnete Bäume. d g e Rekursive Definition: Def: Ein inärer Baum T ist - leer - oder er esitzt eine Wurzel r, einen linken Teilaum und einen rehten Teilaum. hs / fu alp -Tree- 4

13 Rekursive Definition Haskell type: > data BT t = Empty BT (BT t) (BT t) > deriving (Show) Analog Mehrwegäume (k-äre Bäume mit k > ) : Ein k-ärer Baum (oder Mehrwegaum vom Grad k) -ist leer - esteht aus einer Wurzel und k k-ärenteiläumen hs / fu alp -Tree- 5 Terminologie Def: Volle inäre Bäume a Manhmal tehnish vorteilhaft: leeren Baum explizit darstellen. d g e T f Def: Ein voller inärer Baum T ist ein inärer Baum, dessen Knoten - entweder externe Knoten sind - oder den Grad haen Analog: volle k-äre Bäume Beahte: die externe Knoten sind niht die Blätter nah oiger Definition! Das sind die Knoten, die genau zwei externe Knoten als Kinder haen. hs / fu alp -Tree-

14 Eigenshaften von Bäumen (E) Für die Höhe h eines Mehrwegaums (MW-Baum) vom Grad k mit n Knoten gilt: log k (n+) - <= h < = n Extremfälle für k=: entarteter Baum, Folge d a T e fast vollständiger Baum hs / fu alp -Tree- 7 Vollständige Bäume Def: Ein vollständiger MW-Baum B vom Grad k und Höhe h ist ein Baum, dessen Blätter alle die gleihe Tiefe esitzen und alle inneren Knoten k Nahfolger haen. B heißt fast vollständig, wenn nur die letzte Eene niht voll esetzt ist. a T a vollständig d d e fast vollständig T e f hs / fu alp -Tree- 8 4

15 Eigenshaften (E) Ein MWaum vom Grad k der Höhe h enthält n <= k h+ - Knoten (E) Ein vollständiger MW-Baum vom Grad k mit n Blattknoten hat n- innere Knoten.... oder: Höhenwahstum eines vollständigen inären Baums um verdoppelt die Anzahl mögliher Knoten. hs / fu alp -Tree- 9 Markierte inäre Bäume Knoten oder Kanten eines Binäraums enthalten meist Daten, z.b. Operatoraum: * + - a d Markierung: Aildung von Werten auf Knoten oder Kanten hs / fu alp -Tree- 0 5

16 Modelle markierter Bäume a) jedem Knoten wird Wert aus Typ T zugeordnet: B T = {(,m) ist Binäraum mit Knotenmenge V, m:: V -> T} ) inneren Knoten wird Wert aus Typ T zugeordnet,blättern aus T' : B T,T' = {(,m,t) ist Binäraum m:: Innere Knoten -> T, t:: Blätter -> T'} ) Kanten werden Werte aus T zugeordnet, Blättern Werte aus T' : MT,T' = {(,k,t) Binäraum, k::kanten -> T, t:: Blätter in T'} o o * hs / fu alp -Tree- + - T a d o 0

Verkettete Datenstrukturen: Bäume

Verkettete Datenstrukturen: Bäume Verkettete Datenstrukturen: Bäume 1 Graphen Gerichteter Graph: Menge von Knoten (= Elementen) + Menge von Kanten. Kante: Verbindung zwischen zwei Knoten k 1 k 2 = Paar von Knoten (k 1, k 2 ). Menge aller

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Wurzelbäume. Definition 1

Wurzelbäume. Definition 1 Wurzeläume Definition 1 Ein Wurzelum (oer uh gerihteter Bum) ist ein gerihteter zyklisher Grph, in em genu ein Knoten w Eingngsgr 0 esitzt un lle neren Knoten Eingngsgr 1 esitzen. Knoten w heißt ie Wurzel

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz http://www.inf.uni-konstanz.de/algo/lehre/ss08/info2 Sommersemester 2008 Sven Kosub

Mehr

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10.

Programmieren in Haskell. Stefan Janssen. Strukturelle Rekursion. Universität Bielefeld AG Praktische Informatik. 10. Universität Bielefeld AG Praktische Informatik 10. Dezember 2014 Wiederholung: Schema: f :: [σ] -> τ f [] = e 1 f (a : as) = e 2 where s = f as wobei e 1 und e 2 Ausdrücke vom Typ τ sind und e 2 die Variablen

Mehr

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition.

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition. 1 Informatik I: Einführung in die Programmierung 11. Bäume e e Albert-Ludwigs-Universität Freiburg Bernhard Nebel 13. November 2015 13. November 2015 B. Nebel Info I 3 / 33 Bäume in der Informatik Bäume

Mehr

Graphen und Bäume. A.1 Graphen

Graphen und Bäume. A.1 Graphen Algorithmen und Datenstrukturen 96 A Graphen und Bäume A.1 Graphen Ein gerichteter Graph (auch Digraph) G ist ein Paar (V, E), wobei V eine endliche Menge und E eine Relation auf V ist, d.h. E V V. V heißt

Mehr

Grundbegriffe der Informatik Tutorium 8

Grundbegriffe der Informatik Tutorium 8 Grundbegriffe der Informatik Tutorium 8 Tutorium Nr. 16 Philipp Oppermann 22. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition.

1 Der Baum. Informatik I: Einführung in die Programmierung 11. Bäume. Bäume in der Informatik. Bäume in der Informatik - Definition. 1 Informatik I: Einführung in die Programmierung 11. Bäume e e Albert-Ludwigs-Universität Freiburg Bernhard Nebel 17. November 2017 17. November 2017 B. Nebel Info I 3 / 33 Bäume in der Informatik Bäume

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer

Mehr

WS 2011/2012. Robert Giegerich Dezember 2013

WS 2011/2012. Robert Giegerich Dezember 2013 WS 2011/2012 Robert 1 AG Praktische Informatik 11. Dezember 2013 1 robert@techfak.uni-bielefeld.de Vorschau Themen heute: Funktionen höherer Ordnung (Fortsetzung) künstliche Striktheit mehr zu fold für

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik - SS 0 Bäume Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter

Technische Universität München. Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Vorlesungsgrobstruktur: wo stehen wir, wie geht s weiter Kapitel 7 Fortgeschrittene Datenstrukturen Motivation: Lineare Liste: Suchen eines Elements ist schnell O(log n) Einfügen eines Elements ist langsam

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik 2 - SS 06 Bäume 2 Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als Kapitel 4 Bäume 4.1 Bäume, Datenstrukturen und Algorithmen Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als eine Menge von Knoten und eine Menge von zugehörigen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 15: Graphen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Listen & Bäume Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 SvenKosub@uni-konstanzde Sprechstunde: Freitag, 14:00-15:00 Uhr, onv Sommersemester

Mehr

Bemerkung: Der vollständige Graph K n hat n(n 1)

Bemerkung: Der vollständige Graph K n hat n(n 1) Bemerkung: Der vollständige Graph K n hat n(n 1) 2 Kanten. Bew: Abzählen! Definition 111. Graphen mit n paarweise zyklisch verbundenen Kanten heißen Kreise (vom Grad n) und werden mit C n bezeichnet. Beispiel

Mehr

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen. Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt:

Definition 15 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 2.2 Rot-Schwarz-Bäume Definition 15 Rot-Schwarz-Bäume sind externe Binäräume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 1 alle Blätter hängen an schwarzen Kanten (durchgezogene

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n)

Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) .6 Ausgeglichene Mehrweg-Suchbäume Wünschenswerte Eigenschaft von Suchbäumen mit n Knoten: Suchen, Einfügen, Löschen auch im schlechtesten Fall O(log n) Methoden: lokale Transformationen (AVL-Baum) Stochastische

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

8.4 Suffixbäume. Anwendungen: Information Retrieval, Bioinformatik (Suche in Sequenzen) Veranschaulichung: DNA-Sequenzen

8.4 Suffixbäume. Anwendungen: Information Retrieval, Bioinformatik (Suche in Sequenzen) Veranschaulichung: DNA-Sequenzen 8.4 Suffixbäume Ziel: Datenstruktur, die effiziente Operationen auf (langen) Zeichenketten unterstützt: - Suche Teilzeichenkette (Substring) - Präfix - längste sich wiederholende Zeichenkette -... Anwendungen:

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

Kapitel 12: Induktive

Kapitel 12: Induktive Kapitel 12: Induktive Datenstrukturen Felix Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung Praktische Informatik I im Herbstsemester 2009 Folien nach einer Vorlage von H.-Peter

Mehr

Programmieren in Haskell Programmiermethodik

Programmieren in Haskell Programmiermethodik Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs

Mehr

Kapitel 2 Partielle Ordnungen

Kapitel 2 Partielle Ordnungen Kapitel 2 Partielle Ordnungen 2 Partielle Ordnungen 2.1 Partielle und strikte Halordnung.......... 2.2 Logishe und vektorielle Zeitstempel........ Formale Grundlagen der Informatik II Kap 2: Partie!e Ordnungen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2010/2011 1/59 Graphische Darstellung von Zusammenhängen schon

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 6. Vorlesung Martin Middendorf / Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Merge-Sort Anwendbar für

Mehr

Algorithmen und Datenstrukturen 2-1. Seminar -

Algorithmen und Datenstrukturen 2-1. Seminar - Algorithmen und Datenstrukturen 2-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Sommersemster 2010 Outline 1. Übungsserie: 3 Aufgaben, insgesamt 30 28 Punkte A1 Spannbäume (10 8

Mehr

Graphen vielseitig verwendbar zur Repräsentation von Zusammenhängen, etwa:

Graphen vielseitig verwendbar zur Repräsentation von Zusammenhängen, etwa: 7. Grphentheorie Grphen vielseitig verwenr zur Repräsenttion von Zusmmenhängen, etw: Stäte Personen Aktionen... Verinungswege Reltionen zwishen ihnen zeitlihe Ahängigkeiten Def. 7.1: Ein gerihteter Grph

Mehr

Isomorphie von Bäumen

Isomorphie von Bäumen Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................

Mehr

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO

Wiederholung. Datenstrukturen und. Bäume. Wiederholung. Suchen in linearen Feldern VO Wiederholung Datenstrukturen und Algorithmen VO 708.031 Suchen in linearen Feldern Ohne Vorsortierung: Sequentielle Suche Speicherung nach Zugriffswahrscheinlichkeit Selbstanordnende Felder Mit Vorsortierung:

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005

Prof. Dr. Schmidt-Thieme / Michael Rottmann Arbeitsblatt Algebra SS 2005 Prof. Dr. Shmidt-Thieme / Mihael Rottmann Areitslatt Algera SS 2005 Gruppen Lösungen.) i) Die ist neutrales Element der Multiplikation. (M, é ) ist damit keine Gruppe, denn es git keine inversen Elemente

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Minimale Spannbäume Maike Buchin 18.7., 20.7.2017 Einführung Motivation: Verbinde Inseln mit Fähren oder Städte mit Schienen und verbrauche dabei möglichst wenig Länge. Problem:

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik Strukturelle Induktion Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 0 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 1:30-14:00 Uhr, o.n.v.

Mehr

Einheit 11 - Graphen

Einheit 11 - Graphen Einheit - Graphen Bevor wir in medias res (eigentlich heißt es medias in res) gehen, eine Zusammenfassung der wichtigsten Definitionen und Notationen für Graphen. Graphen bestehen aus Knoten (vertex, vertices)

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Ferienkurs Propädeutikum Diskrete Mathematik

Ferienkurs Propädeutikum Diskrete Mathematik Ferienkurs Propädeutikum Diskrete Mathematik Teil 3: Grundlagen Graphentheorie Tina Janne Schmidt Technische Universität München April 2012 Tina Janne Schmidt (TU München) Ferienkurs Propädeutikum Diskrete

Mehr

Bäume. Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe

Bäume. Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe Bäume Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe S. Staab, Informatik für IM II; Folien nach D. Saupe, sowie W. Küchlin, A.

Mehr

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1

4.2 Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition 4.2.1 Allgemeines. Minimale Spannbäume: Der Algorithmus von Jarník/Prim Definition.. (a) Ein Graph G =(V, E) heißt kreisfrei, wenn er keinen Kreis besitzt. Beispiel: Ein kreisfreier Graph: FG KTuEA, TU Ilmenau

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 8. Vorlesung Martin Middendorf und Peter F. Stadler Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Gefädelte

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Software Entwicklung 1

Software Entwicklung 1 Software Entwicklung 1 Annette Bieniusa AG Softech FB Informatik TU Kaiserslautern Lernziele Die Definition wichtiger Begriffe im Zusammenhand mit Bäumen zu kennen. Markierte Bäumen, insbesondere Suchbäume,

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Einführung in die Graphentheorie. Monika König

Einführung in die Graphentheorie. Monika König Einführung in die Graphentheorie Monika König 8. 11. 2011 1 Vorwort Diese Seminararbeit basiert auf den Unterkapiteln 1.1-1.3 des Buches Algebraic Graph Theory von Chris Godsil und Gordon Royle (siehe

Mehr

Warum Bäume? Teil 1: Suchen. Bäume: Begriffe und Eigenschaften (2) Bäume: Begriffe und Eigenschaften (1)

Warum Bäume? Teil 1: Suchen. Bäume: Begriffe und Eigenschaften (2) Bäume: Begriffe und Eigenschaften (1) Wrum Bäume? Teil : Suhen Prolemstellung Elementre Suhverfhren Hshverfhren Binäre Suhäume (Wiederholung us Prog ) Bäume: Begriffe, Eigenshften und Trversierung Binäre Suhäume Gefädelte Suhäume Ausgeglihene

Mehr

Logische Datenstrukturen

Logische Datenstrukturen Lineare Listen Stapel, Warteschlangen Binärbäume Seite 1 Lineare Liste Begriffe first Funktion: sequentielle Verkettung von Datensätzen Ordnungsprinzip: Schlüssel Begriffe: first - Anker, Wurzel; Adresse

Mehr

Zweizusammenhang und starker Zusammenhang

Zweizusammenhang und starker Zusammenhang .. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk

Mehr

2 Repräsentation, Struktur und Interpretation von einfachen Rechenvorschriften

2 Repräsentation, Struktur und Interpretation von einfachen Rechenvorschriften Übersicht 2 Repräsentation, Struktur und Interpretation von einfachen Rechenvorschriften 2.1 Arithmetische Ausdrücke und ihre Struktur 2.2 Interpretation und Auswertung einfacher arithmetischer Ausdrücke

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/42 Graphische Darstellung von Zusammenhängen schon an vielen Stellen

Mehr

Mehrwegbäume Motivation

Mehrwegbäume Motivation Mehrwegbäume Motivation Wir haben gute Strukturen (AVL-Bäume) kennen gelernt, die die Anzahl der Operationen begrenzen Was ist, wenn der Baum zu groß für den Hauptspeicher ist? Externe Datenspeicherung

Mehr

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht

ANALYSIS I FÜR TPH WS 2017/18 2. Übung Übersicht ANALYSIS I FÜR TPH WS 207/8 2. Übung Übersiht Aufgaben zu Kapitel und 2 Aufgabe : Nummerierungsfunktionen Aufgabe 2: Gibt s das? Aufgabe 3: ( ) Selbstbezüglih definierte Funktionen Aufgabe 4: ( ) Eine

Mehr

10. Grassmannsche Vektoren und die Drehungen im Raum.

10. Grassmannsche Vektoren und die Drehungen im Raum. 10. Grassmannshe Vektoren und die Drehungen im Raum. Wir haen in der vorigen Vorlesung gesehen wie man Gegenstände im Raum vermöge der Zentralprojektion als Figuren in der Eene perspektivish genau darstellen

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Kürzeste Pfade Problem Gegeben Netzwerk: Graph G = (V, E), Gewichtsfunktion w: E N Zwei Knoten: s, t Kantenzug/Weg

Mehr

B / B* - Bäume. Guido Hildebrandt Seminar Datenbanksysteme

B / B* - Bäume. Guido Hildebrandt Seminar Datenbanksysteme B / B* - Bäume Guido Hildebrandt Seminar Datenbanksysteme 25.11.2010 Gliederung Einleitung Binärbaum B - Baum B* - Baum Varianten Zusammenfassung Quellen Gliederung Einleitung Binärbaum B - Baum B* - Baum

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS)

5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) 5 BINÄRE ENTSCHEIDUNGS- DIAGRAMME (BDDS) Sommersemester 2009 Dr. Carsten Sinz, Universität Karlsruhe Datenstruktur BDD 2 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer:

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Bäume. Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe

Bäume. Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe Bäume Listen und Bäume, Graphen und Bäume, elementare Eigenschaften von Binärbäumen, Implementierung, Generische Baumdurchläufe Bäume (trees) können als eine Verallgemeinerung von Listen angesehen werden

Mehr

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht

Kapitel 6: Spiele mit simultanen und sequentiellen Spielzügen. Einleitung. Übersicht Teil 2. Übersicht Üersiht Teil apitel 6: Spiele mit simultanen und seuentiellen Spielzügen apitel 6 apitel 5 Üersiht Teil Üersiht Einleitung Darstellung von simultanen Spielzügen in extensiver Form Normalform vs extensive

Mehr

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring

Kürzeste Wege in Graphen. Orte mit Straßenverbindungen. Coma I Rolf Möhring Kürzeste Wege in Graphen Orte mit Straßenverbindungen Orte als Knoten eines Graphen Straßenverbindungen als Kanten eines Graphen Ungerichteter Graph G = (V,E) Kanten Knoten Knotenmenge V = {,,n} oder {,,n

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2005/06 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl

Mehr

Digraphen, DAGs und Wurzelbäume

Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 1 Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 2 Eingangs- und Ausgangsgrad Bei einer gerichteten Kante e = (u,v) E heißt u Startknoten von

Mehr

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen

Lernmodul 2 Graphen. Lernmodul 2: Geoobjekte und ihre Modellierung - Graphen Folie 1 von 20 Lernmodul 2 Graphen Folie 2 von 20 Graphen Übersicht Motivation Ungerichteter Graph Gerichteter Graph Inzidenz, Adjazenz, Grad Pfad, Zyklus Zusammenhang, Trennende Kante, Trennender Knoten

Mehr

Algorithmische Bioinformatik I

Algorithmische Bioinformatik I Ludwig-Maximilians-Universität Münhen Institut für Informatik Prof. Dr. Volker Heun Sommersemester 2016 Wiederholungsklausur 19. Oktoer 2016 Algorithmishe Bioinformatik I Vorname Name Matrikelnummer Reihe

Mehr

Algorithmen für schwierige Probleme

Algorithmen für schwierige Probleme Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 30. November 2011 Wiederholung Baumzerlegung G = (V, E) Eine Baumzerlegung von G ist ein Paar {X i i V T }, T, wobei T Baum mit Knotenmenge

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr

Matchings (Paarungen) in Graphen. PS Algorithmen auf Graphen SS `06 Steven Birr Matchings (Paarungen) in Graphen PS Algorithmen auf Graphen SS `06 Steven Birr 1 Gliederung 1) Definitionen und Beispiele 2) Algorithmus des maximalen Matchings 3) Das Personal-Zuteilungsproblem Ungarischer

Mehr

Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15.

Kurs 1663 Datenstrukturen Musterlösungen zur Klausur vom Seite 1. Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur vom 15.08.98 Seite 1 Musterlösungen zur Hauptklausur Kurs 1663 Datenstrukturen 15. August 1998 Kurs 1663 Datenstrukturen" Musterlösungen zur Klausur

Mehr

Datenstrukturen. einfach verkettete Liste

Datenstrukturen. einfach verkettete Liste einfach verkettete Liste speichert Daten in einer linearen Liste, in der jedes Element auf das nächste Element zeigt Jeder Knoten der Liste enthält beliebige Daten und einen Zeiger auf den nächsten Knoten

Mehr

Bäume und Wälder. Definition 1

Bäume und Wälder. Definition 1 Bäume und Wälder Definition 1 Ein Baum ist ein zusammenhängender, kreisfreier Graph. Ein Wald ist ein Graph, dessen Zusammenhangskomponenten Bäume sind. Ein Knoten v eines Baums mit Grad deg(v) = 1 heißt

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Algorithmen und Datenstrukturen 13

Algorithmen und Datenstrukturen 13 19. Juli 2012 1 Besprechung Blatt 12 Fragen 2 Bäume AVL-Bäume 3 Graphen Allgemein Matrixdarstellung 4 Graphalgorithmen Dijkstra Prim Kruskal Fragen Fragen zu Blatt 12? AVL-Bäume AVL-Bäume ein AVL-Baum

Mehr

1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen

1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen 1 Datenstrukturen 1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen 1 1.3 Bäume Hierarchische Datenstruktur Zusammenfassung von Gruppen (z.b. Bund / Länder /

Mehr

Algorithmen und Datenstrukturen I Bruder-Bäume

Algorithmen und Datenstrukturen I Bruder-Bäume Algorithmen und Datenstrukturen I Bruder-Bäume Prof. Dr. Oliver Braun Letzte Änderung: 11.12.2017 10:50 Algorithmen und Datenstrukturen I, Bruder-Bäume 1/24 Definition ein binärer Baum heißt ein Bruder-Baum,

Mehr

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein

Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18

EINI LogWing/WiMa. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 17/18 EINI LogWing/WiMa Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 17/18 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-dortmund.de

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

Nachbarschaft, Grad, regulär, Inzidenz

Nachbarschaft, Grad, regulär, Inzidenz Nachbarschaft, Grad, regulär, Inzidenz Definition Eigenschaften von Graphen Sei G = (V, E) ein ungerichteter Graph. 1 Die Nachbarschaftschaft Γ(u) eines Knoten u V ist Γ(u) := {v V {u, v} E}. 2 Der Grad

Mehr

-Grundsätzlich verstehen wir unter einer Menge eine Zusammenfassung von Elementen,

-Grundsätzlich verstehen wir unter einer Menge eine Zusammenfassung von Elementen, 2. Mengenlehre In diesem bshnitt geben wir einen kompakten Überblik über wesentlihe Grundlagen der Mengenlehre, die im weiteren Verlauf noh relevant sein werden. Neben der allgemeinen Definition und Darstellung

Mehr

Algorithmen und Datenstrukturen I AVL-Bäume

Algorithmen und Datenstrukturen I AVL-Bäume Algorithmen und Datenstrukturen I AVL-Bäume Prof. Dr. Oliver Braun Letzte Änderung: 01.12.2017 14:42 Algorithmen und Datenstrukturen I, AVL-Bäume 1/38 Balancierte Bäume in einem zufällig erzeugten Binärbaum

Mehr

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (7. Sitzung) Tutorium 3 Grundbegriffe der Informatik (7. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (23 Bruder-Bäume, B-Bäume) Prof. Dr. Susanne Albers Balancierte Bäume Eine Klasse von binären Suchbäumen ist balanciert, wenn jede der drei Wörterbuchoperationen

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek

Mehr

Tutorium 23 Grundbegriffe der Informatik (6. Sitzung)

Tutorium 23 Grundbegriffe der Informatik (6. Sitzung) Tutorium 23 Grundbegriffe der Informatik (6. Sitzung) Tutor: Felix Stahlberg SOFTWARE DESIGN AND QUALITY GROUP Source: pixelio.de KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Michaela Regneri & Stefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des Saarlandes Sommersemester 2011 Prüfungsleistungen Klausur am Semesterende -

Mehr

HASKELL KAPITEL 8. Bäume

HASKELL KAPITEL 8. Bäume HASKELL KAPITEL 8 Bäume Baum rekursiv definierte Datenstruktur nicht linear vielerlei Varianten: Struktur der Verzweigung, Ort der gespeicherten Information (Knoten, Kanten, Blätter ) 2 Binärbaum Jeder

Mehr