Wahrscheinlichkeit1 (Laplace)
|
|
|
- Sarah Kohl
- vor 8 Jahren
- Abrufe
Transkript
1 Wahrscheinlichkeit1 (Laplace) Aufgaben A1 In der schriftlichen Abiturarbeit im Fach Mathematik gab es folgende Noten: 3; 4; 3; 2; 3; 1; 5; 5; 4; 3; 3; 2; 1; 4; 2; 5; 4; 2; 4; 3 a) Erstellen Sie eine Häufigkeitstabelle und berechnen Sie die relativen Häufigkeiten. Ein Prüfungskandidat wird zufällig ausgewählt. Mit welcher Wahrscheinlichkeit hat er eine 1 geschrieben? Ein Prüfungskandidat wird zufällig ausgewählt. Mit welcher Wahrscheinlichkeit hat er eine 2 oder eine 3 geschrieben? A2 Die Wahrscheinlichkeit für ein Ergebnis eines Zufallsversuchs sei p = 0,73. Wie oft wird das Ergebnis ungefähr auftreten, wenn der Versuch 350 mal durchgeführt wird? A3 In einer Urne befinden sich drei schwarze, sieben blaue und sechs rote Kugeln. Sven zieht eine Kugel. a) Mit welcher Wahrscheinlichkeit ist diese Kugel rot oder blau? Mit welcher Wahrscheinlichkeit ist diese Kugel schwarz oder rot? Mit welcher Wahrscheinlichkeit ist diese Kugel nicht rot? A4 Der Schülerstatistik eines Berufskollegs wurden die in der Tabelle aufgelisteten Daten entnommen. M W Summe M bedeutet: F Der Schüler ist männlich. keinef F bedeutet: Summe FOR als Eingangsqualifikation des Schülers. a) Bestimmen Sie die relativen Häufigkeiten und tragen Sie diese in eine neue Tabelle ein. Eine Person wird zufällig ausgewählt. 1. Mit welcher Wahrscheinlichkeit ist sie männlichen Geschlechts? 2. Mit welcher Wahrscheinlichkeit hat sie die Eingangsqualifikation FOR? 3. Mit welcher Wahrscheinlichkeit ist die Person weiblich und hat kein FOR? 4. Mit welcher Wahrscheinlichkeit ist die Person männlich und hat FOR? Wahrscheinlichkeit1 / Aufgaben & Lösungen Seite 1
2 A5 An einem Berufskolleg sind 2680 Schüler/innen, davon sind 480 in einem Sportverein. Wie groß ist die Wahrscheinlichkeit, dass ein/e Schüler/in dieses Berufskollegs, den/die man auf dem Pausenhof antrifft, in keinem Sportverein ist? A6 Wie groß ist die Wahrscheinlichkeit für folgende Ereignisse beim einmaligen Werfen eines Würfels? A: mindestens 3 B: zwischen 1 und 6 C: Primzahl D: Vielfaches von 3 E: gerade Zahl kleiner 4 F: 1 oder 6 A7 In einer Urne befinden sich 3 rote, 5 grüne und 4 schwarze Kugeln. Es wird eine Kugel gezogen. Folgende Ereignisse sind definiert: A: Es wird eine grüne Kugel gezogen. B: Es wird eine rote Kugel gezogen. C: Die gezogene Kugel ist nicht grün. D: Die gezogene Kugel ist nicht rot. E: Die gezogene Kugel ist weder grün noch ist sie rot. a) Berechnen Sie die Wahrscheinlichkeiten aller Ereignisse. Berechnen Sie die Wahrscheinlichkeit der oder Verknüpfung der Ereignisse A und B. Berechnen Sie die Wahrscheinlichkeit des Gegenereignisses von E. Wahrscheinlichkeit1 / Aufgaben & Lösungen Seite 2
3 Lösungen A1 a) Note Summe Absolute Häufigkeit Note Summe Relative Häufigkeit 0,1 0,2 0,3 0,25 0, P1 0, P 2 3 P 2 P , A2 Häufigkeitsinterpretation der Wahrscheinlichkeit: Hat ein bestimmtes Ergebnis eines Zufallsversuchs die Wahrscheinlichkeit p, dann machen wir die Prognose, dass nach einer großen Zahl n von Versuchsdurchführungen das Ergebnis ungefähr np mal auftreten wird. Mit p 0,73 und n 350 wird np 350 0,73 255,5 256 Je größer die Anzahl n der Versuche gewählt wird, desto eher wird die Prognose erfüllt. A3 s schwarz b blau r rot damit wird E s;s;s; b;b;b;b;b; b; b;r; r;r;r;r;r Ps Pb Pr a) Pr b Pr Pb 0, Ps r Ps Pr 0, Pr nicht rot bedeutet Gegenereignis von rot Pr 1 Pr 1 0, Wahrscheinlichkeit1 / Aufgaben & Lösungen Seite 3
4 A4 a) M W Summe F ,137 0,344 0,481 nof ,192 0,326 0,519 Summe ,330 0, PPerson ist männlich 0, PPerson hat FOR 0, PPerson ist weiblich und hat kein FOR 0, PPerson ist männlich und hat FOR 0,137 A5 A : Schüler ist im Sportverein 480 PB 1PA 1 0, B : Schüler ist nicht im Sportverein Die Wahrscheinlichkeit einen Schüler auf dem Pausenhof anzutreffen, der in keinem Sportverein ist beträgt ungefähr 0,82. A A 3;4;5;6 PA 0,6 B 2;3;4;5 P B 0, C 2;3;5 PC 0,5 D 6 P D 0, E 2 PE 0,16 F 1;6 P F 0, Wahrscheinlichkeit1 / Aufgaben & Lösungen Seite 4
5 A7 a) E r; r;r; g;g;g;g; g; s;s;s;s PA P B PC 1 Pgrün 1 PA PD 1 Prot 1 PB Pschwarz P E PA PB Die gezogene Kugel ist grün oder rot. 1 2 P E 1PE Die gezogene Kugel ist nicht schwarz. Wahrscheinlichkeit1 / Aufgaben & Lösungen Seite 5
b) P( Schüler/in ist in Sek I) c) P( Schüler/in ist in Sek II und ein Mädchen)
R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Relative Häufigkeit, Wahrscheinlichkeit II en: A1 A1 Über die Zusammensetzung der Schülerschaft eines Gymnasiums ist bekannt: In der Sek.
Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.
R. Brinkmann http://brinkmann-du.de Seite 08..2009 Von der relativen Häufigkeit zur Wahrscheinlichkeit Es werden 20 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 20 Schülern
Wahrscheinlichkeitsrechnung für die Mittelstufe
Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite
Übungsaufgaben Wahrscheinlichkeit
Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln
Vier-Felder-Tafel und bedingte Wahrscheinlichkeit
Vier-Felder-Tafel und bedingte Wahrscheinlichkeit erkrankt nicht erkrankt geimpft 47 125 nicht geimpft 21 Summe 201 Ergänze die Vier-Felder-Tafel und stelle die Zusammenhänge in einem Pfaddiagramm dar,
Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente
Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der
(d) 1,5 1, 02 2x 1 = x x = 2
KLASSENARBEIT MATHEMATIK G9A 14.03.013 Aufgabe 1 3 4 5 Punkte (max) 11 4 4 4 3 Punkte (1) Löse folgende Gleichungen. (a) x 3 5x + x = 0 (b) 4x 4 + 11x 3 = 0 (c) 1 x = 1 7 (e) (x + 17)(x 16) = 0 (f) (d)
1 Axiomatische Definition von Wahrscheinlichkeit
Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen
Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,
V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein
Stochastik (Laplace-Formel)
Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel
UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele
UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..
Wahrscheinlichkeitsrechnung
Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche
3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit
3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.
Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium
Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und
Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem
Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,
P A P( A B) Definition Wahrscheinlichkeit
Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl
Ma 13 - Stochastik Schroedel Neue Wege (CON)
Bedingte Wahrscheinlichkeiten S. 70, Nr. 5 Richtiges Anwenden der Multiplikationsregel A: Abonnement liest Werbeanzeige B: Produkt wird gekauft S. 70, Nr. 6 Übersetzung von Daten in ein Baumdiagramm A
Aufgaben zum Wahrscheinlichkeitsrechnen
1.) Wie groß ist die Wahrscheinlichkeit, beim einmaligen Werfen mit einem Würfel keine 4 zu werfen? % 2.) Wie groß ist beim einmaligen Werfen von zwei verschieden farbigen Würfeln die Wahrscheinlichkeit,...
Kurs 2 Stochastik EBBR Vollzeit (1 von 2)
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.
Gruber, Erfolg im ABI, Pflichtteil. matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN Klasse.
matheskript B STOCHASTIK WAHRSCHEINLICHKEITSRECHNUNG STATISTIK PFLICHTTEIL ÜBUNGEN 12. 13. Klasse Jens Möller INHALTE Baumdiagramme Ziehen mit und ohne Zurücklegen Binomialverteilungen Erwartungswerte
Wahrscheinlichkeitsrechnung
Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben
Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--
1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich
Laplace-Formel. Übungsaufgaben
Laplace-Formel Übungsaufgaben Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel wird einmal
Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)
Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.
Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?
1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der
Stochastik. Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit. berufliche Gymnasien Oberstufe.
Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen bedingte Wahrscheinlichkeit berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 2015 1 Aufgabe 1: Eine Urne enthält
1.1 Ergebnisräume einfacher Zufallsexperimente. 2) Es gibt mindestens zwei mögliche Ausgänge des Experiments.
Übungsmaterial 1 1 Zufallsexperimente 1.1 Ergebnisräume einfacher Zufallsexperimente Damit ein Experiment ein Zufallsexperiment ist, müssen folgende Eigenschaften erfüllt sein: 1) Das Experiment lässt
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel
Beschreibende Statistik
Beschreibende Aufgaben der beschreibenden : Erhebung von Daten Auswertung von Daten Darstellung von Daten Erhebung von Daten Bei der Erhebung von Daten geht es um die Erfassung von Merkmalen (Variablen)
Hypergeometrische Verteilung
Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die
Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg
Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016
Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen
Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/
5. KLASSENARBEIT MATHEMATIK G9A
5. KLASSENARBEIT MATHEMATIK G9A 11.04.2014 Aufgabe 1 2 3 4 5 6 Punkte (max) 2 4 4 8 4 2 Punkte (1) Eine Münze wird dreimal geworfen. Gib zu jedem der folgenden Ereignisse das Gegenereignis an! (a) Man
Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.
Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady
Würfel-Aufgabe Bayern LK 2006
Würfel-Aufgabe Bayern LK 2006 Die Firma VEGAS hat ein neues Gesellschaftsspiel entwickelt, bei dem neben Laplace-Würfeln auch spezielle Vegas-Würfel verwendet werden, die sich äußerlich von den Laplace-Würfeln
6 Mehrstufige zufällige Vorgänge Lösungshinweise
6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.
Lehrerfortbildung: Stochastik
Lehrerfortbildung: Stochastik Workshop: 3.0.06-6..06 an der Ruhr-Uni-Bochum Einführung mit Aufgaben und Lösungen Dipl.-Math. Bettina Reuther Dipl.-Math. Dirk Bachmann Einführende Beispiele Das Ziegenproblem
Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:
Discrete Probability - Übungen (SS5) Felix Rohrer Wahrscheinlichkeitstheorie 1. KR, Abschnitt 6.1, Aufgabe 5: Bestimmen Sie die Wahrscheinlichkeit dafür, dass die Augensumme von zwei geworfenen Würfeln
Wahrscheinlichkeit und Zufall
Wahrscheinlichkeit und Zufall Klassische Probleme der Wahrscheinlichkeitsrechnung 23. Juni 2009 Dr. Katja Krüger Universität Paderborn Inhalt Die Wetten des Chevalier de Méréé Warten auf die erste Sechs
7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit
Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet
Wahrscheinlichkeitsrechnung und Statistik
3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne
3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen
Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und
Wir setzen daher den Anteil der weiblichen Nichtraucher gleich dem Anteil der Nichtraucher und berechnen X:
Übungsblatt 1 Beispiel 1. Von den 50 Teilnehmern eines Kurses sind 35 weiblich und 10 Raucher/innen. Wie viele nicht-rauchende Teilnehmerinnen sind zu erwarten, wenn die Merkmale Geschlecht und Rauchverhalten
Grundwissen zur Stochastik
Grundwissen zur Stochastik Inhalt: ABHÄNGIGE EREIGNISSE...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON ERGEBNISSEN...2 ABHÄNGIGKEIT UND UNABHÄNGIGKEIT VON MERKMALEN IN VIERFELDERTAFELN...2 ABSOLUTE HÄUFIGKEIT...2
Stochastik - Kapitel 2
Aufgaben ab Seite 7 2. Häufigkeiten, Wahrscheinlichkeiten und Laplace-Experimente 2.1 Die absolute und die relative Häufigkeit 1. Beispiel: Ich werfe mal einen Würfel und möchte herausfinden, wie oft jeweils
Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien
R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen
SS 2016 Torsten Schreiber
SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen
Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?
Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben
A Grundlegende Begriffe
Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:
15 Wahrscheinlichkeitsrechnung und Statistik
5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben
2.2 Ereignisse und deren Wahrscheinlichkeit
2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,
Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.
Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)
Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz
Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:
Europa-Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I
Europa-Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I In einer sozialwissenschaftlichen Studie wurden Personen nach ihrem allgemeinen Schulabschluss (mögliche Optionen kein Schulabschluss,
Erwartungswert. c Roolfs
Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu
Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)
Klausur: Stochastik Stochastik
Stochastik Klausur zu Pfadregeln, bedingte Wahrscheinlichkeit, Erwartungswert einer Zufallsvariablen Vierfeldertafel berufliche Gymnasien Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 0 Aufgabe
Mädchen Jungen Smartphone 42 52 Computer 77 87 Fernsehgerät 54 65 feste Spielkonsole 37 62
Unabhängigkeit ================================================================== 1. Im Rahmen der sogenannten JIM-Studie wurde in Deutschland im Jahr 2012 der Umgang von Jugendlichen im Alter von 12 bis
Statistik I für Betriebswirte Vorlesung 2
Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung
Die Voraussetzungen aus Klasse 8-10
Die Voraussetzungen aus Klasse 8-10 I. Grundlagen der Wahrscheinlichkeitsrechnung Zusammenstellung der Voraussetzungen: Pfadregel Ereignisse Additionssatz Ge gener eignis A B A B P(A B) = P(A) + P(B) P(A
Mehrstufige Vorgänge Pfadregeln
Mehrstufige Vorgänge Pfadregeln Elke Warmuth Humboldt-Universität Berlin Sommersemester 2010 1 / 53 Pfadregeln 1 Pfadregeln Was ist neu? Einfaches Beispiel Hintergrund 2 / 53 Pfadregeln Was ist neu? Einfaches
Computersimulation des Qualitätstests
.1 Computersimulation des Qualitätstests In diesem Kapitel erreichen wir ein erstes entscheidendes Ziel: Wir ermitteln näherungsweise die Wahrscheinlichkeiten und für die Fehler 1. und. Art und zwar ohne
An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.
. Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem
Prüfung nicht bestanden. Die gleiche Tabelle kann man auch mit den entsprechenden Wahrscheinlichkeiten (relative Häufigkeit) erstellen.
6 Vierfeldertafel An einer Prüfung nehmen 100 Studenten teil, von denen 40 als Raucher bekannt sind. 65 Studenten haben die Prüfung. Von den Nichtrauchern haben 50 die Prüfung. Wie groß ist der Anteil
2. Rechnen mit Wahrscheinlichkeiten
2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie
Beurteilende Statistik
Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten
9. Elementare Wahrscheinlichkeitsrechnung
9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden
Wahrscheinlichkeitsrechnung Teil 1
Wahrscheinlichkeitsrechnung Teil Einführung in die Grundbegriffe Sekundarstufe Datei Nr 30 Stand September 2009 Friedrich W Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK wwwmathe-cdde Inhalt Zufallsexperimente,
3.6 Wahrscheinlichkeitsrechnung I
3.6 Wahrscheinlichkeitsrechnung I Inhaltsverzeichnis 1 Einführung 2 2 Zufallsversuche 2 3 Der Wahrscheinlichkeitsbegriff 5 4 Der Laplace-Zufallsversuch (oder Laplace-Experiment) 8 5 Die Komplementärregel
Teilaufgabe 1.0 In einem Karton befinden sich 50 Bauteile, von denen genau vier fehlerhaft sind.
Abiturprüfung Berufliche Oberschule 2008 Mathematik 13 Technik - B I - Lösung Ein Autoteilezulieferer stellt für eine Autofirma ein aufwändiges elektronisches Bauteil her. Langfristig stellt man fest,
LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU
LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU Erster Teil: Überlegen Sie mal... Zur Lösung dieser sechs Aufgaben reichen einfache Kenntnisse der Wahrscheinlichkeitstheorie und einige logische
1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
Prüfungsteil 2, Aufgabe 8 Stochastik
Prüfung Mathematik Nordrhein-Westfalen 2013 (LK) Aufgabe 7: (WTR) Abitur Mathematik: Prüfungsteil 2, Aufgabe 8 Nordrhein-Westfalen 2012 GK Aufgabe a (1) und (2) 1. SCHRITT: VERTEILUNG ANGEBEN Da die Anzahl
Teil II. Wahrscheinlichkeitsrechnung
Teil II Wahrscheinlichkeitsrechnung Deskriptive Statistik und Wahrscheinlichkeitsrechnung (SS 2014) Folie 129 5 Zufallsexperimente Inhaltsverzeichnis (Ausschnitt) 5 Zufallsexperimente Ergebnisse Ereignisse
R. Brinkmann Seite
R. rinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen edingte Wahrscheinlichkeit II en: 1 ufgabe Es soll die eliebtheit einer Fernsehsendung überprüft werden. Eine litzumfrage hatte folgendes
Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien. Stochastik
mathe-aufgaben.com Begleitbuch für Mathematik Oberstufe für die Abiturprüfung 2017 Baden-Württemberg - berufliche Gymnasien Stochastik Dipl.-Math. Alexander Schwarz E-Mail: [email protected]
Kontrolle. Themenübersicht
Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,
Station 1 Das Galtonbrett, Realmodelle
Station 1 Das Galtonbrett, Realmodelle Zeit zur Bearbeitung: 10 Minuten 1.1 Versuch:. Münzwurf mit dem Galtonbrett Betrachtet wird folgendes Zufallsexperiment: Fünf identische Münzen werden zehn-mal geworfen.
Lösungen zu den. Beispielaufgaben für die Klasse 6. zum Themenbereich
Lösungen zu den Beispielaufgaben für die Klasse zum Themenbereich Statistik und Wahrscheinlichkeitsrechnung erstellt von den Kolleginnen und Kollegen der Aufgabenentwicklergruppe für Vergleichsarbeiten
Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.
Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,
Doppelwurf mit idealen Würfeln. Beobachtet wird, ob die Augensumme eine Primzahl ist. (Die Reihenfolge interessiert uns nicht.)
Lösungen zu den Aufgaben Teil 3 Doppelurf mit idealen Würfeln. Beobachtet ird, ob die Augensumme eine Primzahl ist. (Die Reihenfolge interessiert uns nicht.) Hier gibt es mehrere passende Augenkombinationen:
Bei der Berechnung von Laplace-Wahrscheinlichkeiten muss man die Mächtigkeit von Ergebnisräumen und Ereignissen bestimmen.
VI. Kombinatorik ================================================================== 6.1 Einführung --------------------------------------------------------------------------------------------------------------
A Grundlegende Begriffe 6. 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10
Inhalt A Grundlegende Begriffe 6 1 Zufallsexperimente und Ereignisse 6 Aufgaben 10 2 Relative Häufigkeit und abstrakter Wahrscheinlichkeitsbegriff 13 Aufgaben 16 3 Laplace scher Wahrscheinlichkeitsbegriff
Klausurvorbereitung für die Semesterferien - 20 Aufgaben -
Klausurvorbereitung für die Semesterferien - 20 Aufgaben - Sebastian Heger B.Sc. - SoSe 2010 Mathematik für Informatiker II bei Prof. Dr. J. Baumeister Aufgabe 1. (Mengenbeweise) Seien ABC beliebige Mengen.
Aufgabe 1 (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.
Fachbereich Mathematik Tag der Mathematik 0. Oktober 00 Klassenstufen 7, 8 Aufgabe (4+8+8 Punkte). (a) Zeige, dass sich die folgende Figur (entlang der Linien) in vier kongruente Teilflächen zerlegen lässt.
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.
Wahrscheinlichkeitsrechnung
Kantonsschule Solothurn RYS Ursprünglich war das Rechnen mit Wahrscheinlichkeiten ein Hilfsmittel für Glücksspiele. Der eigentliche Beginn der klassischen Wahrscheinlichkeit wird mit Pierre der Fermat
Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:
Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)
1. Grundlagen der Wahrscheinlichkeitsrechnung
1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer
y 1 2 3 4 5 6 P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6
Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 [email protected] Übungen zur Statistik für Prüfungskandidaten und Prüfungskandidatinnen Unabhängigkeit
Mecklenburg - Vorpommern
Mecklenburg - Vorpommern Ersatzarbeit Realschulprüfung 1996 im Fach Mathematik Pflichtteil 1. Herr Berg kauft ein 672,0 m 2 großes unerschlossenes Baugrundstück zu einem Quadratmeterpreis von 56,00 DM.
Buchstabensalat. 1) Entnimm dem Gefäß zwei Kugeln. Versuche möglichst viele unterschiedliche Kombinationen zu finden.
Buchstabensalat In einem dunklen Gefäß liegen 5 rote Kugeln mit dem Buchstaben U, 5 gelbe mit dem Buchstaben S und 5 grüne mit dem Buchstaben N. Am Nachmittag spielt Pia wieder einmal mit dem geheimnisvollen
Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.
XI. Binomialverteilung ================================================================== 11.1 Definitionen -----------------------------------------------------------------------------------------------------------------
Anzahl der Fahrschüler Bild 1
Kultusministerium des Landes Sachsen-Anhalt Schriftliche Abschlussprüfung Mathematik Schuljahr 2001/2002 Realschulbildungsgang 10. Schuljahrgang Pflichtaufgaben 1. 5 a) Lösen Sie die Gleichung + x = 1,
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien
Um zu entscheiden, welchen Inhalt die Urne hat, werden der Urne nacheinander 5 Kugeln mit Zurücklegen entnommen und ihre Farben notiert.
XV. Testen von Hypothesen ================================================================== 15.1 Alternativtest ------------------------------------------------------------------------------------------------------------------
Abiturienten-Aufgabe Bayern GK 2004
Abiturienten-Aufgabe Bayern GK 2004 Die Bezeichnungen Abiturienten und Schüler beziehen sich im folgenden Text sowohl auf männliche als auch auf weibliche Personen. Die Abiturienten eines bayerischen Gymnasiums
