R. Brinkmann Seite

Größe: px
Ab Seite anzeigen:

Download "R. Brinkmann Seite"

Transkript

1 R. rinkmann Seite Lösungen edingte Wahrscheinlichkeit II en: 1 ufgabe Es soll die eliebtheit einer Fernsehsendung überprüft werden. Eine litzumfrage hatte folgendes Ergebnis: 30% der Zuschauer, die die Sendung gesehen hatten, waren 25 Jahre und jünger. Von diesen hatten 50% und von den übrigen Zuschauern (über 25 Jahre) hatten 80% eine positive Meinung. a) Stellen Sie den Sachzusammenhang in einer 4 Feldtafel da. Verwenden Sie die Ereignisse (mit ihren Gegenereignissen): : Der Zuschauer ist 25 Jahre alt und jünger. : Der Zuschauer hat eine positive Meinung über die Sendung. b) Zeichnen Sie das aumdiagramm und den inversen aum. estimmen Sie alle fadwahrscheinlichkeiten. c) Wie viel % der Zuschauer, von denen man weiß, dass sie eine positive Meinung über die Sendung hatten, waren älter als 25 Jahre? d) Wie viel % der Zuschauer, von denen man weiß, dass sie älter als 25 Jahre sind, hatten keine positive Meinung über die Sendung? e) Überprüfen Sie durch Rechnung ob das Ereignis unabhängig vom Ereignis ist. Erstellt von R. rinkmann p9_stoch_052_e.doc :51 Seite 1 von 8

2 R. rinkmann Seite a) : Zuschauer ist 25 Jahre alt : Zuschauer ist > 25 Jahre alt : Zuschauer hat eine positive Meinung von der Sendung : Zuschauer hat eine negative Meinung von der Sendung 30% der Zuschauer sind 25 Jahre alt = 0,3 70% der Zuschauer sind > 25 Jahre alt = 0,7 Von den Zuschauern 25 hatten 50% eine positive Meinung. ( ) = 0,5 0,3 = 0,15 Von den Zuschauern 25 hatten 50% eine negative Meinung. = 0,5 0,3 = 0,15 Von den Zuschauern = 0,8 0,7 = 0,56 > 25 hatten 80% eine positive Meinung. Die restlichen Werte der 4 Feldtafel lassen sich aus den bisher bekannten Werten berechnen: = 0,15 + 0,56 = 0,71 = 1 0,71= 0,29 = 0,29 0,15 = 0,14 Die 4 Feldtafel : ( ) ( > ) (Meinung positiv) (Meinung negativ) 25 0,15 0,15 0,3 25 0,56 0,14 0,7 0,71 0, b) Das aumdiagramm: ( ) = 0,3 ( ) = 0,5 = 0,5 ( ) = 0,15 ( ) = 0,15 ( ) = 0,7 ( ) = 0,8 ( ) = 0,2 ( ) = 0,56 ( ) = 0,14 Erstellt von R. rinkmann p9_stoch_052_e.doc :51 Seite 2 von 8

3 R. rinkmann Seite b) erechnung aller für den aum relevanten Wahrscheinlichkeiten. ( ) ( ) 0,15 0,15 ( ) = = = 0,5 = = = 0,5 0,3 0,3 ( ) 0,56 0,14 ( ) = = = 0,8 = = = 0,2 0,7 0,7 1 b) Der inverse aum: = 0,71 ( ) 0,211 ( ) 0,789 ( ) = 0,15 ( ) = 0,56 = 0,29 ( ) 0,517 ( ) 0,483 ( ) = 0,15 ( ) = 0, b) erechnung aller für den aum relevanten Wahrscheinlichkeiten. ( ) 0,15 0,56 ( ) = = 0,211 = = 0,789 0,71 0,71 0,15 0,14 ( ) = = 0,517 = = 0,483 0,29 0,29 c) Von allen Zuschauern, von den man weiß, das sie eine ( ) 0,789 positive Meinung über die Sendung hatten, waren 78,9% älter als 25 Jahre. d) Von allen Zuschauern, von den man weiß, das sie älter als ( ) = 0,2 25 sind, hatten 20% eine negative Meinung über die Sendung. Erstellt von R. rinkmann p9_stoch_052_e.doc :51 Seite 3 von 8

4 R. rinkmann Seite ist unabhängig von, falls gilt: = e) 0,211 = 0,3 keine Unabhängigkeit Das Ereignis ist abhängig vom Ereignis. Das bedeutet, die positive Meinung über die Fernsehsendung ist vom lter der Zuschauer abhängig. ufgabe In einem Land der Dritten Welt leiden 1% der Menschen an einer bestimmten Infektionskrankheit. Ein est zeigt die rankheit bei den tatsächlich erkrankten zu 98% korrekt an. Leider zeigt der est auch 3% der Gesunden als erkrankt an. a) Stellen Sie den Sachzusammenhang in einer 4 Feldtafel da. Verwenden Sie die Ereignisse (mit ihren Gegenereignissen): : Die getestete erson ist krank. : estergebnis ist positiv (erson wurde als krank getestet). b) Zeichnen Sie das aumdiagramm und den inversen aum. estimmen Sie alle fadwahrscheinlichkeiten. c) Mit welcher Wahrscheinlichkeit zeigt der est bei einer zufällig ausgewählten erson ein positives Ergebnis? d) Mit welcher Wahrscheinlichkeit ist eine als positiv getestete erson auch tatsächlich krank? ommentieren Sie das Ergebnis. e) Mit welcher Wahrscheinlichkeit ist eine als negativ getestete erson gesund? ommentieren Sie das Ergebnis. Erstellt von R. rinkmann p9_stoch_052_e.doc :51 Seite 4 von 8

5 R. rinkmann Seite a) : Die getestete erson ist krank : Die getestete erson ist gesund : Das estergebnis ist positiv (erson wurde als krank getestet) : Das estergebnis ist negativ (erson wurde als gesund getestet) 1 = % der Menschen sind krank 0,01 99% der Menschen sind gesund = 0,99 Der est zeigt die rankheit bei den tatsächlich erkrankten zu 98% korrekt an ( ) = 0,98 0,01= 0,0098 Der est zeigt auch 3% der gesunden als krank an = 0,03 0,99 = 0,0297 Die restlichen Werte der 4 Feldtafel lassen sich aus den bisher bekannten Werten berechnen: = 0, ,0297 = 0,0395 = 0,01 0,0098 = 0,0002 = 0,99 0,0297 = 0,9603 = 1 0,0395 = 0,9605 Die 4 Feldtafel : (positiv) (negativ) (krank) 0,0098 0,0002 0,01 (gesund) 0,0297 0,9603 0,99 0,0395 0, b) aumdiagramm: = 0,01 ( ) = 0,98 = 0,02 ( ) = 0,0098 ( ) = 0,0002 = 0,99 ( ) = 0,03 = 0,97 ( ) = 0,0297 ( ) = 0,9603 Erstellt von R. rinkmann p9_stoch_052_e.doc :51 Seite 5 von 8

6 R. rinkmann Seite b) erechnung aller für den aum relevanten Wahrscheinlichkeiten. ( ) 0,0098 0,0002 ( ) = = = 0,98 = = = 0,02 0,01 0,01 0,0297 0,9603 ( ) = = = 0,03 = = = 0,97 0,99 0,99 b) Der inverse aum: ( ) = 0,0395 ( ) 0,2481 ( ) 0,7519 ( ) = 0,0098 ( ) = 0,0297 ( ) = 0,9605 ( ) 0, ( ) 0, ( ) = 0,0002 ( ) = 0,9603 b) erechnung aller für den aum relevanten Wahrscheinlichkeiten. ( ) 0,0098 ( ) = = 0,2481 0,0395 0,0297 ( ) = = 0,7519 0,0395 ( ) ( ) 0,0002 ( ) = = 0, ,9605 0,9603 ( ) = = 0, ,9605 c) ( ) = 0,0395 ei einer zufällig ausgewählten erson zeigt der est mit einer Wahrscheinlichkeit von 0,0395 ein positives Ergebnis an. Erstellt von R. rinkmann p9_stoch_052_e.doc :51 Seite 6 von 8

7 R. rinkmann Seite d) Eine erson, von der man weiß, dass sie positiv getestet wurde, ist mit einer Wahrscheinlichkeit von 0,2481 auch tatsächlich krank ommentar: ( ) 0,2481 Das Ergebnis von ca. 25% ist nicht zufriedenstellend. Nur 25% aller positiv getesteten sind tatsächlich erkrankt. Das bedeutet, dass ca. 75% der positiv getesteten gesund sind. Es wäre wünschenswert, dass der est verbessert wird. e) 0, Eine erson, von der man weiß, dass sie negativ getestet wurde, ist mit einer Wahrscheinlichkeit von 0, auch tatsächlich gesund. ommentar: In diesem Fall ist das Ergebnis von ca. 99,98% sehr zufriedenstellend. Nur ca. 0,02% der als negativ getesteten ersonen sind tatsächlich krank. ufgabe n einem erufskolleg werden alle 674 Schüler/innen befragt ob sie rauchen oder nicht rauchen. Das Ergebnis der efragung sieht wie folgt aus: 82 der insgesamt 293 Schüler (männlich) gaben an zu rauchen. 250 Schülerinnen gaben an, nicht zu rauchen. a) Stellen Sie den Sachzusammenhang in einer 4 Feldtafel da. Verwenden Sie die Ereignisse (mit ihren Gegenereignissen): : Die erson ist männlich. : Die erson ist Raucher b) Mit welcher Wahrscheinlichkeit ist eine zufällig ausgewählte erson weiblich und Nichtraucherin? c) Der Schulleiter sieht eine Schülerin im ufenthaltsraum. Mit welcher Wahrscheinlichkeit ist diese Schülerin Nichtraucherin? d) Untersuchen Sie, ob das Ereignis männlich und das Ereignis Raucher voneinander abhängige Ereignisse sind. Erstellt von R. rinkmann p9_stoch_052_e.doc :51 Seite 7 von 8

8 R. rinkmann Seite a) : Die erson ist männlich : Die erson ist weiblich : Die erson ist Raucher : Die erson ist Nichtraucher Die 4 Feldtafel : (männlich) (weiblich) (Raucher) (Nichtraucher) = 3 3 b) 250 ( ) = 0, c) 250 ( ) 250 ( 674 ) = = = 0,656 ( ) Eine zufällig ausgewählte erson ist mit einer Wahrscheinlichkeit von 0,371 weiblich und raucht nicht. Eine erson, von der man weiß, das sie weiblich ist, ist mit einer Wahrscheinlichkeit von 0,656 Nichtraucherin. 3 Wenn gilt: hängt von ab. d) 82 ( ) 82 ( ) = = 674 = 0,28 ( ) ( ) ( ) = 0, Die Ereignisse : Mann und : Raucher sind voneinander abhängig. Erstellt von R. rinkmann p9_stoch_052_e.doc :51 Seite 8 von 8

R. Brinkmann Seite M M : Placebo genommen G : gesund geworden G : nicht gesund geworden

R. Brinkmann  Seite M M : Placebo genommen G : gesund geworden G : nicht gesund geworden R. rinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen edingte Wahrscheinlichkeit I usführliche Lösungen: 1 ufgabe In einem roßversuch wurde ein Medikament Summe getestet. Die Ergebnisse sind in

Mehr

Die Kugeln tragen zwei Merkmale mit jeweils zwei Ausprägungen. Merkmal I Ausprägung Merkmal II Ausprägung. A: Holz B: rot A: Kunststoff B: grün

Die Kugeln tragen zwei Merkmale mit jeweils zwei Ausprägungen. Merkmal I Ausprägung Merkmal II Ausprägung. A: Holz B: rot A: Kunststoff B: grün R. rinkmann http://brinkmann-du.de Seite 6..00 edingte Wahrscheinlichkeit ei mehrmaligem Würfeln hängt die Wahrscheinlichkeit eine bestimmte Zahl zwischen und 6 zu werfen nicht von dem vorherigen Ergebnis

Mehr

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen)

b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen) R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Relative Häufigkeit, Wahrscheinlichkeit II en: A1 A1 Über die Zusammensetzung der Schülerschaft eines Gymnasiums ist bekannt: In der Sek.

Mehr

Klausur Nr. 1: Wahrscheinlichkeitsrechnung (Stochastik) Klausur Nr. 1: Wahrscheinlichkeitsrechnung (Stochastik)

Klausur Nr. 1: Wahrscheinlichkeitsrechnung (Stochastik) Klausur Nr. 1: Wahrscheinlichkeitsrechnung (Stochastik) Aufgabe : Eine Versicherung veröffentlicht das folgende Datenmaterial über die durch die bei ihnen versicherten ersonen verursachten Unfälle: Autofahrer Jünger als 25 25 und 40 40 und 60 Älter als 60 Summe

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

R R M 0,0187 0,4957 0,514 M 0,0021 0,4839 0,486 0,0208 0,9792 1,00

R R M 0,0187 0,4957 0,514 M 0,0021 0,4839 0,486 0,0208 0,9792 1,00 8 edingte Wahrscheinlichkeit 8 edingte Wahrscheinlichkeit 8.1 Einführung und Definition Der Zusammenhang zwischen dem Geschlecht einer beliebig ausgewählten erson und einer eventuellen Rotgrünblindheit

Mehr

Vierfeldertafel und bedingte Wahrscheinlichkeit. 1 Ereignisse und Vierfeldertafel

Vierfeldertafel und bedingte Wahrscheinlichkeit. 1 Ereignisse und Vierfeldertafel Seite 9 9 Lösungen vorläufig Vierfeldertafel und bedingte Wahrscheinlichkeit IV Vierfeldertafel und bedingte Wahrscheinlichkeit Ereignisse und Vierfeldertafel S. 9 a) 0 b) Zwei Personen aus der 0C sind

Mehr

Ma 13 - Stochastik Schroedel Neue Wege (CON)

Ma 13 - Stochastik Schroedel Neue Wege (CON) Bedingte Wahrscheinlichkeiten S. 70, Nr. 5 Richtiges Anwenden der Multiplikationsregel A: Abonnement liest Werbeanzeige B: Produkt wird gekauft S. 70, Nr. 6 Übersetzung von Daten in ein Baumdiagramm A

Mehr

Insel-Camp-Aufgabe Bayern GK 2008

Insel-Camp-Aufgabe Bayern GK 2008 Insel-Camp-Aufgabe Bayern GK 2008 Bei der neuen Fernsehshow Insel-Camp nehmen 7 Frauen und 7 Männer als Kandidaten teil 1 Für die Fahrt zur Insel stehen drei Boote zur Verfügung, eines für 8, eines für

Mehr

Prüfung nicht bestanden. Die gleiche Tabelle kann man auch mit den entsprechenden Wahrscheinlichkeiten (relative Häufigkeit) erstellen.

Prüfung nicht bestanden. Die gleiche Tabelle kann man auch mit den entsprechenden Wahrscheinlichkeiten (relative Häufigkeit) erstellen. 6 Vierfeldertafel An einer Prüfung nehmen 100 Studenten teil, von denen 40 als Raucher bekannt sind. 65 Studenten haben die Prüfung. Von den Nichtrauchern haben 50 die Prüfung. Wie groß ist der Anteil

Mehr

Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik

Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik Aufgabe 3: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. a) Das unten stehende

Mehr

Wahrscheinlichkeit1 (Laplace)

Wahrscheinlichkeit1 (Laplace) Wahrscheinlichkeit1 (Laplace) Aufgaben A1 In der schriftlichen Abiturarbeit im Fach Mathematik gab es folgende Noten: 3; 4; 3; 2; 3; 1; 5; 5; 4; 3; 3; 2; 1; 4; 2; 5; 4; 2; 4; 3 a) Erstellen Sie eine Häufigkeitstabelle

Mehr

Bedingte Wahrscheinlichkeiten

Bedingte Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Bei der Betrachtung der Ereignisse A und B eines Zufallsexperiments muss man die beiden im folgendem beschrieben zwei Situationen unterscheiden. 1. Das Ereignis A und B tritt

Mehr

PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein

PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein Bayes'sche Netze Andreas Bahcecioglu Marcel Bergmann Ertan Samgam Sven Schebitz Jan Seewald Fachhochschule Köln Wintersemester 2014 / 2015

Mehr

Müsli-Aufgabe Bayern GK 2009

Müsli-Aufgabe Bayern GK 2009 Müsli-Aufgabe Bayern GK 2009 1 Anlässlich einer Studie wurden 2000 Jugendliche im Alter von 18 Jahren zu ihren Ernährungsgewohnheiten befragt Von den Befragten gaben 740 an, am Morgen nicht zu frühstücken

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 120 Minuten netto Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort gibt 2 Punkte. Pro falsche

Mehr

4. Schularbeit/7C/2-stündig Schularbeit. 7C am

4. Schularbeit/7C/2-stündig Schularbeit. 7C am 4. Schularbeit 7C am 24.5.2017 Name: Note: Beispiel-Nr. 1 2 3 4 5 6 7 8 9 10 11 12 AP Teil 1: Teil 2: Punkte Teil 1 (inkl. AP) Punkte Teil 2 Gesamtpunkte Notenschlüssel: 0 7 P von Teil 1 (inkl. Anrechnungspunkte

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Grundlagen der Mathematik II Lösungsvorschlag zum 10. Tutoriumsblatt

Grundlagen der Mathematik II Lösungsvorschlag zum 10. Tutoriumsblatt Mathematisches Institut der Universität München Sommersemester 204 Daniel Rost Lukas-Fabian Moser Grundlagen der Mathematik II Lösungsvorschlag zum 0. Tutoriumsblatt ufgabe. Wir betrachten in einem geeigneten

Mehr

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit Kapitel 17 Unabhängigkeit und Homogenität 17.1 Unabhängigkeit Im Rahmen der Wahrscheinlichkeitsrechnung ist das Konzept der Unabhängigkeit von zentraler Bedeutung. Die Ereignisse A und B sind genau dann

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Aufgabe 5: Stochastik (WTR)

Aufgabe 5: Stochastik (WTR) Abitur Mathematik: Originalprüfung Aufgabe 5: Stochastik (WTR) Nordrhein-Westfalen 2014 GK Das Produkt Fußball Bundesliga ist ein Erfolgsmodell. Die Zuschauerzahlen erreichten in der Saison 2011/12 einen

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

Prüfung Prüfung nicht. Raucher 0,15 0,25 0,40 Nichtraucher 0,50 0,10 0,60 0,65 0,35 1,00

Prüfung Prüfung nicht. Raucher 0,15 0,25 0,40 Nichtraucher 0,50 0,10 0,60 0,65 0,35 1,00 7 Stochastische Unabhängigkeit Kommen wir noch einmal zu dem Beispiel der Studenten (Raucher/Nicht-Raucher), die eine Prüfung bestanden bzw. nicht bestanden haben zurück. s ist bekannt, dass 40% der Studenten

Mehr

Abiturienten-Aufgabe Bayern GK 2004

Abiturienten-Aufgabe Bayern GK 2004 Abiturienten-Aufgabe Bayern GK 2004 Die Bezeichnungen Abiturienten und Schüler beziehen sich im folgenden Text sowohl auf männliche als auch auf weibliche Personen. Die Abiturienten eines bayerischen Gymnasiums

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Aufgabe 6: Stochastik (WTR)

Aufgabe 6: Stochastik (WTR) Abitur Mathematik: Originalprüfung Nordrhein-Westfalen 2014, LK Das Produkt Fußball Bundesliga ist ein Erfolgsmodell. Die Zuschauerzahlen erreichten in der Saison 2011/12 einen Rekord von durchschnittlich

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit In einem Laden ist eine larmanlage eingebaut. Bei Einbruch gibt sie mit 99%-iger Wahrscheinlichkeit larm. Wenn in einer bestimmten Nacht kein Einbruch stattfindet, gibt sie

Mehr

Bedingte Wahrscheinlichkeiten - Übersicht

Bedingte Wahrscheinlichkeiten - Übersicht edingte Wahrscheinlichkeiten - Übersicht LK LIE/10 1 Mengen, Ereignisse, ussagen 1.1 Grundlegendes 1.1.1 Mengenbilder (VENN-Diagramme), Symbole, Sprechweisen 1.1.2 äquivalente Terme 1.2 Ergänzungen 1.2.1

Mehr

6 Kombinatorik: Einschluß-Ausschluß Formel. 6.1 Indikatorfunktionen. I A ist eine Zufallsvariable E[I A ] = P (A) IĀ = 1 I A I A B = I A I B

6 Kombinatorik: Einschluß-Ausschluß Formel. 6.1 Indikatorfunktionen. I A ist eine Zufallsvariable E[I A ] = P (A) IĀ = 1 I A I A B = I A I B 6 Kombinatorik: Einschluß-Ausschluß Formel 6.1 Indikatorfunktionen I A (ω) = { 1 falls ω A 0 falls ω A I A ist eine Zufallsvariable E[I A ] = P (A) IĀ = 1 I A I A B = I A I B I 2 A = I A V ar[i A ] = P

Mehr

Da die Fragen unabhängig voneinander und zufällig ausgewählt werden, ist die Wahrscheinlichkeit für eine Frage aus dem Gebiet Sport 1/10.

Da die Fragen unabhängig voneinander und zufällig ausgewählt werden, ist die Wahrscheinlichkeit für eine Frage aus dem Gebiet Sport 1/10. htw saar 1 Aufgabe 1 Für ein Fernsehquiz sollen Fragen zufällig und unabhängig voneinander aus zehn Wissensgebieten ausgewählt werden, darunter die Gebiete Sport und Politik. In jedem Gebiet stehen ausreichend

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt?

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt? In diesem Kapitel werden wir den egriff Wahrscheinlichkeit und die Grundlagen der Wahrscheinlichkeitsrechnung kennenlernen, um z.. folgende Fragestellungen zu beantworten. Wie hoch ist das Risiko, dass

Mehr

! Die Noten von 10 Bachlor- 30 Master- und 10 PhD-Studenten (Doktoranden) eines Informatikkurses waren wie folgt.

! Die Noten von 10 Bachlor- 30 Master- und 10 PhD-Studenten (Doktoranden) eines Informatikkurses waren wie folgt. In einem Informatik-Kurs bestehend aus 100 Studenten, haben 54 Studenten Mathematik, 69 Chemie und 35 beide Fächer belegt. Wenn wir zufällig einen Studenten auswählen, wie groß ist die Wahrscheinlichkeit

Mehr

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt

Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt R. Brinkmann http://brinkmann-du.de Seite 2.05.2009 Abiturvorbereitung Alkoholsünder, bedingte Wahrscheinlichkeit, Hypothesentest Aufgabenblatt Aufgabe 0 0. In einer bestimmten Stadt an einer bestimmten

Mehr

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet.

Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. 11.01.2012 Prof. Dr. Ingo Klein Klausur zur VWA-Statistik Hinweis: Es sind 4 aus 6 Aufgaben zu bearbeiten. Werden mehr als 4 Aufgaben bearbeitet, werden nur die ersten vier Aufgaben gewertet. Aufgabe 1:

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n (2k 1) = n 2.

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n (2k 1) = n 2. Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k=1 (2k 1) = n 2. Aufgabe 2. (7 Punkte) Gegeben sei das lineare Gleichungssystem x + 2z = 0 ay

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 203 Stochastische Unabhängigkeit Hans Walser: Modul 203, Stochastische Unabhängigkeit ii Inhalt 1 Bedingte Wahrscheinlichkeit... 1 1.1 Feuermeldeanlage,

Mehr

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik biturprüfung 016 Prüfungsteil rbeitszeit: 90 Minuten ei der earbeitung der ufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten nalysis, Stochastik und Geometrie wählt der

Mehr

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung

mathphys-online Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung Abschlussprüfung Berufliche Oberschule 2011 Mathematik 12 Nichttechnik - S II - Lösung Teilaufgabe 1.0 Ein Händler für Baby- und Keinkinderspielwaren hat in seinem Sortiment unter anderem Spielzeug aus

Mehr

Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3

Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3 Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3 B I N O M I A L V E R T E I L U N G, B I N O M I A L T A B E L L E, U N A B H Ä N G I G E E R E I G N I S S E Zentrale Methodenlehre, Europa Universität

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2012 / 2013 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Musteraufgaben Fachoberschule 2017 Mathematik

Musteraufgaben Fachoberschule 2017 Mathematik Musteraufgaben Fachoberschule 07 Funktionsuntersuchung /8 Gegeben ist die Funktion f mit der Funktionsgleichung f(x) = 0,05x 0,75x +,x +,8 und dem Definitionsbereich x [0;0]. Der Graph G f der Funktion

Mehr

Modul 203: Stochastische Unabhängigkeit!

Modul 203: Stochastische Unabhängigkeit! Modul 203: Stochastische Unabhängigkeit! 1 Alarm und falscher Alarm 2 Alarm und falscher Alarm Feuer kein Feuer 3 Alarm und falscher Alarm Feuer p = 0.001 kein Feuer p = 0.999 4 Alarm und falscher Alarm

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Stichproben und Zählstrategien II : A1 A1 Aus schwarzen und weißen Mühlsteinen werden Türme gebaut, indem immer acht Steine übereinander

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 /

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 / Aufgabenblock 3 Aufgabe ) A sei das Ereignis: schwerer Verkehrsunfall B sei das Ereignis: Alkohol ist im Spiel Herr Walker betrachtet die Wahrscheinlichkeit P(B A) = 0.3 und errechnet daraus P(-B A) =

Mehr

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X:

Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X: Übungsblatt 1 Beispiel 1. Von den 50 Teilnehmern eines Kurses sind 35 weiblich und 10 Raucher/innen. Wie viele nicht-rauchende Teilnehmerinnen sind zu erwarten, wenn die Merkmale Geschlecht und Rauchverhalten

Mehr

Klausur zur Mathematik für Biologen

Klausur zur Mathematik für Biologen Mathematisches Institut der Heinrich-Heine-Universität DÜSSELDORF WS 2002/2003 12.02.2003 (1) Prof. Dr. A. Janssen / Dr. H. Weisshaupt Klausur zur Mathematik für Biologen Bitte füllen Sie das Deckblatt

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Lösungen Zufallsexperimente, Baumdiagramm, Ergebnismenge I

Lösungen Zufallsexperimente, Baumdiagramm, Ergebnismenge I R. rinkmann http://brinkmann-du.de Seite 1 23.09.2013 Lösungen Zufallsexperimente,, I en: 1 1 2 2 3 Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Ein Zufallsexperiment

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 3. Übung Lösungsvorschlag Gruppenübung G 8 a) Ein Professor möchte herausfinden, welche 5 seiner insgesamt 8 Mitarbeiter zusammen das kreativste Team darstellen.

Mehr

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli BOS 98 S I Im ahmen einer statistischen Erhebung wurden 5 repräsentative Haushalte ausgewählt und im Hinblick auf ihre Ausstattung mit Fernsehern, adiorecordern sowie Homecomputern untersucht. Dabei gaben

Mehr

3 = 93% (a) Berechnen Sie den Anteil der weiblichen Raucher unter den Betriebsangehörigen.

3 = 93% (a) Berechnen Sie den Anteil der weiblichen Raucher unter den Betriebsangehörigen. Übungsblatt Wahrscheinlichkeit 1. Neun von zehn Ungeborenen bevorzugen im Mutterleib den rechten Daumen zum Lutschen. Forscher fanden heraus, dass alle Kinder, die rechts genuckelt hatten, im Alter von

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Klausur zur Statistik

Klausur zur Statistik Klausur zur Statistik. Hinweis: Es können 94 Punkte erreicht werden. Zum Bestehen reichen 4 Punkte sicher aus.. Hinweis: Achten Sie darauf das Ihre Rechnungen nachvollziehbar sind und geben Sie alle Schritte

Mehr

1 Von Test zu Test. 2 Arbeitsblatt

1 Von Test zu Test. 2 Arbeitsblatt 1 Von Test zu Test 2 Arbeitsblatt 1. Ein FDP-Kandidat behauptet, dass 10% oder mehr Wahlberechtigten seines Stimmkreises FDP wählen würden. Zur Überprüfung befragt die Partei 200 Wahlberechtigte des Stimmkreises.

Mehr

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben.

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben. Einstieg in SPSS In SPSS kann man für jede Variable ein Label vergeben, damit in einer Ausgabe nicht der Name der Variable (der kryptisch sein kann) erscheint, sondern ein beschreibendes Label. Der Punkt

Mehr

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017 htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:

Mehr

Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt.

Bei 10 dieser Würfe wurde gleichzeitig eine 1 gewürfelt. Bei 25 dieser Würfe wurde gleichzeitig eine Augenzahl größer als 2 gewürfelt. 3 Wahrscheinlichkeiten 1 Kapitel 3: Wahrscheinlichkeiten A: Beispiele Beispiel 1: Ein Experiment besteht aus dem gleichzeitigen Werfen einer Münze und eines Würfels. Nach 100 Wiederholungen dieses Experiments

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

Der χ 2 -Test (Chiquadrat-Test)

Der χ 2 -Test (Chiquadrat-Test) Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 7: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 GK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

e x D = R a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von S an.

e x D = R a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von S an. Aufgabe 1 2e Gegeben ist die Funktion f mit f() = mit dem Definitionsbereich. e D = R + 9 a) Zeigen Sie rechnerisch, dass G f genau einen Achsenschnittpunkt S besitzt, und geben Sie die Koordinaten von

Mehr

2) Welche Wahrscheinlichkeitsbegriffe kennen Sie? Charakterisieren Sie die unterschiedlichen Konzepte zur Herleitung von

2) Welche Wahrscheinlichkeitsbegriffe kennen Sie? Charakterisieren Sie die unterschiedlichen Konzepte zur Herleitung von 2) Welche Wahrscheinlichkeitsbegriffe kennen Sie? Charakterisieren Sie die unterschiedlichen Konzepte zur Herleitung von Wahrscheinlichkeiten. (5 Punkte) Antwort: Unabhängig von der quantitativen Herleitung

Mehr

Prüfungsteil 2, Aufgabe 8 Stochastik

Prüfungsteil 2, Aufgabe 8 Stochastik Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 8: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 LK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl

Mehr

Nachklausur Statistik

Nachklausur Statistik Aufgabe 1 2 3 4 5 6 7 8 9 10 Punkte Summe Punkte Gesamtpunkte: Nachklausur Statistik Hinweise: Die Klausur besteht aus 5 Seiten mit insgesamt 10 Aufgaben. Sie müssen aus jeder der beiden Kategorien jeweils

Mehr

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME

Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Kapitel 9 WAHRSCHEINLICHKEITS-RÄUME Fassung vom 12. Januar 2001 121 WAHRSCHEINLICHKEITS-RÄUME Stichproben-Raum. 9.1 9.1 Stichproben-Raum. Die bisher behandelten Beispiele von Naturvorgängen oder Experimenten

Mehr

2. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17

2. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17 2. Lösungen weitere Übungsaufgaben Statistik für Ingenieure WiSe 16/17 1. Aufgabe: Drei Lokalzeitungen teilen den Markt in einer Stadt unter sich auf. Dabei hat Zeitung A 45% Marktanteil, Zeitung B 37%,

Mehr

Abitur 2010 Mathematik GK Stochastik Aufgabe C1

Abitur 2010 Mathematik GK Stochastik Aufgabe C1 Seite Abiturloesung.de - Abituraufgaben Abitur 200 Mathematik GK Stochastik Aufgabe C Eine Schokoladenfabrik stellt Überraschungseier her, von denen jedes fünfte eine Simpsons- Figur enthält. Die Überraschungseier

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern

Mehr

Abiturprüfung 1998 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 1998 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 1998 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - 0 GM1. INFINITESIMALRECHNUNG x

Mehr

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1

Mehr

ist bekannt, das insgesamt 50% aller produzierten Bauteile fehlerfrei sind.

ist bekannt, das insgesamt 50% aller produzierten Bauteile fehlerfrei sind. Aufgabe 1: Die Firma Gut und teuer kurz Gut produziert elektronische Bauteile. Vor dem Verkauf an die Kunden werden diese sorgfältig geprüft. Von den fehlerfreien werden 95% und von den fehlerhaften 1%

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Das System funktioniert, wenn A UND B gleichzeitig funktionieren. A: Komponente A funktioniert. A : B :

Das System funktioniert, wenn A UND B gleichzeitig funktionieren. A: Komponente A funktioniert. A : B : Ein System, das aus einer Serien-Schaltung mit zwei Komponenten besteht, funktioniert dann, wenn beide einzelnen Komponenten gleichzeitig funktionieren. Die Komponenten bzw. seien unabhängig von einander,

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Spezifische Mathematik Lösung Serie 2: Wahrsch.-Rechnung

Spezifische Mathematik Lösung Serie 2: Wahrsch.-Rechnung Dr. Rudolf Riedi HT-FR, 2016-17 Spezifische Mathematik Lösung Serie 2: Wahrsch.-Rechnung 1. (3 Punkte) Ein System besteht aus zwei Bauteilen. Die Wahrscheinlichkeit p1, dass Bauteil 1 ausfällt ist 0.5;

Mehr

Technische Universität München SS 2006 Zentrum Mathematik Blatt 7 Prof. Dr. J. Hartl Dr. Hannes Petermeier Dr. Cornelia Eder Dipl.-Ing.

Technische Universität München SS 2006 Zentrum Mathematik Blatt 7 Prof. Dr. J. Hartl Dr. Hannes Petermeier Dr. Cornelia Eder Dipl.-Ing. Technische Universität München SS 2006 Zentrum Mathematik Blatt 7 Prof. Dr. J. Hartl Dr. Hannes Petermeier Dr. Cornelia Eder Dipl.-Ing. Martin Nagel Höhere Mathematik 2 (Weihenstephan) 1. In einer Urne

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Aufgabe 8. Stochastik (WTR) Originalprüfungsaufgabe. Abitur Mathematik Nordrhein-Westfalen 2013, GK. Nordrhein Westfalen 2013 GK

Aufgabe 8. Stochastik (WTR) Originalprüfungsaufgabe. Abitur Mathematik Nordrhein-Westfalen 2013, GK. Nordrhein Westfalen 2013 GK Abitur Mathematik: Originalprüfung Nordrhein Westfalen 2013 GK Zugelassene Hilfsmittel: Wissenschaftlicher Taschenrechner (ohne oder mit Grafikfähigkeit) Mathematische Formelsammlung Wörterbuch zur deutschen

Mehr

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( )

Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz 1 betragen (2) Weniger als 3 mal Wappen ( ) 32 (3) Mindestens 1 mal Wappen ( ) R. Brinkmann http://brinkmann-du.de Seite 7.09.0 Lösungen Stochastik vermischt II Ergebnisse: E E E E4 E E6 Ergebnis Wenn es sich um ein faires Spiel handeln soll, muss der Einsatz betragen. Ergebnisse

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - S I - Lösung

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - S I - Lösung Abschlussprüfung Berufliche Oberschule 20 Mathematik 12 Nichttechnik - S I - Lösung Im Folgenden werden relative Häufigkeiten als Wahrscheinlichkeiten interpretiert. Teilaufgabe 1.0 Ein neues Medikament

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit

Mehr