Interferenzrefraktor von Jamin
|
|
|
- Maximilian Müller
- vor 9 Jahren
- Abrufe
Transkript
1 Technische Universität Darmstadt Fachbereich Physik Institut für Angewandte Physik Versuch 4.1: Interferenzrefraktor von Jamin Praktikum für Fortgeschrittene Von Daniel Rieländer ( ) & Mischa Hildebrand ( ) 5. Mai 2008 Versuchsleiter: Dr. Rainer Spehr Diese Ausarbeitung wurde von Daniel Rieländer und Mischa Hildebrand eigenständig erstellt. Eventuell aus anderen Quellen entnommene Zitate sind immer eindeutig als solche gekennzeichnet und im Literaturverzeichnis gelistet.
2 Inhaltsverzeichnis 1 Kurzüberblick über den Versuch 3 2 Auswertung Brechungsindex von Luft Brechungsindex von Sauerstoff Polarisierbarkeit Winkeleichung Wellenlängenabstand der Natrium D-Linien Brechungsindex für Luft mit weißem Licht Verschiebung des dispersionsfreien Punktes
3 1 Kurzüberblick über den Versuch 1 Kurzüberblick über den Versuch Wir wollen in diesem Versuch die Brechungsindices von Luft und Sauerstoff bestimmen. Beide Stoffe müssen natürlich aufgrund ihrer geringen Dichte einen Brechungsindex von etwa n = 1 haben; interferometrische Messungen wie in diesem Versuch angewandt ermöglichen aber noch sehr viel genauere Messungen, bei denen der Brechungsindex auf mehrere Nachkommastellen genau bestimmt werden kann. Interferometer sind Apparaturen, in welchen kohärentes Licht in zwei oder mehrere Strahlenbündel aufgeteilt und dann (z.b. auf einem Schirm oder in einem Fernrohr) zur Interferenz gebracht wird. Die optischen Weglängen, welche die Lichtstrahlen dabei zu durchlaufen haben, können variiert werden, sodass man aufgrund des Interferenzmusters auf den Gangunterschied der Strahlen zurückschließen kann. Da v Medium = c/n Medium und λ Medium = ν/v Medium lässt sich aus dem Gangunterschied schließlich der Brechungsindex n Medium bestimmen. Die bekanntesten Interferometer sind das Michelson-Interferometer, mit welchem im 19. Jahrhundert gezeigt werden konnte, dass die Lichtausbreitung unabhängig von der Geschwindigkeit des Beobachters immer identisch gleich c ist, und das Fabry-Perot-Interferometer. In diesem Versuch verwenden wir ein Jamin-Interferometer, dessen Aufbau 1856 von Jules Celestin Jamin erfunden wurde. Dabei laufen zwei kohärente Teilbündel eines Lichtstrahls durch jeweils eine andere Glasröhre (Küvette), welche mit Gas (Luft, Sauerstoff) befüllt werden kann. Anschließend werden die beiden Teilstrahlen wieder zu einem Lichtbündel zusammengeführt. Der Unterschied in der optischen Weglänge wird bei diesem Interferometer also durch unterschiedliche Brechzahlen der Gase in den Küvetten hervorgerufen und nicht durch eine wirkliche physikalische Vergrößerung der Weglänge. Der genaue Aufbau sowie weitere theoretische Details zum Versuch können dem Anleitungsblatt entnommen werden. An dieser Stelle soll nun nur eine Auswertung der experimentell aufgenommen Daten erfolgen. 2 Auswertung 2.1 Brechungsindex von Luft Um den Brechungsindex von Luft zu messen haben wir die eine Küvette mit Luft bei Normalbedingungen belassen und in der anderen Küvette den Druck von Vakuum langsam auf Normalbedingungen erhöht. Dabei haben wir im Fernrohr die durchlaufenden Interferenzstreifen z gezählt. Über die Beziehung n = λ s z (1) erhielten wir dann den Brechzahlunterschied n in Abhängigkeit vom Druck p. Ein linearer Fit mit Origin gab uns für die Steigung n p den Wert: (3, 52 ± 0, 01) T orr. Mit der Definition, dass bei absolutem Vakuum (p = 0 Torr) der Brechungsindex n = 1 ist, erhalten wir einen Brechungsindex von Luft bei Normalbedingungen (p = 760 Torr) von n = 1, ±
4 Hierbei wurde nur ein Fehler für die Länge s von 0, 33% angenommen, da wir nicht davon ausgehen, dass wir uns beim Zählen der Interferenzstreifen verzählt haben. 1,0003 Brechungindex n 1,0002 1,0001 1, Druck p (Torr) Abbildung 1: Brechungsindex von Luft in Abhängigkeit vom Druck 2.2 Brechungsindex von Sauerstoff Um den Brechungsindex von Sauerstoff zu erhalten wurde in einer Küvette wieder Luft belassen und die andere Küvette, nach einmaligen Durchspülen mit Sauerstoff, evakuiert und mit Sauerstoff befüllt. Dabei wurden wieder die durchlaufenden Ordnungen der Interferenz der beiden Teilbündel gezählt. Der Fit ergibt eine Steigung für n: 1 p von: (3, 22 ± 0, 01) 10 7 T orr. Dies ergibt einen Brechungsindex für Sauerstoff bei Normaldruck (760 Torr) von: 1, ± Polarisierbarkeit Um die Polarisierbarkeit α von Sauerstoff und von Stickstoff, welches zu 75% in Luft enthalten ist, zu berechnen, benutzen wir folgenden Zusammenhang zwischen Brechungsindex n und Polarisierbarkeit α: n 2 = 1 + Nα/ɛ 0 α(n) = (n 2 1)ɛ 0 /N N ist die Anzahl der induzierten Dipole pro Volumeneinheit ist. Mit der idealen Gasgleichung pv = nrt N = n V = p RT und für n 1 n2 1 = 2(n 1) 4
5 0,0003 Brechzahldiff. n 0,0002 0,0001 0, Druckdifferenz p / Torr Abbildung 2: Brechungsindex von Sauerstoff in Abhängigkeit vom Druck können wir die Polarisierbarkeit mit Hilfe unserer Steigung n p berechnen. α = n ɛ 0 p 2RT Für Sauerstoff erhalten wir bei Normalbedingungen mit dem Wert R = 0, T orr m3 mol K : α Sauerstoff ɛ 0 5 m3 = (1, 193 ± 0, 004) 10 mol und für Luft welche zu 75% aus Stickstoff besteht:. α Stickstoff ɛ 0 5 m3 = (1, 304 ± 0, 004) 10 mol 2.4 Winkeleichung Zur Eichung der Winkel wurden die durchlaufenden Interferenzstreifen beim Verdrehen des Spiegels gezählt und dabei die Minutengenaue Skala der Winkelschraube abgelesen. Als Fehler wurde ϕ = 0, 1 angenommen. Ein linearer Fit ergab dann die Steigung: z ϕ = (11, 36 ± 0, 05) 1 min 5
6 300 Winkelminuten / min Interferenzstreifen z Abbildung 3: Eichung der Winkelskala 2.5 Wellenlängenabstand der Natrium D-Linien Um den Abstand der beiden Natrium D-Linien zu ermitteln, haben wir den Kontrast des Interferenzmusters von Natriumlicht untersucht. Dazu haben wir erst die Winkelskala des verdrehbaren Spiegels geeicht und dann mittels Drehung das Kontrastminimum aufgesucht. Zwischen dem Interferenzstreifen nullter Ordnung (Kontrastmaximum) und dem Konstrastminimum lagen 44. Nach unserer Eichung entspricht dies 500 ± 2 Interferenzstreifen. Über die Beziehung λ = λ 2n+1 erhalten wir λ = 0, 5887 ± 0, 001nm. 2.6 Brechungsindex für Luft mit weißem Licht Bei dieser Aufgabe wurde nochmals der Brechungindex von Luft bestimmt, diesmal aber mit weißem Licht statt mit dem monochroamtischen Natriumlicht. Anstatt die Interferenzstreifen zu zählen, haben wir diesmal die Winkelschraube abgelesen und später mit unserer Eichung z berechnet. Durch den Fit erhielten wir eine Steigung von n 1 p = (3, 668 ± 0, 025) 10 7 T orr. Dies führt zu dem Brechungindex bei Normaldruck n = 1, ± 0, Verschiebung des dispersionsfreien Punktes Bei den Messungen mit weißem Licht haben wir nur den dispersionfreien Punkt betrachtet, nicht aber die relevante 0.Ordnung. Um eine Fehlerabschätzen zu 6
7 0,0003 Brechzahldiff. n 0,0002 0,0001 0, Druckdiff. p Abbildung 4: Brechzahldifferenz von Luft über Druck bei weißem Licht bekommen, haben wir die Verschiebung des dispersionsfreien Punktes bei Durchlaufen unserer Druckskala gemessen. Wir zählten 8,5 Streifen dies entspricht einem Winkel von (45 ± 2) entspricht. Dieser Fehler ist sehr gering, da er sich über die gesamte Messdauer erstreckt. Trotzdem kann man sagen, dass die Messung mit Natrium-Licht genauer ist. 7
Versuch 4.1b: Interferenzrefraktor von Jamin
PHYSIKALISCHES PRAKTIKUM FÜR FORTGESCHRITTENE Technische Universität Darmstadt Abteilung A: Institut für Angewandte Physik Versuch 4.1b: Interferenzrefraktor von Jamin Vorbereitung: Interferenzen gleicher
Das Gasinterferometer
Physikalisches Praktikum für das Hautfach Physik Versuch 24 Das Gasinterferometer Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Grue: Daniel Scholz Hauke Rohmeyer [email protected] B9 Assistent:
3.9 Interferometer. 1 Theoretische Grundlagen
FCHHOCHSCHULE HNNOVER Physikalisches Praktikum 3.9. 3.9 Interferometer 1 Theoretische Grundlagen Licht ist eine elektromagnetische Strahlung mit sehr geringer Wellenlänge (auf den Welle - Teilchen - Dualismus
1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter
1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen
Ferienkurs Experimentalphysik III
Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten
UNIVERSITÄT BIELEFELD
UNIVERSITÄT BIELEFELD Optik Brechungszahl eines Prismas Durchgeführt am 17.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer II Inhaltsverzeichnis 1
Übungsaufgaben zu Interferenz
Übungsaufgaben zu Interferenz ˆ Aufgabe 1: Interferenzmaxima Natrium der Wellenlänge λ = 589 nm falle senkrecht auf ein quadratisches Beugungsgitter mit der Seitenlänge cm mit 4000 Linien pro Zentimeter.
Versuch P2-13: Interferenz. Auswertung. Von Jan Oertlin und Ingo Medebach. 3. Mai 2010
Versuch P2-13: Interferenz Auswertung Von Jan Oertlin und Ingo Medebach 3. Mai 2010 Inhaltsverzeichnis 1 Newtonsche Ringe 2 1.1 Krümmungsradius R einer symmetrischen sphärischen Bikonvexlinse..........
Protokoll zum Physikalischen Praktikum Versuch 11 - Refraktometrie
Protokoll zum Physikalischen Praktikum Versuch 11 - Refraktometrie Experimentator: Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 09.11.2004 Inhaltsverzeichnis 1 Ziel des Versuches 1 2 Vorüberlegungen
FK Experimentalphysik 3, Lösung 3
1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl
Praktikum Optische Technologien, Protokoll Versuch polarisiertes Licht
Praktikum Optische Technologien, Protokoll Versuch polarisiertes Licht Marko Nonhoff, Christoph Hansen, Jannik Ehlert [email protected] Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht.
Physikalisches Praktikum 3
Datum: 0.10.04 Physikalisches Praktikum 3 Versuch: Betreuer: Goniometer und Prisma Dr. Enenkel Aufgaben: 1. Ein Goniometer ist zu justieren.. Der Brechungsindex n eines gegebenen Prismas ist für 4 markante
O9a Interferenzen gleicher Dicke
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O9a Interferenzen gleicher Dicke Aufgaben 1. Bestimmen Sie den Krümmungsradius einer konvexen Linsenfläche durch Ausmessen Newtonscher
HS D. V 504 : Michelson Interferometer. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf Fachbereich EI
Gruppe : Namen, Matrikel Nr.: HS D Hochschule Düsseldorf Versuchstag: Vorgelegt: Testat : V 504 : Michelson Interferometer Zusammenfassung: 31.03.16 Versuch: Michelson Interferometer Seite 1 von 12 Gruppe
Vorkurs Physik des MINT-Kollegs
Vorkurs Physik des MINT-Kollegs Optik MINT-Kolleg Baden-Württemberg 1 KIT 03.09.2013 Universität desdr. Landes Gunther Baden-Württemberg Weyreter - Vorkurs und Physik nationales Forschungszentrum in der
Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer
Aufgaben 9 Interferenz Phasendifferenz, Dünnschichtinterferenz, Fabry-Perot-Interferometer Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können.
Lösungen zu Interferenz und Beugung
Lösungen zu Interferenz und Beugung ˆ Aufgabe : Interferenzmaxima a) Für die Intensitätsmaxima bei der Beugung an einem Gitter gilt: d sin Θ = mλ. Da es sich um kleine Winkel handelt, kann die Kleinwinkelnäherung
5. Die gelbe Doppellinie der Na-Spektrallampe ist mit dem Gitter (1. und 2. Ordnung) zu messen und mit dem Prisma zu beobachten.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum O Gitter/Prisma Geräte, bei denen man von der spektralen Zerlegung des Lichts (durch Gitter bzw. Prismen) Gebrauch macht, heißen (Gitter-
Ferienkurs Experimentalphysik 3
Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen
Praktikum MI Mikroskop
Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen
PROTOKOLL ZUM VERSUCH REFRAKTOMETRIE. Inhaltsverzeichnis
PROTOKOLL ZUM VERSUCH REFRAKTOMETRIE CHRIS BÜNGER Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgabe 1 1.3. Das Abbé-Refraktometer 1 2. Versuchsdurchführung 3 2.1. Bestimmung der Brechungsindizes
Überlagerung monochromatischer Wellen/Interferenz
Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm
Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012
Übungsprüfung A zur Physik-Prüfung vom 17. Januar 2012 1. Kurzaufgaben (7 Punkte) a) Welche der folgenden Aussagen ist richtig? Kreuzen Sie diese an (es ist genau eine Aussage richtig). A: Der Brechungswinkel
Fortgeschrittenen Praktikum, SS 2008
selektive Reflexionsspektroskopie (SRS) Fortgeschrittenen Praktikum, SS 2008 Alexander Seizinger, Michael Ziller, Philipp Buchegger, Tobias Müller Betreuer: Reinhardt Maier Tübingen, den 3. Juni 2008 1
Versuchsauswertung: Laser-Optik Teil B
Praktikum Klassische Physik II Versuchsauswertung: Laser-Optik Teil B (P2-23,24,25) Christian Buntin, Jingfan Ye Gruppe Mo-11 Karlsruhe, 10. Mai 2010 Inhaltsverzeichnis 1 Fouriertransformation zur Messung
Physikalisches Grundpraktikum Technische Universität Chemnitz
Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A3 - Atomspektren - BALMER-Serie» Martin Wolf Betreuer: DP Emmrich Mitarbeiter: Martin Helfrich
NG Brechzahl von Glas
NG Brechzahl von Glas Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes
Lösungen: Übungsblatt 4 zur Quantenelektronik I
Prof Dr U Keller FS 016 Lösungen: Übungsblatt 4 zur Quantenelektronik I Aufgabe 1 Sagnac-Interferometer a) Ohne Rotation ist die Umlaufdauer in der Faserschleife T = πrn / c Innerhalb dieser Zeit dreht
Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!
Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten
Versuch O08: Polarisation des Lichtes
Versuch O08: Polarisation des Lichtes 5. März 2014 I Lernziele Wellenoptik Longitudinal- und Transversalwellen Elektromagnetische Wellen II Physikalische Grundlagen Nachweismethode Elektromagnetische Wellen
Grundlagen der Physik 3 Lösung zu Übungsblatt 2
Grundlagen der Physik 3 Lösung zu Übungsblatt 2 Daniel Weiss 17. Oktober 2010 Inhaltsverzeichnis Aufgabe 1 - Zustandsfunktion eines Van-der-Waals-Gases 1 a) Zustandsfunktion.................................
Physikklausur Nr.4 Stufe
Physikklausur Nr.4 Stufe 12 08.05.2009 Aufgabe 1 6/3/5/4 Punkte Licht einer Kaliumlampe mit den Spektrallinien 588nm und 766nm wird auf einen Doppelspalt des Spaltmittenabstands 0,1mm gerichtet. a.) Geben
1. Aufgabe a) Beschreibe den Schülerversuchsaufbau zur Dispersion von Licht. Notiere insbesondere die Namen und Aufgaben der einzelnen Objekte.
1. Aufgabe a) Beschreibe den Schülerversuchsaufbau zur Dispersion von Licht. Notiere insbesondere die Namen und Aufgaben der einzelnen Objekte. Linie Wellenlänge /nm eigene Beobachtung Flint Kron Quarz
Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016
Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer
Laboranten Labormethodik und Physikalische Grundlagen
0.09.06 Brechung Trifft Licht auf die Grenzfläche zweier Stoffe, zweier Medien, so wird es zum Teil reflektiert, zum Teil verändert es an der Grenze beider Stoffe seine Richtung, es wird gebrochen. Senkrecht
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (8 Punkte) Ein
Physik-Praktikum: BUB
Physik-Praktikum: BUB Einleitung Während man Lichtbrechung noch mit einer Modellvorstellung von Licht als Teilchen oder als Strahl mit materialabhängiger Ausbreitungsgeschwindigkeit erklären kann, ist
Übungen zur Experimentalphysik 3
Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer ([email protected]) Aufgabe 1 ( ) (6 Punkte) a)
Versuchsvorbereitung P2-13: Interferenz
Versuchsvorbereitung P2-13: Interferenz Michael Walz, Kathrin Ender Gruppe 10 26. Mai 2008 Inhaltsverzeichnis 1 Newton'sche Ringe 2 1.1 Bestimmung des Krümmungsradius R...................... 2 1.2 Brechungsindex
3.3 Polarisation und Doppelbrechung. Ausarbeitung
3.3 Polarisation und Doppelbrechung Ausarbeitung Fortgeschrittenenpraktikum an der TU Darmstadt Versuch durchgeführt von: Mussie Beian, Florian Wetzel Versuchsdatum: 8.6.29 Betreuer: Dr. Mathias Sinther
Physikalisches Anfängerpraktikum Teil 2 Versuch PII 22: Lichtstreuung Auswertung
Physikalisches Anfängerpraktikum Teil 2 Versuch PII 22: Lichtstreuung Auswertung Gruppe Mi-14: Marc A. Donges , 1060028 Tanja Pfister, 14846 05 07 12 1 1 Versuchsaufbau Der Versuch wurde
Praktikum SC Optische Aktivität und Saccharimetrie
Praktikum SC Optische Aktivität und Saccharimetrie Hanno Rein, Florian Jessen betreut durch Gunnar Ritt 19. Januar 2004 1 Vorwort In den meiste Fällen setzt man bei verschiedensten Rechnungen stillschweigend
PC-Übung Nr.1 vom
PC-Übung Nr.1 vom 17.10.08 Sebastian Meiss 25. November 2008 1. Allgemeine Vorbereitung a) Geben Sie die Standardbedingungen in verschiedenen Einheiten an: Druck p in Pa, bar, Torr, atm Temperatur T in
Auswertung P2-10 Auflösungsvermögen
Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen
Mikrowellenoptik. Marcel Köpke & Axel Müller
Mikrowellenoptik Marcel Köpke & Axel Müller 03.05.2012 Inhaltsverzeichnis 1 Bestimmung der Wellenlänge 3 2 Intensitätmessung 5 3 Fresnel-Beugung 7 4 Einzel- und Mehrfachspalte 8 4.1 Einzelspalt...................................
Lichtbrechung / Lichtbeugung
Lichtbrechung / Lichtbeugung 1. Aufgaben 1. Über die Beugung an einem Gitter sind die Wellenlängen ausgewählter Spektrallinien von Quecksilberdampf zu bestimmen. 2. Für ein Prisma ist die Dispersionskurve
Physikalisches Praktikum 3. Semester
Torsten Leddig 30.November 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Newtonsche Ringe - 1 1 Newtonsche Ringe: Aufgaben: Bestimmen Sie den Krümmungsradius R sowie den
Versuch Nr. 22. Fresnelformeln
Grundpraktikum der Physik Versuch Nr. 22 Fresnelformeln Versuchsziel: Die Fresnelformeln beschreiben, in welcher Weise sich ein polarisierter oder unpolarisierter Lichtstrahl verhält, wenn er auf die Grenzfläche
Eigenschaften von Halbleitern mit der Fourier-Transform-Infrarot-Spektroskopie
D Eigenschaften von Halbleitern mit der Fourier-Transform-Infrarot-Spektroskopie Wissenschaftliche Arbeit im Fach Physik Eingereicht von Carsten Bundesmann Universität Leipzig Fakultät für Physik und Geowissenschaften
1. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen
Klausur Klasse 2 Licht als Wellen (Teil ) 26..205 (90 min) Name:... Hilfsmittel: alles verboten. Die Abbildung zeigt den Strahlenverlauf eines einfarbigen Lichtstrahls durch eine Glasplatte, bei dem Reflexion
Bestimmung des Spannungskoeffizienten eines Gases
Bestimmung des Spannungskoeffizienten eines Gases Einleitung Bei diesem Experiment wollen wir den Spannungskoeffizienten α eines Gases möglichst genau bestimmen und in Folge mit dem Spannungskoeffizienten
Michelson-Interferometer & photoelektrischer Effekt
Michelson-Interferometer & photoelektrischer Effekt Branche: TP: Autoren: Klasse: Physik / Physique Michelson-Interferometer & photoelektrischer Effekt Cedric Rey David Schneider 2T Datum: 01.04.2008 &
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert
Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O07 Michelson-Interferometer (Pr_PhII_O07_Michelson_7, 5.10.015) 1.. Name Matr. Nr. Gruppe
Aufgabe 2.1: Wiederholung: komplexer Brechungsindex
Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: [email protected] / [email protected] Blatt 2, Besprechung: 23.04.2014 / 30.04.2014
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten
Prüfung aus Physik IV (PHB4) 26. Januar 2010
Fachhochschule München FK06 Wintersemester 2009/10 Prüfer: Prof. Dr. Maier Zweitprüfer: Prof. Dr. Herberg Prüfung aus Physik IV (PHB4) 26. Januar 2010 Zulassungsvoraussetzungen:./. Zugelassene Hilfsmittel:
AUSWERTUNG: LASER A FREYA GNAM, TOBIAS FREY
AUSWERTUNG: LASER A FREYA GNAM, TOBIAS FREY 1. BREWSTERWINKEL UND BRECHUNGSINDEX Da ein Laser linear polarisiertes Licht erzeugt, lässt sich der Brewsterwinkel bestimmen, indem man den Winkel sucht, bei
Physik 4, Übung 4, Prof. Förster
Physik 4, Übung 4, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls
Besprechung am
PN2 Einführung in die Physik für Chemiker 2 Prof. J. Lipfert SS 2016 Übungsblatt 10 Übungsblatt 10 Besprechung am 27.6.2016 Aufgabe 1 Interferenz an dünnen Schichten. Weißes Licht fällt unter einem Winkel
1.1 Auflösungsvermögen von Spektralapparaten
Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.1 Auflösungsvermögen von Spektralapparaten Sitchwörter: Geometrische Optik, Wellenoptik, Auflösungsvermögen, Rayleigh Kriterium, Spektrograph,
Beugung am Spalt und Gitter
Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: [email protected] Gruppe: 4 Durchgeführt
PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE
PROTOKOLL ZUM VERSUCH: NEWTONSCHE RINGE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel: 1 1.2. Aufgabe: 1 1.3. Verwendete Geräte: 1 2. Versuchsdurchführung 1
Physikalisches Praktikum 4. Semester
Torsten Leddig 04.Mai 2005 Mathias Arbeiter Betreuer: Dr. Enenkel Physikalisches Praktikum 4. Semester - Beugung an Spalten - 1 Ziel: Kennen lernen von Beugungsphänomenen. Aufgaben: 1. Bestimmen Sie die
Christopher Bronner, Frank Essenberger Freie Universität Berlin. 19. September 2006
Fabry-Perot-Etalon Christopher Bronner, Frank Essenberger Freie Universität Berlin 19. September 2006 1 Physikalische Grundlagen Einzel- u. Doppelspalt erzeugen durch Phasengleichheit der wenigen beteiligten
Protokoll zum Physikalischen Praktikum Versuch 9 - Newtonsche Ringe
Protokoll zum Physikalischen Praktikum Versuch 9 - Newtonsche Ringe Experimentator: Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 02.11.2004 Inhaltsverzeichnis 1 Ziel des Versuches 1 2 Vorbetrachtungen
Lichtgeschwindigkeit Versuch P1 42, 44
Auswertung mit ausführlicher Fehlerrechnung Lichtgeschwindigkeit Versuch P1 42, 44 Iris Conradi, Melanie Hauck Gruppe Mo-02 7. Dezember 2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Drehspiegelmethode
Physikalisches Praktikum Versuch 8: Messung der Schallgeschwindigkeit in Gasen
Physikalisches Praktikum Versuch 8: Messung der Schallgeschwindigkeit in Gasen Daniel Heißelmann Michael Beimforde Gruppe 1 Versuchsleiterin: Frau Wesner 48 / 50 Punkte 15. Januar 2003 Beimforde,Heißelmann
DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.
Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Duale Natur des Lichtes Ist Licht eine e.-m.
DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.
Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Ultraschall Beugung von Licht an Ultraschall
Gebrauchsanweisung Martin Henschke, Fresnel-Spiegel Art.-Nr.:
Gerätebau - Physikalische Lehrmittel Dr. Martin Henschke Gerätebau Dieselstr. 8, D-50374 Erftstadt www.henschke-geraetebau.de Gebrauchsanweisung Martin Henschke, 2006-05-16 Fresnel-Spiegel Art.-Nr.: 650272
Experimente mit Ultraschall
Batchelorarbeit Experimente mit Ultraschall eingereicht von Caroline Krüger am Fachbereich Didaktik der Physik Leipzig 2009 Betreuer: Dr. P. Rieger Zweitgutachter: Prof. Dr. W. Oehme 1 Inhaltsverzeichnis:
Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik
Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik Matthias Brasse, Max v. Vopelius 24.02.2009 Aufgabe 1: Zeigen Sie mit Hilfe des Fermatschen Prinzips, dass aus der Minimierung des optischen
Lösung: a) b = 3, 08 m c) nein
Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter
Physikalisches Praktikum O 4 Debye-Sears Effekt
Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physikalisches Praktikum O 4 Debye-Sears Effekt Versuchsziel Messung der Ultraschallwellenlänge. Literatur
Physikalisches Praktikum
Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.2: Wellenlängenbestimmung mit dem Gitter- und Prismenspektrometer Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1
Technische Universität Dresden Fachrichtung Physik K.Prokert 09/2001 M. Lange 12/2008. Diffusion. Physikalisches Praktikum. Inhaltsverzeichnis
Technische Universität Dresden Fachrichtung Physik K.Prokert 9/ M. Lange /8 Physikalisches Praktikum Versuch: DI Diffusion Inhaltsverzeichnis. Aufgabenstellung. Grundlagen 3. Versuchsdurchführung 4. Hinweise
Lichtreflexion. Physikalisches Grundpraktikum IV. Name: Daniel Schick Betreuer: Dr. Hoppe Versuch ausgeführt: Protokoll erstellt:
Physikalisches Grundpraktikum IV Universität Rostock :: Institut für Physik 5 Lichtreflexion Name: Daniel Schick Betreuer: Dr. Hoppe Versuch ausgeführt: 2.4.5 Protokoll erstellt: 22.4.5 1 Ziele: Auseinandersetzen
Versuch M01: Messung der Schallgeschwindigkeit in Gasen mit dem Quincke'schen Interferenzrohr
Versuch M01: Messung der Schallgeschwindigkeit in Gasen mit dem Quincke'schen Interferenzrohr 10. März 2017 I Einleitung Schallwellen breiten sich in Gasen als elastische Longitudinalwellen aus. Für ihre
PRISMEN - SPEKTRALAPPARAT
Grundpraktikum der Physik Versuch Nr. 20 PRISMEN - SPEKTRALAPPARAT Versuchsziel: Bestimmung der Winkeldispersionskurve und des Auflösungsvermögens von Prismen. brechende Kante Ablenkwinkel einfallendes
Praktikum Physikalische Chemie I 30. Januar Aktivierungsenergie. Guido Petri Anastasiya Knoch PC111/112, Gruppe 11
Praktikum Physikalische Chemie I 30. Januar 2016 Aktivierungsenergie Guido Petri Anastasiya Knoch PC111/112, Gruppe 11 1 Aufgabenstellung Für die Reaktion von Saccharose mit Wasser zu Glucose und Fructose
Michelson Interferometer Brechzahlbestimmung
O07 Michelson Interferometer Brechzahlbestimmung In diesem Versuch wird zunächst ein Michelson-Interferometer aufgebaut und mit diesem die Wellenlänge des verwendeten Laserlichtes gemessen. Das aufgebaute
Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009
Versuch P1-31,40,41 Geometrische Optik Auswertung Von Ingo Medebach und Jan Oertlin 9. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung
Längenbeziehungen bei der Lochkamera
Längenbeziehungen bei der Lochkamera (Lochkameras wurden früher von Malern für Landschaftsbilder benutzt.) Zusammenfassung: Strahlensätze Alle bisherigen Experimente lassen sich mathematisch mit einem
2. Wellenoptik Interferenz
. Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher
Versuch Polarisiertes Licht
Versuch Polarisiertes Licht Vorbereitung: Eigenschaften und Erzeugung von polarisiertem Licht, Gesetz von Malus, Fresnelsche Formeln, Brewstersches Gesetz, Doppelbrechung, Optische Aktivität, Funktionsweise
Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16
Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch 16/03/16 Inhaltsverzeichnis Technische Universität München 1 Kohärenz 1 2 Beugung 1 2.1 Huygenssches Prinzip.............................
Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O10: Linsensysteme Arbeitsplatz Nr.
Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum I Versuchsprotokoll Versuch O10: Linsensysteme Arbeitsplatz Nr. 1 0. Inhaltsverzeichnis 1. Einleitung 2.
Übungen zu Physik 1 für Maschinenwesen
Physikdepartment E13 WS 2011/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung
Beugung, Idealer Doppelspalt
Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt
Labor für Technische Akustik
Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende
