< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für

Größe: px
Ab Seite anzeigen:

Download "< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für"

Transkript

1 2 Angeordnete Körper 2.1 Grundrechenregeln für < in einem angeordneten Körper 2.3 Weitere Rechenregeln für < und 2.4 Positive und negative Elemente 2.5 Ungleichung des arithmetischen Mittels 2.7 Betrag und dessen Grundeigenschaften 2.8 Folgerungen aus den Betragsregeln In diesem Paragraphen sei K immer ein angeordneter Körper. Es werden also nur die in 1.14, (ii) und (iii) angegebenen Bedingungen vorausgesetzt. Alle Ergebnisse dieses Paragraphen gelten damit jedoch insbesondere für den Körper R der reellen Zahlen. Als erstes werden die Grundrechenregeln für die Kleiner-Relation < hergeleitet. < war nach 1.9 mit Hilfe von definiert worden. Die Beweise für die Rechenregeln für < werden daher aus den Regeln für das Rechnen mit in einem angeordneten Körper hergeleitet. 2.1 Grundrechenregeln für < in einem angeordneten Körper Für a, b K gilt genau eine der drei Beziehungen: a < b, a = b, a > b. Sind a, b, c K, so gilt: (ii) a < b b < c a < c. (iii) (A) a < b a + c < b + c, (M) a < b 0 < c ac < bc. Beweis. In einem angeordneten Körper ist eine lineare Ordnung (siehe (ii) der Definition 1.14 eines angeordneten Körpers). Nach 1.10 gelten daher und (ii). (iii) Nach 1.14(iii)(A) folgt aus a < b zunächst a+c b+c. Wäre a+c = b+c, so folgte a = b, im Widerspruch zu a < b. C 1 [2] 1

2 Kapitel I Reelle Zahlen Nach 1.14(iii)(M) folgt aus a < b und 0 < c zunächst ac bc. Wäre ac = bc, so folgte wegen c 0, daß a = b wäre, im Widerspruch zu a < b. 2.2 < und Positivität Für a, b K gilt: a < b b a > 0; a b b a 0. (ii) a < 0 a > 0; a 0 a 0. (iii) a > 0 a < 0; a 0 a 0. (iv) a < b b < a; a b b a. Beweis. Wir beweisen zunächst die strikten Ungleichungen, d.h. die Beziehungen mit < oder >. a < b = 0 = a + ( a) < b + ( a) = b a b a > 0 0 < b a = a < (b a) + a = b. (ii) Setze b := 0 in. (iii) Folgt aus (ii), wenn man a durch a ersetzt und berücksichtigt, daß ( a) = a gilt. (iv) a < b ( a) ( b) = b a > 0 b < a. Die Beziehungen mit folgen nun unmittelbar aus den Beziehungen mit <. Z.B. gilt a b (a = b a < b) (b a = 0 b a > 0) b a 0. Wir schreiben im folgenden abkürzend: a b c für (a b b c). 2.3 Weitere Rechenregeln für < und Sind a, b, c, d K, so gilt: a b c d a + c b + d; (ii) a < b c d a + c < b + d; Insbesondere: a > 0 b 0 a + b > 0; (iii) (0 a b) (0 c d) ac bd; (iv) (0 a < b) (0 < c d) ac < bd; Insbesondere: a > 0 b > 0 ab > 0; (v) a b c 0 ac bc; [2] 2 C 1

3 Angeordnete Körper (vi) a < b c < 0 ac > bc; (vii) (a 2 := a a 0) (a 0 a 2 > 0); (viii) (ix) (x) (xi) 1 > 0 (a + 1 > a); 0 < a 0 < 1/a; 0 < a < b 1/b < 1/a; a < b c > 0 a/c < b/c. Beweis. a b = 1.14(iii)(A) a + c b + c, c d = 1.14(iii)(A) c + b d + b. Aus der Transitivität von folgt a + c b + d. (ii) Ist c = d, so folgt die Behauptung aus (A). Im Fall c < d aus der Transitivität von < (siehe 2.1(ii)) und a < b = a + c < b + c; c < d = b + c < b + d. Setze a := 0 und c := 0 in (ii); dann folgt aus 0 < b 0 d auch 0 < b + d. (iii) a b 0 c = ac bc; 1.14(iii)(M) c d 0 b = cb db. 1.14(iii)(M) Aus der Transitivität von folgt daher ac bd. (iv) a < b 0 < c = ac < bc, (M) c d 0 b = bc bd. 1.14(iii)(M) Aus der Transitivität von < folgt somit ac < bd. Setze a := 0 und c := d in (iv), so folgt: b > 0 c > 0 bc > 0. (v) a b c 0 = 2.2(ii) a b 0 c, = a( c) b( c) ac bc = bc ac. 1.14(iii)(M) 2.2(iv) (vi) a < b c < 0 = 2.2(ii) a < b 0 < c = ac < bc = bc < ac. (M) 2.2(iv) (vii) Ist a = 0, so ist a 2 = 0 0. Sei a 0. a > 0 = a 2 > 0; a < 0 a > 0 a 2 = ( a) 2 > 0. (iv) (iv) C 1 [2] 3

4 Kapitel I Reelle Zahlen (viii) Aus 1 0 folgt nach (vii), daß 1 = 1 2 > 0 ist. Aus 0 < 1 folgt a = 0 + a < 1 + a. (ix) Wegen a 0 existiert 1/a 0. Wäre 1/a < 0, so würde aus 0 < a folgen: 1 = a 1/a < 0; im Widerspruch zu (viii). (x) 0 < a < b = (ix) 0 < 1/a 0 < 1/b a < b = 0 < ab 1 a < b 1 b = a 1 1 a b < b a b = a 1. (iv) (xi) a < b c > 0 = (ix) a < b 0 < 1/c = a/c < b/c. Aus 2.3 folgt insbesondere: Die Gleichung t = 0 besitzt keine Lösung t in einem angeordneten Körper K. Denn für jedes t K gilt t 2 0 (siehe 2.3 (vii)) und somit wegen 0 < 1 (siehe 2.3(viii)) 0 < 1 + t (ii) (Da in den komplexen Zahlen i = 0 gilt, können die komplexen Zahlen auf keine Weise zu einem angeordneten Körper gemacht werden.) 2.4 Positive und negative Elemente Ein a K heißt positiv, wenn a > 0 ist. K + := {a K : a > 0} ist also die Menge der positiven Elemente von K. a K heißt negativ, wenn a < 0 ist. K := {a K : a < 0} ist also die Menge der negativen Elemente von K. Ein a K heißt nicht-negativ, wenn a 0 ist. nicht-positiv, wenn a 0 ist. (ii) (iii) a b > 0 Ein a K heißt die Faktoren a, b sind entweder beide positiv oder beide negativ. a b < 0 einer der Faktoren ist positiv, der andere negativ. Für b 0 gilt: a/b > 0 a und b sind entweder beide positiv oder beide negativ. Beweis. : 0 < ab a > 0 = 2.3(xi) 0 < ab a = b; 0 < ab b > 0 = 2.3(xi) 0 < a b b = a. [2] 4 C 1

5 Angeordnete Körper Ist also einer der beiden Faktoren a, b positiv, so auch der andere. Aus a b > 0 folgt a b 0 und somit a 0, b 0. Ist also keiner der beiden Faktoren positiv, so müssen beide negativ sein. : Sind a, b > 0, so folgt a b > 0 nach 2.3(iv). Sind a, b < 0, so folgt: (a b) = ( a) ( b) > 0. (ii) a b < 0 a ( b) > 0 a, b K + a, b K einer der 2.2(ii) Faktoren ist positiv, der andere negativ. (iii) a 1/b = a/b > 0 [(a, 1/b K + ) ( a, 1/b K + )] 2.3(ix) [(a, b K + ) ( a, b K + )] [(a, b K + ) (a, b K )]. 2.5 Ungleichung des arithmetischen Mittels Es seien a, b K und a < b. Ferner sei λ K mit 0 < λ < 1. Dann gilt: Insbesondere gilt mit 2 := a < λa + (1 λ)b < b. a < a+b 2 < b. Ist umgekehrt c K mit a < c < b gegeben, so gibt es ein λ K mit 0 < λ < 1 und c = λa + (1 λ)b. Beweis. Es ist λ > 0 und 1 λ > 0 (benutze (A)). Da a < b ist, gilt daher nach (M): λa < λb und (1 λ)a < (1 λ)b. Hieraus folgt durch zweimalige Anwendung von (A): a = λa + (1 λ)a < λa + (1 λ)b < λb + (1 λ)b = b. Nun ist 2 = > 2.3(viii) 1 > 2.3(viii) 0. Also folgt 0 < 2.3(ix) 1/2 < 2.3(x) 1. Daher ergibt sich die Aussage über das arithmetische Mittel aus dem eben Bewiesenen mit λ := 1/2. Sei c K mit a < c < b. Dann folgt 0 < 2.2 b c < 2.2(iv), b a. Aus 2.4(iii) und 2.3(xi) folgt dann 0 < b a b c b c < 1. Setze λ := b a. Dann ist λa + (1 λ)b = (b c)a+(c a)b b a = c. 2.6 Dazwischenliegen Sind a, b, c K, so sagt man c liegt zwischen a und b, wenn gilt: min({a, b}) < c < max({a, b}) Zwischen zwei verschiedenen Elementen von K liegt stets ein weiteres Element von K. C 1 [2] 5

6 Kapitel I Reelle Zahlen Beweis. Man bezeichne das kleinere der beiden Elemente mit a, das größere mit b. Dann folgt mit c := a+b 2 K nach 2.5: a < c < b. 2.7 Betrag und dessen Grundeigenschaften Für a K heißt der Betrag von a. Für alle a, b K gilt: a := max({ a, a}) = { a, falls a 0, a, falls a < 0, a 0, wobei a = 0 a = 0 (Definitheit); (ii) a b = a b (Multiplikativität); (iii) a + b a + b (Dreiecksungleichung). Beweis. Ist a 0, so ist a 0 und daher max({ a, a}) = a( 0). Ist a < 0, so ist a > 0 und daher max({ a, a}) = a( 0). Dies beweist die Darstellung von max({ a, a}). Die Vorüberlegung zeigt, daß a = max({ a, a}) 0 ist. Sei a = 0. Wäre a > 0, so wäre a = a > 0. Wäre a < 0, so wäre a = a > 0. Also muß a = 0 sein. Ist a = 0, so gilt a = a = 0. (ii) Ist a b = 0, so folgt a = 0 oder b = 0 und somit a = 0 oder b = 0. Also gilt: a b = 0 = a b. Ist a b > 0, so sind a > 0 und b > 0 oder a < 0 und b < 0 (siehe 2.4). Es folgt daher: { a b, für a, b > 0, a b = a b = ( a) ( b) = a b, für a, b < 0. Ist a b < 0, so sind a > 0 und b < 0 oder a < 0 und b > 0 (siehe 2.4(ii)). Es folgt daher { a ( b) = a b, falls a > 0, b < 0, a b = (a b) = ( a) b = a b, falls a < 0, b > 0. (iii) Es sind a, a a und b, b b. Also gilt (a + b), a + b a + b. 2.3 Also ist a + b = max({a + b, (a + b)}) a + b. [2] 6 C 1

7 Angeordnete Körper 2.8 Folgerungen aus den Betragsregeln Für a, b K gilt: (ii) (iii) (iv) a = a ; a b = b a ; { a b, a b a + b ; b 0 a b = a b. Beweis. a = ( 1)a = 1 a = 2.7(ii) (ii) a b = (a b) = b a. 2.3(viii) 1 a = a. (iii) a = (a b) + b 2.7(iii) a b + b, also ist a b a b. Folglich ist auch ( a b ) = b a b a = a b. Also gilt (ii) a b = max{ a b, ( a b )} a b. Die zweite Ungleichung in (iii) folgt aus der ersten, indem man für b den Wert b einsetzt und berücksichtigt. (iv) Für b 0 ist a 1/b b = 2.7(ii) (a 1/b) b = a, also gilt (iv). 2.9 Betrag und Kleiner-Relation Sei ε K +. Dann gilt für a, b K : a < ε ε < a < ε; (ii) b a < ε a ε < b < a + ε. (iii) Die Aussagen und (ii) bleiben richtig, wenn überall < durch ersetzt wird. Beweis. a < ε (a < ε a < ε) a =max({ a,a}) ε < a < ε. 2.2(iv) (ii) b a < ε ε < b a < ε a ε < b < a + ε. (a < ε ε < a) (iii) Wegen b a ε ( b a < ε b a = ε) folgt (iii) aus (ii) bzw. aus. Ist T eine Teilmenge der linear geordneten Menge (M :=)K, so läßt sich die Beschränktheit, die in 1.3 definiert war, mit Hilfe des Betrages ausdrücken. C 1 [2] 7

8 Kapitel I Reelle Zahlen 2.10 Beschränktheit von Teilmengen von K Sei T K. Dann gilt: T ist beschränkt ( r K + ) mit t r für alle t T. Beweis. Nach Definition 1.3 gibt es s 1, s 2 K mit s 1 t s 2 für alle t T. Also gilt mit r := s 1 + s K + für t T : d.h. t r nach 2.9(iii). r s 1 s 2 s 1 t s 2 s 1 + s 2 r, Nach 2.9(iii) gilt r t r für alle t T. Also besitzt T eine untere und obere Schranke. Wir wollen diesen Paragraphen mit einigen Bemerkungen zur Bedeutung und zum Wert von Beweisen schließen: 1) Beweise ermöglichen es, sich davon zu überzeugen, daß Aussagen gültig sind. 2) Sie zeigen, wie Definitionen und andere Sätze angewandt werden; in diesem Sinne können sie selbst als Beispiele für die Vorlesung aufgefaßt werden. 3) Sie verdeutlichen den Ablauf der Veranstaltung, und ermöglichen daher, sich besser an den Inhalt der Veranstaltung zu erinnern. 4) Sie zeigen, welche Techniken immer und immer wieder angewandt werden und lassen daher die grundlegenden Ideen besser hervortreten. 5) Sie ermöglichen es auch, die Gegenstände der Veranstaltung auf andere Situationen anzuwenden, z.b. oftmals durch Beweismodifikationen oder Beweisverallgemeinerungen. 6) Sie sollen als Muster dienen und in die Lage versetzen, selbst die Beweise korrekt durchzuführen bzw. selbst Beweisideen zu finden. 7) Beweise sind ein Teil des intellektuellen Reizes und Inhaltes der Mathematik. [2] 8 C 1

5 Intervalle, Metrik und Topologie für R

5 Intervalle, Metrik und Topologie für R 5 Intervalle, Metrik und Topologie für R 5.1 Intervalle in R 5.2 Charakterisierung der Intervalle 5.3 Die kanonische Metrik auf R 5.4 ε-umgebung 5.5 Offene und abgeschlossene Teilmengen von R 5.6 Die kanonische

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 25.10.2011 Körperaxiome Wir setzen in dieser Vorlesung die reellen Zaheln als gegeben aus. Mit R bezeichnen wir die Menge aller reellen Zahlen, auf der folgende Strukturen gegeben

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

2. Reelle und komplexe Zahlen [Sch-St ]

2. Reelle und komplexe Zahlen [Sch-St ] 7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 2.1 Körperstruktur

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN

24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN 24 KAPITEL 2. REELLE UND KOMPLEXE ZAHLEN x 2 = 0+x 2 = ( a+a)+x 2 = a+(a+x 2 ) = a+(a+x 1 ) = ( a+a)+x 1 = x 1. Daraus folgt dann, wegen x 1 = x 2 die Eindeutigkeit. Im zweiten Fall kann man für a 0 schreiben

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt.

p 2istirrational Satz 1.15 Beweis. Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. p 2istirrational Satz 1.15 Es gibt keine rationale Zahl x, diediegleichungx 2 =2erfüllt. Beweis. Annahme: Es existiert x 2 Q mit x 2 = 2. Wegen x 2 Q folgt x = p q und p und q sind teilerfremde ganze Zahlen.

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Hauptsatz der Zahlentheorie.

Hauptsatz der Zahlentheorie. Hauptsatz der Zahlentheorie. Satz: Jede natürliche Zahl n N läßt sich als Produkt von Primzahlpotenzen schreiben, n = p r 1 1 p r 2 2... p r k k, wobei p j Primzahl und r j N 0 für 1 j k. Beweis: durch

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit

Mehr

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010

Schulstoff. Übungen zur Einführung in die Analysis. (Einführung in das mathematische Arbeiten) Sommersemester 2010 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten) Sommersemester 010 Schulstoff 1. Rechnen mit Potenzen und Logarithmen 1. Wiederholen Sie die Definiton des Logarithmus

Mehr

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper 40 Andreas Gathmann 4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Analysis für Informatiker

Analysis für Informatiker Analysis für Informatiker Wintersemester 2017/2018 Carsten.Schneider@risc.jku.at 1 Bemerkung: Dies ist kein Skript, welches den gesamten Inhalt der Vorlesung abdeckt. Es soll den Studierenden aber während

Mehr

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11.1 g-adische Entwicklung von Zahlen aus [0, 1[ 11.2 g-adische Entwicklung reeller Zahlen 11.3 g-adische Entwicklung nicht-negativer

Mehr

Axiomatik der reellen Zahlen

Axiomatik der reellen Zahlen Kapitel 13 Axiomatik der reellen Zahlen 13.1 Motivation Analysis beschäftigt sich mit Grenzwerten, Differentiation und Integration. Viele Phänomene in den Natur- und Ingenieurswissenschaften lassen sich

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

4 Das Vollständigkeitsaxiom und irrationale Zahlen

4 Das Vollständigkeitsaxiom und irrationale Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen 4.2 R ist archimedisch geordnet 4.5 Q liegt dicht in R 4.7 Existenz von Wurzeln nicht-negativer reeller Zahlen In diesem Paragraphen werden wir zum ersten

Mehr

2. Reelle Zahlen. Denition 2.1 (Gruppe) Kapitelgliederung

2. Reelle Zahlen. Denition 2.1 (Gruppe) Kapitelgliederung Kapitelgliederung 2. Reelle Zahlen 2.1 Der Körper der reellen Zahlen 2.2 Anordnungsaxiome 2.3 Betrag und Dreiecksungleichungen 2.4 Darstellung von Zahlen im Rechner 2.5 Intervalle Buchholz / Rudolph: MafI

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Das Newton Verfahren.

Das Newton Verfahren. Das Newton Verfahren. Ziel: Bestimme eine Nullstelle einer differenzierbaren Funktion f :[a, b] R. Verwende die Newton Iteration: x n+1 := x n f x n) f x n ) für f x n ) 0 mit Startwert x 0. Das Verfahren

Mehr

Reelle Zahlen. 2-a Die Körperaxiome

Reelle Zahlen. 2-a Die Körperaxiome 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

2. Teilbarkeit. Euklidischer Algorithmus

2. Teilbarkeit. Euklidischer Algorithmus O. Forster: Einführung in die Zahlentheorie 2. Teilbarkeit. Euklidischer Algorithmus 2.1. Wir benutzen die folgenden Bezeichnungen: Z = {0, ±1, ±2, ±3,...} Menge aller ganzen Zahlen N 0 = {0, 1, 2, 3,...}

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

6 Polynome mit reellen Koeffizienten

6 Polynome mit reellen Koeffizienten 6 Polynome mit reellen Koeffizienten 6.1 Verknüpfungen reellwertiger Funktionen 6.2 Polynome und rationale Funktionen 6.4 Nullstellensatz und Identitätssatz für Polynome 6.5 Grad eines Polynoms 6.8 Division

Mehr

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen

20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20 Gleichmäßige Konvergenz für Folgen und Reihen von Funktionen 20.1 Folgen und Reihen von Funktionen 20.3 Die Supremumsnorm 20.4 Gleichmäßige Konvergenz von Folgen und Reihen von Funktionen 20.7 Das Cauchy-Kriterium

Mehr

Analysis I - Reelle Zahlen

Analysis I - Reelle Zahlen November 17, 2008 Algebraische Grundbegriffe und Körper Definition Sei M eine Menge. Jede Funktion f : M M M heißt eine (binäre, innere) Verknüpfung oder eine Operation auf M. Wir schreiben für (a, b)

Mehr

Musterlösung zu Blatt 6, Aufgabe 2

Musterlösung zu Blatt 6, Aufgabe 2 Musterlösung zu Blatt 6, Aufgabe 2 I Aufgabenstellung Es sei F = R N der Raum aller reellen, mit N induzierten Folgen. Weiter bezeichne N alle Nullfolgen, K alle konvergenten Folgen und B alle beschränkten

Mehr

Analysis I. Vorlesung 4. Angeordnete Körper

Analysis I. Vorlesung 4. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Charakterisierung der reellen Zahlen Die reellen Zahlen bilden einen vollständigen angeordneten Körper, der mit R bezeichnet wird.

Charakterisierung der reellen Zahlen Die reellen Zahlen bilden einen vollständigen angeordneten Körper, der mit R bezeichnet wird. 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper

Kapitel 1. Erste algebraische Strukturen. 1.2 Ringe und Körper Kapitel 1 Lineare Algebra individuell M. Roczen und H. Wolter, W. Pohl, D.Popescu, R. Laza Erste algebraische Strukturen Hier werden die grundlegenden Begriffe eingeführt; sie abstrahieren vom historisch

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Lineare Algebra II Lösungen der Aufgaben 42 und 43

Lineare Algebra II Lösungen der Aufgaben 42 und 43 D Blottière SS 7 P Schützdeller Universität Paderborn Lineare Algebra II Lösungen der Aufgaben 4 und 43 Aufgabe 4 : Bemerkungen : Es sei V ein n-dimensionaler Vektorraum über einem Körper K und β : V V

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

Die rationalen Zahlen. Caterina Montalto Monella

Die rationalen Zahlen. Caterina Montalto Monella Die rationalen Zahlen Caterina Montalto Monella 07.12.2016 1 1 Die Konstruktion der rationalen Zahlen In dieser Ausarbeitung konstruieren wir die rationalen Zahlen aus den ganzen und den natürlichen Zahlen.

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Elementare Geometrie Vorlesung 13

Elementare Geometrie Vorlesung 13 Elementare Geometrie Vorlesung 13 Thomas Zink 7.6.2017 1.Vektoren Es sei E eine Ebene. Eine Translation T : E E wird auch als Vektor bezeichnet. Wenn O, A E, so gibt es genau einen Vektor T, so dass T

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

Der Fundamentalsatz der Algebra. 1 Motivation

Der Fundamentalsatz der Algebra. 1 Motivation Vortrag im Rahmen des Proseminars zur Analysis, 24. April 2006 Micha Bittner Motivation Den ersten des Fundamentalsatzes der Algebra erbrachte C.F. Gauss im Jahr 799 im Rahmen seiner Dissertation. Heute

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen

Komplexe Zahlen. Bemerkungen. (i) Man zeigt leicht, dass C mit diesen beiden Operationen Komplexe Zahlen Da für jede reelle Zahl x R gilt dass x 0, besitzt die Gleichung x + 1 = 0 keine Lösung in R bzw. das Polynom P (x) = x + 1 besitzt in R (!) keine Nullstelle. Dies führt zur Frage, ob es

Mehr

1.3 Gleichungen und Ungleichungen

1.3 Gleichungen und Ungleichungen 1.3 Gleichungen und Ungleichungen Ein zentrales Thema der Algebra ist das Lösen von Gleichungen. Ganz einfach ist dies für sogenannte lineare Gleichungen a x = b Wenn hier a 0 ist, können wir beide Seiten

Mehr

Kapitel 2 Reelle Zahlen

Kapitel 2 Reelle Zahlen Wolter/Dahn: Analysis Individuell 5 Kapitel Reelle Zahlen Es gibt verschiedene Möglichkeiten, die reellen Zahlen einzuführen, wenn man die ratio- /0/0 nalen Zahlen bereits definiert hat. Die geläufigsten

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Reelle Zahlen. J. Pöschel, Etwas Analysis, DOI / _2, Springer Fachmedien Wiesbaden 2014

Reelle Zahlen. J. Pöschel, Etwas Analysis, DOI / _2, Springer Fachmedien Wiesbaden 2014 2 Reelle Zahlen Die reellen Zahlen bilden das Fundament der gesamten Analysis. Es ist daher sinnvoll, sich zunächst Klarheit über dieses Fundament zu verschaffen. Der konstruktive und historisch korrekte

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

8. Musterlösung zu Mathematik für Informatiker II, SS 2004

8. Musterlösung zu Mathematik für Informatiker II, SS 2004 8. Musterlösung zu Mathematik für Informatiker II, SS 2004 MARTIN LOTZ &MICHAEL NÜSKEN Aufgabe 8.1 (Polynomdivision). (8 Punkte) Dividiere a mit Rest durch b für (i) a = x 7 5x 6 +3x 2 +1, b = x 2 +1in

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Kapitel 5 Reihen 196

Kapitel 5 Reihen 196 Kapitel 5 Reihen 96 Kapitel 5. Definition und Beispiele 97 Das Material dieses Kapitels können Sie nachlesen in: MICHAEL SPIVAK, Calculus, Kapitel 22 DIRK HACHENBERGER, Mathematik für Informatiker, Kapitel

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

0 Mengen und Abbildungen, Gruppen und Körper

0 Mengen und Abbildungen, Gruppen und Körper 0 Mengen und Abbildungen, Gruppen und Körper In diesem Paragrafen behandeln wir einige für die Lineare Algebra und für die Analysis wichtige Grundbegriffe. Wir beginnen mit dem Begriff der Menge. Auf Cantor

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK5 vom 22.9.2016 VK5: Elementare reelle Arithmetik, Ungleichungen und Intervalle VK5.1: Ungleichungen

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5 3 Folgen 3.1 Definition und Beispiele Eine Abbildung a : Æ Ê heißt (reelle) Zahlenfolge. Statt a(n) schreiben wir kürzer a n und bezeichnen die ganze Folge mit (a n ) n Æ oder einfach (a n ), was aber

Mehr

Reelle Zahlen. Kapitel Der Körper der reellen Zahlen

Reelle Zahlen. Kapitel Der Körper der reellen Zahlen Kapitel 2 Reelle Zahlen 2.1 Der Körper der reellen Zahlen Definition 2.1 (Gruppe). Sei G eine Menge und eine Verknüpfung auf G (d. h. x, y G. x y G, x y ist eindeutig). Das Paar (G, ) heißt eine Gruppe,

Mehr

FILTER, ULTRAFILTER UND EINFÜHRUNG VON R

FILTER, ULTRAFILTER UND EINFÜHRUNG VON R FILTER, ULTRAFILTER UND EINFÜHRUNG VON R Im Sinne von G.W.Leibniz ist: Eine Kurve besteht aus unendlich vielen unendlich kurzen Stücken. So darf man denken, wenn man Gegenstände der Mathematik oder Physik

Mehr

Große Mengen und Ultrafilter. 1 Große Mengen

Große Mengen und Ultrafilter. 1 Große Mengen Vortrag zum Seminar zur Analysis, 31.10.2012 Marcel Marnitz In diesem Vortrag wird das Konzept mathematischer Filter eingeführt. Sie werden in späteren Vorträgen zur Konstruktion der hyperreellen Zahlen

Mehr

23 Konvexe Funktionen und Ungleichungen

23 Konvexe Funktionen und Ungleichungen 23 Konvexe Funktionen und Ungleichungen 231 Konvexe Funktionen 232 Kriterien für Konvexität 233 Streng konvexe Funktionen 235 Wendepunkte 237 Ungleichung von Jensen 2310 Höldersche Ungleichung 2311 Minkowskische

Mehr

Elementare Geometrie Vorlesung 16

Elementare Geometrie Vorlesung 16 Elementare Geometrie Vorlesung 16 Thomas Zink 19.6.2017 1.Homothetien Definition Es sei E eine Ebene. Eine Homothetie h : E E ist eine bijektive Abbildung, so dass (1) Wenn a E eine Gerade ist, so ist

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 15 Komplexe Zahlen Mathematischer Vorkurs TU Dortmund Seite

Mehr

Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: )

Endgültige Gruppeneinteilung Kohorte Innere-BP Sommersemester 2016 (Stand: ) A A1a 2197120 on on A A1a 2311330 on on on on on on on A A1a 2316420 on on A A1a 2332345 on on on on on on on A A1a 2371324 on on on on on on on A A1a 2382962 on on A A1a 2384710 on on on on on on on A

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007 KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 5. Dezember 007 Name: Studiengang: Aufgabe 3 4 5 Summe Punktzahl /40 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Zahlenbereiche. 1 Die reellen Zahlen als angeordneter Körper Körperaxiome Anordnungsaxiome Absolutbetrag und Intervalle...

Zahlenbereiche. 1 Die reellen Zahlen als angeordneter Körper Körperaxiome Anordnungsaxiome Absolutbetrag und Intervalle... Goethe-Oberschule Berlin (Gymnasium) A. Mentzendorff Geändert: Januar 010 Zahlenbereiche Inhaltsverzeichnis 1 Die reellen Zahlen als angeordneter Körper 1.1 Körperaxiome....................................

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 5. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 5 Aufgabe 1 (a) Additionstafel in Z 7 : + [0] [1] [2] [3] [4] [5] [6] [0] [0] [1] [2] [3] [4]

Mehr

Grenzwerte und Stetigkeit

Grenzwerte und Stetigkeit KAPITEL 3 Grenzwerte und Stetigkeit 3.1 Grenzwerte..................................... 49 3.2 Stetigkeit....................................... 57 Lernziele 3 Grenzwerte ε-δ-definition des Grenzwerts,

Mehr

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder

Leitfaden. a ist Vielfaches von d und schreiben verkürzt: d a. Ist d kein Teiler von a, so schreiben wir auch: d a. d teilt a oder Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen

Mehr

Konstruktion der reellen Zahlen. 1 Der Körper der reellen Zahlen

Konstruktion der reellen Zahlen. 1 Der Körper der reellen Zahlen Vortrag zum Proseminar zur Analysis, 24.10.2012 Adrian Hauffe-Waschbüsch In diesem Vortrag werden die reellen Zahlen aus rationalen Cauchy-Folgen konstruiert. Dies dient zur Vorbereitung der späteren Vorträge,

Mehr