Klausur vom
|
|
|
- Elizabeth Kraus
- vor 8 Jahren
- Abrufe
Transkript
1 UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen einer bestimmten Woche sie gearbeitet haben. (a) Nach welchem Skalenniveau ist das Merkmal : Anzahl der Arbeitstage einer Person vergleichbar? Begründen Sie kurz Ihre Antwort. (Dazu genügt es die Eigenschaften des betreffenden Skalenniveaus zu nennen.) (b) Vervollständigen Sie die folgende Tabelle mit den relativen und absoluten Häufigkeiten und bestimmen Sie n. Arbeitstage absolute Häufigkeit 0 0 0??? 0 0 relative Häufigkeit 0?? ? 0 (c) Bestimmen Sie den Median 0.5, den arithmetischen Mittelwert und die Spannweite S() des Merkmals. Aufgabe (4 Punkte) Für zwei Merkmale kann der Korrelationskoeffizient berechnet werden und eine Punktewolke erstellt werden. Ordnen Sie die Korrelationskoeffizienten 0.8, 0.04, 0.90, den folgenden Punktewolken zu. Punktewolke Punktewolke Punktewolke Punktewolke 4 Begründen Sie jeweils kurz Ihre Zuordnung.
2 Aufgabe (5+5=0 Punkte) In einer Lostrommel befinden sich 0 Kugeln mit den Zahlen,..., 0. Daraus werden nacheinander zufällig zwei Kugeln gezogen. Lösen Sie die nachstehende Aufgabe unabhängig voneinander für die Fälle: (a) Die Kugeln werden mit Zurücklegen gezogen. (b) Die Kugeln werden ohne Zurücklegen gezogen. Geben Sie eine Ergebnismenge Ω an, mit der dieses Zufallsexperiment als Laplace-Experiment beschrieben werden kann und bestimmen Sie Ω. Beschreiben Sie dann das Ereignis A : die Summe der gezogenen Zahlen beträgt genau 6 als Teilmenge von Ω und bestimmen Sie die Wahrscheinlichkeit von A. Aufgabe 4 (++=9 Punkte) In einem Kino werden zwei Filme F und F gezeigt. Bei Film F sind / der Zuschauer männlich, bei Film F sind hingegen /4 der Zuschauer weiblich. Insgesamt schauen 60% aller Zuschauer den Film F. (a) Welcher Anteil aller Zuschauer ist männlich? (b) Eine Frau kommt an die Kasse. Berechnen Sie die Wahrscheinlichkeit, dass sie den Film F sehen möchte. (c) Berechnen Sie die Wahrscheinlichkeit dafür, dass zwei Frauen denselben Film besuchen. ( Gehen Sie dabei davon aus, dass die beiden Frauen sich nicht kennen und unabhängig voneinander das Kino besuchen. ) Aufgabe 5 (++=7 Punkte) Ein 6-seitiger Würfel hat weiße und 4 schwarze Seiten. Der Würfel wird 7-mal geworfen. Die Zufallsvariable beschreibt die Anzahl der Würfe, bei denen eine weiße Seite nach oben zeigt. (a) Geben Sie P ( = 0) mit eine Formel an. ( Sie brauchen dabei auftretende Binomialkoeffizienten oder Potenzen nicht auszurechnen. ) (b) Bestimmen Sie den Erwartungswert und die Varianz von. (c) Berechnen Sie P ( 0) näherungsweise mit der Normalverteilung. ( Geben Sie das Ergebnis in der Form Φ(x) mit einer geeigneten Zahl x R an. )
3 Aufgabe 6 (+=6 Punkte) Seien a, b R mit a < b gegeben und Z eine auf [a, b]-gleichverteilte Zufallsvariable. Bekanntlich hat Z die Dichtefunktion { f : R R, f(t) = b a, falls t [a, b] 0, sonst (a) Bestimmen Sie die Wahrscheinlichkeiten P (Z 5) und P ( Z 8) für eine auf [0, 0] gleichverteilte Zufallsvariable Z. (b) Zeigen Sie die in der Vorlesung angegebene Formel für den Erwartungswert von Z. E(Z) = a + b Aufgabe 7 (+=6 Punkte) Sei Z eine Zufallsvariable mit Erwartungswert µ und Standardabweichung σ. (a) Bestimmen Sie gemäß der Tschebyscheffschen Ungleichung eine Unterschranke für die die Wahrscheinlichkeit P ( Z µ σ). (b) Berechnen Sie die Wahrscheinlichkeit P ( Z µ σ) für den Fall, dass Z normalverteilt ist. ( Benutzen Sie die Standardnormalverteilung Φ, um das Ergebnis anzugeben. ) Aufgabe 8 Die Seiten eines 4-seitigen Würfels zeigen die Zahlen, 4, 6, 8. (++4=9 Punkte) (a) Der Würfel wird einmal geworfen. Die Zufallsvariable S beschreibt die gewürfelte Zahl. Bestimmen Sie den Erwartungswert und die Varianz von S. (b) Der Würfel wird n-mal geworfen (n N). Die Zufallsvariable S n beschreibt die Summe der gewürfelten Zahlen. Bestimmen Sie den Erwartungswert und die Varianz von S n. (c) Wogegen konvergieren die Wahrscheinlichkeiten P (4.8 n S n 5. n) und P (S n < 4.9 n) für n? Begründen Sie kurz Ihre Antworten.
4 Lösungen Aufgabe (a) Absolutskala: Merkmalsausprägungen können in natürlicher Weise geordnet werden. Unterschiede zwischen den Merkmalsausprägungen sind vergleichbar, natürlicher Nullpunkt und natürliche Einheit sind vorhanden. (Lässt man nicht nur ganze Tage sondern beliebige Zeiträume als Antworten der Teilnehmer zu, so interpretiert man Tag nicht als natürliche Einheit. Man kann daher auch auf eine Verhältnisskala schließen.) (b) Es gilt n n 0. + n = n 50 = 0.5 n n = 00 Damit ergibt sich: Arbeitstage absolute Häufigkeit relative Häufigkeit (c) Bei n = 00 entspricht der Median dem 00-ten bzw. 0-ten Wert. Diese sind hier beide gleich 5, also 0.5 = 5. Es gilt = 90 ( ) = = 4.6 Es gilt S() = 6 = 5. Aufgabe Punktewolke entspricht dem Korrelationskoeffizienten 0.9: Linearer Zusammenhang mit positiver Steigung ist erkennbar, liegt jedoch nicht exakt vor Punktewolke entspricht dem Korrelationskoeffizienten : Exakter linearer Zusammenhang mit positiver Steigung Punktewolke entspricht dem Korrelationskoeffizienten 0.04: Kein linearer Zusammenhang erkennbar (daher Korrelationskoeffizient nahe 0) Punktewolke 4 entspricht dem Korrelationskoeffizienten 0.8: Linearer Zusammenhang mit negativer Steigung ist erkennbar, liegt jedoch nicht exakt vor
5 Aufgabe (a) (b) Ω = {,..., 0} Ω = 0 = 00 A = {(6, 0), (7, 9), (8, 8), (9, 7), (0, 6)} A = 5 Ω = { (i, j) {,..., 0} ; i j } Ω = 0 9 = 90 A = {(6, 0), (7, 9), (9, 7), (0, 6)} A = 4 P (A) = A Ω = 5 00 = 0.05 P (A) = A Ω = Aufgabe 4 Wir betrachten die Ereignisse m : Besucher ist männlich w : Besucher ist weiblich F : Besucher schaut F F : Besucher schaut F (a) Satz von der totalen Wahrscheinlichkeit: P (m) = P (F ) P (m F ) + P (F ) P (m F ) = = 0.5 (b) Aus (a) folgt: P (w) = P (Ω \ m) = p(m) = 0.5 = 0.5 P (F w) = P (F w) P (w) (c) Wir betrachten die Ereignisse = P (F ) P (w F ) P (w) = = 0.6 A i : die erste Frau besucht Film i B i : die zweite Frau besucht Film i (i =, ) Nach Voraussetung sind A, B unabhängig, ebenso A, B. Außerdem gilt (nach (b)) P (A ) = 0.6, A = Ω\A P (A ) = 0.4 und ebenso P (B ) = 0.6, B = Ω\B P (B ) = 0.4 Für das Ereignis G : beide Frauen besuchen den gleichen Film gilt G = (A B ) (A B ) und somit folgt P (G) = P (A B )+P (A B ) = P (A ) P (B )+P (A ) P (B ) = = 0.5
6 Aufgabe 5 (a) ist binomialverteilt mit p = 6 = ( ) 7 P ( = 0) = 0 und n = 7 also: ( ) 0 ( 7 0 = ) ( ) 7 0 ( ) 0 ( ) 5 (b) E() = n p = 7 ( = 4 und V () = n p ( p) = 7 ) = 6 (c) ist näherungsweise normalverteilt mit Erwartungswert µ = 4 und Standardabweichung σ = 6 = 4. Folglich ist 4 4 näherungsweise standardnormalverteilt. Also: P ( 0) = P ( < 0) = P ( 4 4 < 0 4 ) Φ( ) = Φ() }{{ 4 } = Aufgabe 6 (a) P (Z 5) = 5 P ( Z 8) = f(t)dt = f(t)dt = 0 dt = 0 8 (0 5) = dt = (8 ) = (b) E(Z) = = = b a t f(t)dt t b a = a + b b a dt ( b a )
7 Aufgabe 7 (a) Nach der Teschebyscheffschen Ungleichung gilt: P ( Z µ ) σ > ( ) = 5 9 Die Wahrscheinlichkeit beträgt also auf jeden Fall mehr als 5 9. (b) Falls Z normalverteilt ist, gilt: P ( Z µ ) σ = P (µ σ Z µ + ) σ = F µ,σ ( µ + σ ) F µ,σ ( µ σ ) = Φ ( µ + σ µ ) ( µ Φ σ µ ) }{{ σ }}{{ σ } = Φ = ( ) ( Φ ) = = Φ ( ) Aufgabe 8 (a) Es gilt und E(S ) = = 5 V (S ) = 4 ( 5) + 4 (4 5) + 4 (6 5) + 4 (8 5) = 5 (b) S n ist die Summe von n unabhängigen Zufallsvariablen, die alle identisch wie S verteilt sind. Daher gilt E(S n ) = n E(S ) = n 5 und V (S n ) = n V (S ) = n 5 (c) Nach dem schwachen Gesetz der großen Zahlen gilt: ( ) n S n P n E(S ) < 0. = P ( S n 5 n < 0. n) = P (4.9 n S n 5. n) Daraus folgt: Wegen P (4.8 n S n 5. n) P (4.9 n S n 5. n) n folgt auch P (4.8 n S n 5. n) n Wegen 0 P (S n < 4.9 n) = P (S n 4.9 n) P (4.9 n S n 5. n) n 0 folgt auch P (S n < 4.9 n) n 0
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die
Stochastik Musterlösung 4
ETH Zürich HS 218 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 4 1. Die Zufallsvariable, die die Anzahl eingehender Telefonanrufe in einer Telefonzentrale
Aufgabenstellung und Ergebnisse zur. Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2018/19
Aufgabenstellung und Ergebnisse zur Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 08/9 PD Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ Die Klausur besteht
Wirtschaftsmathematik
Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A
7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012
7. Grenzwertsätze Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Mittelwerte von Zufallsvariablen Wir betrachten die arithmetischen Mittelwerte X n = 1 n (X 1 + X 2 + + X n ) von unabhängigen
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer
Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:
Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte,, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 3 4 5 6 P
Wichtige Definitionen und Aussagen
Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Wirtschaftswissenschaftliches Prüfungssekretariat Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2015
Wirtschaftswissenschaftliches Prüfungssekretariat Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 205 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer
2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung
2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von
Die tatsächlichen Breiten und Höhen der Säulen und damit der Flächeninhalt bleiben unverändert:
Flächeninhalte als Wahrscheinlichkeiten Eine Zufallsvariable X kann die Werte, 2, 3, 4, 5 oder 6 annehmen. Die zugehörigen Wahrscheinlichkeiten sind rechts in einem Stabdiagramm dargestellt. k 2 3 4 5
5 Binomial- und Poissonverteilung
45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2011/12.
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2011/12 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer
Probearbeit 13.1 Schuljahr 2010/11 Kernfach Mathematik
Aufgabe 3: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. a) Das unten stehende
Statistik I. 2. Klausur Wintersemester 2011/2012 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik I A 2. Klausur Wintersemester 2011/2012 Hamburg, 20.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................
1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
Biostatistik, Sommer 2017
1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes
1 Stochastische Konvergenz 2
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere
Klausur vom
UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit
Fit for Abi & Study Stochastik
Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen
Abitur 2016 Mathematik Stochastik IV
Seite 1 http://www.abiturloesung.de/ Seite Abitur 016 Mathematik Stochastik IV Bei einem Zufallsexperiment wird eine ideale Münze so lange geworfen, bis zum zweiten Mal Zahl (Z) oder zum zweiten Mal Wappen
Wahrscheinlichkeitstheorie und Statistik
Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter
Statistik I. 2. Klausur Wintersemester 2011/2012 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik I A 2. Klausur Wintersemester 2011/2012 Hamburg, 20.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1
Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,
Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=
Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)
5. Spezielle stetige Verteilungen
5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für
Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal
Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.
Biostatistik, Winter 2011/12
Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung
Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1
Biomathematik für Mediziner, Klausur WS 2000/2001 Seite 1 Aufgabe 1: Von 2 gleichartigen Maschinen eines pharmazeutischen Betriebes stellt die erste 40% und die zweite 60% der Produkte her. Dabei verursacht
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am von 10:00 bis 11:00 Uhr
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Stochastik am 5..201 von 10:00 bis 11:00 Uhr Bearbeiten Sie zwei der drei folgenden Aufgaben! Sätze aus der Vorlesung und den Übungen dürfen Sie ohne
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 20/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt 4 Lösungshinweise (ohne Ganantie auf Fehlerfreiheit. Wenn man beim Roulette auf Rot oder Schwarz setzt, erhält
Biomathematik für Mediziner
Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur WS 2002/2003 Aufgabe 1: Man gehe davon aus,
7.5 Erwartungswert, Varianz
7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k
Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)
Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null
70 Wichtige kontinuierliche Verteilungen
70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche
Stetige Standardverteilungen
Universität Basel Wirtschaftswissenschaftliches Zentrum Stetige Standardverteilungen Dr. Thomas Zehrt Inhalt: 1. Die stetige Gleichverteilung 2. Die Normalverteilung (a) Einstimmung (b) Standardisierung
Stochastik. 1. Wahrscheinlichkeitsräume
Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.
Stoffverteilungsplan Mathematik Leistungskurs. Lambacher Schweizer Stochastik ISBN Klassenarbeit
Lambacher Schweizer Q3.1 Grundlegende Begriffe der Grundlagen der Wahrscheinlichkeitstheorie: Beschreiben von Zufallsexperimenten (Laplace-Experimente) unter Verwendung der Begriffe Ergebnis, Ergebnismenge,
Aufgabe Punkte
Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf. Vorlesung 04 Mathematische Grundlagen II,
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen II Dr. Klaus Lukas Carsten Neundorf 1 Was sollen Sie heute lernen? 2 Agenda Wiederholung stetige Renditen deskriptive Statistik Verteilungsparameter
Ü b u n g s b l a t t 10
Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben
Übungsblatt 9 (25. bis 29. Juni)
Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell
Statistik für Ingenieure Vorlesung 5
Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:
Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.
.3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil
Wahrscheinlichkeitsverteilungen
Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet
Statistik Übungen WS 2017/18
Statistik Übungen WS 2017/18 Blatt 2: Wahrscheinlichkeitsrechnung 1. Die nach dem französischen Mathematiker Pierre-Simon de Laplace benannten Laplace- Experimente beruhen auf der Annahme, dass bei einem
Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK
Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über
Statistik I für Betriebswirte Vorlesung 4
Statistik I für Betriebswirte Vorlesung 4 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 25. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung
Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten
Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.
2 Aufgaben aus [Teschl, Band 2]
20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:
Zufallsvariable X. 30 e. 40 e = 33,33...% 6
Zufallsvariable Wir führen ein Zufallsexperiment mit Ergebnisraum Ω durch. Eine Zufallsvariable X ordnet jedem möglichen Ergebnis einen Zahlenwert zu. Eine Zufallsvariable ist also eine Funktion X : Ω
Statistik I für Betriebswirte Vorlesung 14
Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli
Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik
Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen
Auswertung und Lösung
Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage
Kapitel 5 Stochastische Unabhängigkeit
Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand
Abiturvorbereitung Stochastik. neue friedländer gesamtschule Klasse 12 GB Holger Wuschke B.Sc.
Abiturvorbereitung Stochastik neue friedländer gesamtschule Klasse 12 GB 24.02.2014 Holger Wuschke B.Sc. Siedler von Catan, Rühlow 2014 Organisatorisches 0. Begriffe in der Stochastik (1) Ein Zufallsexperiment
2 Zufallsvariable und Verteilungsfunktionen
8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer
Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016
Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3
Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management
für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt
Wahrscheinlichkeit und Statistik: Zusammenfassung
HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1
Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt
Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert
Biostatistik, Sommer 2017
1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation
Hochschule Darmstadt FB Mathematik und Naturwissenschaften. Statistik. für Wirtschaftsingenieure (B.Sc.) Sommersemester 2017
für Wirtschaftsingenieure (B.Sc.) Sommersemester 017 Dr. rer. nat. habil. E-mail: [email protected] 1 Hochschule Darmstadt, Fachbereich MN Sommersemester 017 Testklausur zur Vorlesung Wirtschaftsstatistik
Stoffverteilungsplan Mathematik Grundkurs. Lambacher Schweizer Stochastik ISBN Klassenarbeit
Q3.1 Grundlegende Begriffe der Grundlagen der Wahrscheinlichkeitstheorie: Beschreiben von Zufallsexperimenten (Laplace-Experimente) unter Verwendung der Begriffe Ergebnis, Ergebnismenge, Ereignis und Wahrscheinlichkeit
Statistik II für Wirtschaftswissenschaftler
Fachbereich Mathematik 20.04.2017 Dr. Hefter & Dr. Herzwurm Übungsblatt 0 Keine Abgabe. Gegeben seien die Mengen A 1 =, A 2 = {1}, A 3 = {1, 1}, A 4 = {1, 3}, A 5 = {1, 2, 4}, A 6 = {1, 2, 3, 4}. a) Bestimmen
Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),
2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist
Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende
Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,
0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5
4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit
Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende
Universität Duisburg-Essen Essen, 31.01.2011 Fakultät für Mathematik M. Winkler Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Bearbeitungszeit 90 min. Die Klausur gilt als bestanden, wenn
Probeklausur zu Mathematik 3 für Informatik
Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung
Mathematik für Naturwissenschaften, Teil 2
Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die
WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.
Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im
1 Grundlagen der Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsräume. Ein erster mathematischer Blick auf Zufallsexperimente...
Inhaltsverzeichnis 1 Grundlagen der Wahrscheinlichkeitsrechnung 1 1.1 Wahrscheinlichkeitsräume Ein erster mathematischer Blick auf Zufallsexperimente.......... 1 1.1.1 Wahrscheinlichkeit, Ergebnisraum,
Vorwort Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße Erwartungswert und Varianz...
Inhaltsverzeichnis Vorwort... 2 Zum Einstieg... 3 1 Zufallsvariable X, Erwartungswert E(X), Varianz V(X) 1.1 Zufallsvariable oder Zufallsgröße... 5 1.2 Erwartungswert und Varianz... 7 2 Wahrscheinlichkeitsverteilungen
Abitur 2013 Mathematik Stochastik IV
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 201 Mathematik Stochastik IV In einer Großstadt steht die Wahl des Oberbürgermeisters bevor. 12% der Wahlberechtigten sind Jungwähler, d. h. Personen
Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 2010
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Deskriptive Statistik und Wahrscheinlichkeitsrechnung Sommersemester 010 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die
Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen
Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe
Übungsscheinklausur,
Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...
Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung
Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt
Abitur 2012 Mathematik Stochastik III
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2012 Mathematik Stochastik III Für eine Quizshow sucht ein Fernsehsender Abiturientinnen und Abiturienten als Kandidaten. Jeder Bewerber gibt in einem
Biomathematik für Mediziner, Klausur SS 2000 Seite 1
Biomathematik für Mediziner, Klausur SS 2000 Seite 1 Aufgabe 1: Bei der Diagnose einer bestimmten Krankheit mit einem speziellen Diagnoseverfahren werden Patienten, die tatsächlich an der Krankheit leiden,
Klausur Statistik Lösungshinweise
Klausur Statistik Lösungshinweise Prüfungsdatum: 21. Januar 2016 Prüfer: Etschberger, Heiden, Jansen Studiengang: IM und BW Punkte: 15, 15, 12, 14, 16, 18 ; Summe der Punkte: 90 Aufgabe 1 15 Punkte Bei
Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2017
Prof. Dr. Christoph Karg 10.7.2017 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2017 Name: Unterschrift: Klausurergebnis Aufgabe 1 (10 Punkte) Aufgabe
