Abiturvorbereitung Energetik
|
|
|
- Hede Sachs
- vor 9 Jahren
- Abrufe
Transkript
1 Abiturvorbereitung Energetik Folgende Fragen sind an Chemie-Abiturfragen aus Baden-Württemberg angelehnt, wurden jedoch aus didaktischen Gründen in der Aufgabenstellung ergänzt, modifiziert oder gekürzt. Normalerweise erstreckt sich eine Abituraufgabe über mehrere hemenfelder, hier wurden nur die eilaufgaben berücksichtigt, die sich auf die Energetik beziehen. Hilfsmittel: Periodensystem der Elemente, abelle mit den hermodynamischen Daten (siehe Anhang), aschenrechner 1. Am Autokatalysator reagieren die umweltschädlichen Gase Stickstoffoxid (NO) mit ohlenstoffmonooxid zu ohlenstoffsdioxid und Stickstoff. (Ch-G, 2001) a) Stellen Sie die Reaktionsgleichung auf und berechnen Sie die Reaktionsenthalpie für die Entstehung von 100 Liter Stickstoff (Hinweis: Bei den gegebenen Bedingungen nimmt 1 mol Stickstoff das Volumen von 45 L ein). b) Welche Entropieänderung erwarten Sie im Verlauf der Reaktion (Entropieabnahme, nahezu onstanz oder Entropiezunahme)? Begründen Sie kurz! 2. In einem Praktikumsversuch soll die molare Standardneutralisationsenthalpie N H der Reaktion von Salzsäure mit Natronlauge bestimmt werden. Dafür werden 100 ml der Säure (c = 1,0 mol/l) mit 100 ml der Lauge (c = 1,0 mol/l) mit der gleichen Anfangstemperatur im alorimeter vermischt. Die emperaturänderung beträgt ϑ = 5,2, die Wärmekapazität des alorimeters beträgt C al = 215,9 J 1. Wie groß ist N H, wenn die Wärmekapazität von H 2 O c w = 4,18 J g 1 1 beträgt? Hinweis: Die Dichten und Wärmekapazitäten der Lösungen entsprechen Näherungsweise den Werten für reines Wasser. (Ch-G, 2007) 3. Eine Masse von 1,51 g Glycerin (Propantriol, C 3 H 8 O 3 ) wurden in einem Verbrennungskalorimeter, welches mit 1500 g Wasser gefüllt war, vollständig verbrannt, wobei das H 2 O flüssig anfällt. Die emperatur stieg dabei von 19,9 C auf 21,8 C. (ähnlich einer Abi-Prüfungsaufgabe, Berufliches Gymnasium BaWü, Chemie 4 stündig, ). a) Berechnen Sie die molare Verbrennungsenthalpie, wenn die Wärmekapazität des alorimeters J/ beträgt. b) Vergleichen Sie den bei a) erhaltenen Wert mit dem rechnerischen Wert, der mithilfe der Standarbildungsenthalpien der Edukte und Produkte berechnet werden kann. c) Welches Volumen an Sauerstoff V(O 2 ) wurden unter Normbedingungen bei der Verbrennung der Glycerinportion verbraucht? 4. Natrium liegt in der Gasphase zu einem bestimmten Anteil in Form von Na 2 -Molekülen vor. Die Bildung solcher Moleküle aus Na-Atomen erfolgt exotherm, die Reaktionsenthalpie für die Molekülbildung beträgt R H = 75,5 kj/mol. Begründen Sie, ob die Na 2 -Molekülbildung aus Na-Atomen bei allen emperaturen exergonisch verläuft (ohne Berechnung!) (ähnlich einer Abi-Prüfungsaufgabe, Berufliches Gymnasium BaWü, Chemie 4 stündig, ) 5. Benzen ( 1,3,5-Cyclohexatrien ) reagiert mit Propen in der Gasphase zu 2-Phenylpropan. Hinweis: Phenylrest: C 6 H 5 bzw. ( 1,3,5-Cyclohexatrienylrest ) (ähnlich einer Abi-Prüfungsaufgabe, Berufliches Gymnasium BaWü, Chemie 4 stündig, ). a) Formulieren Sie die Reaktionsgleichung in Strukturformeln. b) Die Standardreaktionsentropie dieser Reaktion beträgt R S = 146 J/. Begründen Sie das Vorzeichen dieses Werts. c) Berechnen Sie die emperatur bei der die Reaktion beginnt, endergonisch zu verlaufen. Hinweis: f H (Benzen gasförmig ) = 82 kj/mol, f H (2-Phenylpropan gasförmig ) = 4 kj/mol.
2 6. Stickstoff bildet mit Sauerstoff viele verschiedene Stickstoffoxide. (ähnlich einer Abi-Prüfungsaufgabe, Berufliches Gymnasium BaWü, Chemie 4-stündig, ) Reaktion1: Durch direkte Reaktion von Stickstoff mit Sauerstoff entsteht Stickstoffmonoxid. Reaktion2: Stickstoffmonoxid bildet unter bestimmten Reaktionsbedingungen Stickstoffdioxid und Distickstoffmonoxid. Reaktion 3: Stickstoffmonoxid kann mit Stickstoffdioxid zu Distickstofftrioxid reagieren. a) Notieren Sie die Reaktionsgleichungen zu den 3 beschriebenen Reaktionen (davon die von Reaktion 1 in Strukturformeln) b) Ordnen Sie die 3 Reaktionen dem passenden Fall (Fall I IV) und dem passenden Diagramm (Diagramm 1-4) zu. Hinweis: S (Distickstofftrioxid) = 0,316 kj/mol, f H (Distickstofftrioxid) = 86 kj/mol, I: H > 0 kj, S < 0 J/ II: H > 0 kj, S > 0 J/ III: H < 0 kj, S < 0 J/ IV: H < 0 kj, S>< 0 J/ Diagramm A Diagramm B Diagramm C Diagramm D G G G G Anhang: abelle mit den benötigten thermodynamischen Daten abelle der für diese Aufgaben benötigten molaren Standardbildungsenthalpien [kj/mol] und der molaren Standardentropien (J/*mol). Die Werte aus der Abiturtabelle sind die ohne Nachkommastelle, diejenigen mit Nachkommastellen wurden aus anderen Quellen ergänzt. 25 C, p = Pa anorganische Verbindungen organische Verbindungen f H m (kj/mol) S m (J/mol*) f H m (kj/mol) S m (J/mol*) CO 2 (g) ohlenwasserstoffe und Halogenkohlenwasserstoffe CO (g) Propen, C 3H 8 (g) H + (aq) 0,0 0,0 H 2 O (l) H 2 O (g) N 2 (g) N 2 O (g) NO (g) Sauerstoffhaltige organische Verbindungen NO 2 (g) Propantriol C 3H 8 O 3 (l) O 2 (g) OH (aq) 229,99 10,75
3 Lösungen ohne Gewähr Bitte informieren Sie mich per ( ), wenn Sie Fehler in den Lösungen finden oder Ihnen etwas unverständlich erscheint. Ich korrigiere das dann umgehend. Ihre Mitschüler werden Ihnen dankbar sein! Die Lösungen sind aus didaktischen Gründen häufig viel ausführlicher als z.b. in der lassenarbeit erwartet a) Grundansatz: Die bei der Verbrennung frei werdende Wärme ( R H) wird vollständig durch alorimeter und darin enthaltenes Wasser aufgenommen. Eine Vorzeichenbetrachtung führen wir erst danach durch, deshalb muss man streng genommen das Betrag-Zeichen einsetzen. H = Q + Q => R Wasser alorimeter RH = cw mw ϑ+ calorimeter malorimeter ϑ => R w w C H = c m ϑ+ C ϑ => J J RH = 4, g 1, , J 30,9kJ g + = mgly ( ) 1,51g ngly ( ) = = 0,01676mol Hinweis: M(Gly) muss man anhand der Summenformel ermitteln. M( Gly) g 90,1 mol Die Reaktionsenthalpie muss negativ sein, also exotherm, da die emperatur des Wasser ansteigt: R H = 30,9 kj Berechnung der molaren Verbrennungsenthalpie: RH 30,9kJ kj RHm = = ngly ( ) 0,016756mol mol Hinweis: Der alorimeterwert des Verbrennungskalorimeters ist hier mit J/ deutlich größer als die alorimeterwerte unserer primitiven Minikalorimeter der Schule. Ein Verbrennungskalorimeter ist deutlich größer, schwerer und komplizierter gebaut, was sich in einer hohen Wärmekapazität (alorimeterwert) niederschlägt. b) Reaktionsgleichung: C 3 H 8 O 3 + 3,5 O 2 3 CO H 2 O : [ ] [ ] H = H (Produkte) H (Edukte) = (3 393 kj) + (4 285 kj) ( 669kJ + 0 kj) = 1650kJ r f f Bei der Verbrennung von 1 mol C 3 H 8 O 3 werden kj Wärme frei. [Literaturwert: r H m = -1654,3 kj/mol; Es gibt also einen ziemlich großen Unterschied zwischen dem berechneten und dem experimentellen Wert. Dies liegt an der Schwierigkeit der experimentellen Bestimmung der Verbrennungsenthalpien: Die Verbrennungsgase müssen das alorimeter vollständig abgekühlt (25 C) verlassen, die gesamte Verbrennungshitze muss an das Wasser abgegeben werden. c) Reaktionsgleichung: C 3 H 8 O 3 + 3,5 O 2 3 CO H 2 O Die verbrauchte O 2 -Stoffmenge ist 3,5 mal so groß wie die Glycerinstoffmenge (siehe oeffizientenverhältnis der Reaktionsgleichung). Da die Glycerinstoffmenge n(gly) =0,01676 mol beträgt (siehe Lösung zu a), wird n(o 2 ) = 3,50,01676 mol 0,05866 mol.
4 Das Volumen kann man z.b. mit dem Dreisatz rechnen: 1 mol 22,4 L (Normvolumen eines Gases) 0,05866 mol x => x 1,31 L 4 5 a) b) Die Reaktion findet laut einleitendem ext in der Gasphase statt. Aus zwei Gasteilchen entsteht ein Gasteilchen. Durch Verringerung des Gasvolumens nimmt die Entropie ab. c) Zuerst berechnen wir mit den verfügbaren Daten die Reaktionsenthalpie. Anschließend setzen wird in die GIBBS- HELMHOLZ-Gleichung ein. (Produkte) (Edukte) [(1 4 )] [(182 ) (1 20 )] 98 => r H m = 98 kj/mol H = H H = kj kj + kj = kj r f f Einsetzen in die GIBBS-HELMHOLZ-Gleichung: G = H S r r r Wir müssen Überprüfen, wo rg=0 kj wird 0kJ = 98kJ 0,146 kj => 0 kj = 98 kj + 0,146 kj => 98 kj = 0,146 kj => 671 Bei emperaturen überhalb von ca. 671 verläuft die Reaktion endergonisch. G 6. a) N 2 + O 2 2 NO; Der Schnittpunkt mit der -Achse liegt bei 671. Reaktion 1: Reaktion 2: N N + O O 2 N O 3 NO NO 2 + N 2 O Reaktion 3: NO + NO 2 N 2 O 3
5 b) Zuerst werden die Reaktionsenthalpien und die Reaktionsentropien berechnet: Reaktion 1: kj kj kj rh = fh (Edukte) = 2mol 90 1mol 0 + 1mol 0 = + 180kJ mol mol mol Man beachte, dass sich die Reaktionsenthalpie immer auf den Formelumsatz bezieht. Bei der Bildung von 2 mol NO aus N 2 und O 2 werden 180 kj Wärmeenergie aufgenommen (endotherme Reaktion). J J J J rs = S (Produkte) S (Edukte) = 2mol 211 1mol mol 205 = 25 mol mol mol Zuordnung des Falls: Da r H > 0 kj und r S > 0 J/ kann man Fall II zuordnen. Zuordnung des Diagramm: Die Auftragung von G gegen die emperatur () ergibt nach der GIBBS-HELMHOLZ- Gleichung (G = H S), für den Fall dass H und S positiv sind, eine fallende Gerade mit positivem y- Achsenabschnitt. Man kann also Diagramm A zuordnen. Reaktion 2: kj kj kj rh = fh (Edukte) = 1mol mol 33 3mol 90 = 155kJ mol mol mol J J J J rs = S (Produkte) S (Edukte) = 1mol mol 240 3mol 211 = 173 mol mol mol Zuordnung des Falls: Da r H < 0 kj und r S < 0 J/ kann man Fall III zuordnen. Zuordnung des Diagramm: Die Auftragung von G gegen die emperatur () ergibt nach der GIBBS-HELMHOLZ- Gleichung (G = H S), für den Fall dass H und S negativ sind, eine steigende Gerade mit negativem y- Achsenabschnitt. Man kann also Diagramm B zuordnen. Reaktion 3: kj kj kj rh = fh (Edukte) = 1mol 86 1mol mol 33 = 37kJ mol mol mol J J J J rs = S (Produkte) S (Edukte) = 1mol 316 1mol mol 240 = 135 mol mol mol Zuordnung des Falls: Da r H < 0 kj und r S < 0 J/ kann man auch hier Fall III zuordnen. Zuordnung des Diagramm: Die Auftragung von G gegen die emperatur () ergibt nach der GIBBS-HELMHOLZ- Gleichung (G = H S), für den Fall dass H und S negativ sind, eine steigende Gerade mit negativem y- Achsenabschnitt. Man kann also Diagramm B zuordnen.
Chemie Klausur
Chemie Klausur 12.1 1 21. Oktober 2002 Aufgaben Aufgabe 1 1.1. Definiere: Innere Energie, Enthalpieänderung, Volumenarbeit, Standard-Bildungsenthalpie, molare Standard- Bildungsenthalpie. 4 VP 1.2. Stelle
Musterlösung Klausur Physikalische Chemie I: Thermodynamik
Musterlösung Klausur Physikalische Chemie I: hermodynamik Aufgabe : Dimerisierung von Stickstoffdioxid a Nach dem Prinzip des kleinsten Zwanges von LeChatelier sollte der Druck p möglichst klein und die
Thermodynamik. Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen.
Thermodynamik Was ist das? Thermodynamik ist die Lehre von den Energieänderungen im Verlauf von physikalischen und chemischen Vorgängen. Gesetze der Thermodynamik Erlauben die Voraussage, ob eine bestimmte
Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen.
1) DEFINITIONEN DIE CHEMISCHE REAKTION Eine chemische Reaktion läuft ab, wenn reaktionsfähige Teilchen mit genügend Energie zusammenstoßen. Der Massenerhalt: Die Masse ändert sich im Laufe einer Reaktion
Name: Punktzahl: von 57 Note:
Testen Sie Ihr Wissen! Übungsprobe zu den Tertia-Themen und Säure-Base-Reaktionen Name: Punktzahl: von 57 Note: Für die folgenden Fragen haben Sie 60 Minuten Zeit. Viel Erfolg! Hilfsmittel: das ausgeteilte
Chemie. Leistungskurs. Beispielaufgabe A 4. Auswahlverfahren: Hessisches Kultusministerium. Landesabitur 2007 Beispielaufgaben
Hessisches Kultusministerium Landesabitur 27 Beispielaugaben Chemie Leistungskurs Beispielaugabe A 4 Auswahlverahren: Von vier Teilaugaben (A1 A4) müssen drei Teilaugaben bearbeitet werden. Einlese- und
1. Klausur: Veranstaltung Allgemeine und Anorganische Chemie
1. Klausur: Veranstaltung Allgemeine und Anorganische Chemie Geowissenschaften (BSc, Diplom), Mathematik (BSc, Diplom), Informatik mit Anwendungsfach Chemie und andere Naturwissenschaften 1. Klausur Modulbegleitende
Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen
Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14
Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie.
Thermodynamik 1 1.Hauptsatz der Thermodynamik Bevor man sich an diesen Hauptsatz heranwagt, muss man sich über einige Begriffe klar sein. Dazu gehört zunächst die Energie. Energie ist die Fähigkeit Arbeit
A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?
A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten
Schlüsselbegriffe. Übungsaufgaben:
I. Energetik chemischer Reaktionen 1) Licht als Energieform 2) Wärme als Energieform 3) Elektrizität als Energieform 4) Die Triebkraft chemischer Reaktionen Schlüsselbegriffe 1. "Licht als Energieform":
1.3. Fragen zu chemischen Reaktionen
1.3. Fragen zu chemischen Reaktionen Reaktionsgleichungen Ergänze die fehlenden Koeffizienten: a) PbI 4 PbI 2 + I 2 b) PbO 2 PbO + O 2 c) CO + O 2 CO 2 d) SO 2 + O 2 SO 3 e) N 2 + H 2 NH 3 f) N 2 + O 2
Reaktion und Energie
Reaktion und Energie Grundsätzliches Bei chemischen Reaktionen werden die Atome der Ausgangsstoffe neu angeordnet, d. h. Bindungen werden gespalten und neu geknüpft. Die Alltasgserfahrung legt nahe, dass
Zweiter Hauptsatz der Thermodynamik
Zweiter Hauptsatz der hermodynamik Spontan ablaufende Prozesse: Expansion von ideale Gasen Diffusion Wärmeaustausch Der 2. Hauptsatz der hermodynamik liefert Kriterien, mit deren Hilfe sich die Richtung
Thermodynamik & Kinetik
Thermodynamik & Kinetik Inhaltsverzeichnis Ihr versteht die Begriffe offenes System, geschlossenes System, isoliertes System, Enthalpie, exotherm und endotherm... 3 Ihr kennt die Funktionsweise eines Kalorimeters
Übungsaufgaben Chemie Nr. 3
Übungsaufgaben Chemie Nr. 3 22) Wie hoch ist die Molarität der jeweiligen Lösungen, wenn die angegebene Substanzmenge in Wasser gelöst und auf 200 ml aufgefüllt wurde? a) 58.44g NaCl (Kochsalz) b) 100
Aufgaben zur Thermodynamik und Kalorik
Aufgaben zur Thermodynamik und Kalorik Die Energie der Welt ist konstant. Die Entropie strebt einem Maximum zu. RUDOLF CLAUSIUS (1822-1888), Entdecker des 2. Hauptsatzes der Thermodynamik 1. Aufgaben zur
1. Klausur Allgemeine und Anorganische Chemie B.Sc. Chemie
1. Klausur Allgemeine und Anorganische Chemie B.Sc. Chemie Name: Vorname: Matrikel Nr.: 15.12.2010 Die Durchführung und Auswertung der 12 Aufgaben im zweiten Teil dieser Klausur mit je vier Aussagen (a-d)
Seite 1 von Standortbestimmung / Äquivalenzprüfung. Chemie. Freitag, 23. Mai 2014, Uhr
Seite 1 von 8 2. Standortbestimmung / Äquivalenzprüfung Chemie Freitag, 23. Mai 2014, 16.45-18.45 Uhr Dauer der Prüfung: 120 Minuten Erlaubte Hilfsmittel: Eine vom Dozenten visierte Formelsammlung, Ein
Lösung Sauerstoff: 1s 2 2s 2 2p 4, Bor: 1s 2 2s 2 2p 1, Chlor: 1s 2 2s 2 2p 6 3s 2 3p 5 Neon: 1s 2 2s 2 2p 6
1 of 6 10.05.2005 10:56 Lösung 1 1.1 1 mol Natrium wiegt 23 g => 3 mol Natrium wiegen 69 g. 1 mol Na enthält N A = 6.02 x 10 23 Teilchen => 3 mol enthalten 1.806 x 10 24 Teilchen. 1.2 Ein halbes mol Wasser
Chemische Thermodynamik ENTROPIE LÖSUNGEN
L-Üb29: Die Standardentropie der Edelgase steigt in regelmässiger Weise mit der molaren Masse. Diese schöne Regelmässigkeit kommt daher, dass die Edelgase nur Translationsenergie besitzen und keine Schwingungsenergie
Enthalpie H (Wärmeinhalt, Wärmefunktion)
Enthalpie H (Wärmeinhalt, Wärmefunktion) U = Q + W Innere Energie: Bei konstantem Volumen ablaufende Zustandsänderung (isochorer Prozess, dv=) W=p V= U=Q v Bei Zustandsänderung unter konstantem Druck (isobarer
A 2.6 Wie ist die Zusammensetzung der Flüssigkeit und des Dampfes eines Stickstoff-Sauerstoff-Gemischs
A 2.1 Bei - 10 o C beträgt der Dampfdruck des Kohlendioxids 26,47 bar, die Dichte der Flüssigkeit 980,8 kg/m 3 und die Dichte des Dampfes 70,5 kg/m 3. Bei - 7,5 o C beträgt der Dampfdruck 28,44 bar. Man
Folgende Punkte kommen jedoch nicht dran: Blindproben, Berechnungen mit der atomaren Masseneinheit in u! Räumlicher Bau von Molekülen!
Liebe Schüler der Klassen 9c/d Ihr findet in diesem Word Dokument Aufgaben zur quantitativen Analytik, die Ihr zur Vorbereitung auf die SA durchrechnen könnt. Auf Seite zwei seht ihr dann ebenso die Lösungen,
Molare Masse. 3. Reaktionsgleichung 2Cu + O 2 2CuO. 6. Molares Volumen. Stoffumsatz bei chemischen Reaktionen
Molare Masse 1. Wortgleichung Kupfer + Sauerstoff Kupfer(II)-oxid 2. Relative Atommassen Periodensystem relative Atommasse Cu 63,55 u relative Atommasse O 16,00 u relative Atommasse Cu 63,55 u 3. Reaktionsgleichung
Reaktionsgleichungen und was dahinter steckt
Reaktionsgleichungen und was dahinter steckt Prinzipien Bestehende Formeln dürfen nicht verändert werden. Bei Redoxreaktionen kann H, OH oder H 2 O ergänzt werden. Links und rechts vom Reaktionspfeil muss
Physikalische Chemie Praktikum. Thermodynamik: Verbrennungsenthalpie einer organischen Substanz
Hochschule Emden/Leer Physikalische Chemie Praktikum Vers. Nr. 18 Nov. 2016 Thermodynamik: Verbrennungsenthalpie einer organischen Substanz Allgemeine Grundlagen 1. Hauptsatz der Thermodynamik, Enthalpie,
Was haben wir gelernt?
Was haben wir gelernt? - Gesetze chemischer Reaktionen - Atommodell von Dalton - Elementsymbole - Die atomare Masseneinheit u - Die Avogadro-Zahl und deren Umkehrung - Von Massenverhältnissen zu Teilchenverhältnissen
Übung 3. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) Verständnis des thermodynamischen Gleichgewichts
Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen (Teil 2) adiabatische Flammentemperatur Verständnis des thermodynamischen Gleichgewichts Definition von K X, K c, K p Berechnung von K
Allgemeine Chemie für r Studierende der Zahnmedizin
Allgemeine Chemie für r Studierende der Zahnmedizin Allgemeine und Anorganische Chemie Teil 3 Dr. Ulrich Schatzschneider Institut für Anorganische und Angewandte Chemie, Universität Hamburg Lehrstuhl für
3.3. Fragen zur chemischen Thermodynamik
3.3. Fragen zur chemischen Thermodynamik Wärmekapazität und Energiediagramm (7) Im menschlichen Körper wir die mit der Nahrung aufgenommene Glucose C 6 H 1 O 6 mit dem eingeatmeten Luftsauerstoff O zu
Abschlussprüfung 2013 von Peter Senn und Sandro Brandenberger
Seite 1 von 15 Bachelor Zulassungsstudium Name:... Abschlussprüfung 2013 von Peter Senn und Sandro Brandenberger Fach: Chemie Datum: Freitag, den 28. Mai 2013 Zeit: 16:45 18:45 Dauer: 2h Maximale Punktzahl:
Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I
Institut für Anorganische Chemie Prof. Dr. R. Streubel Modul BCh 1.2 Praktikum Anorganische und Analytische Chemie I Vorlesung für die Studiengänge Bachelor Chemie und Lebensmittelchemie Im WS 08/09 Die
Bindung in Kohlenwasserstoffmolekülen
Bindung in Kohlenwasserstoffmolekülen Die Kohlenstoffbindungen im Vergleich Bindung Bindungsstärke Differenz Bindungslänge [kj/mol] [pm] H-H 430 74 C-H 413-17 109 C-C 348 154 C=C 614 + 266 134 C C 839
Umsatzberechnungen mit gelösten Stoffen und anderen Stoffgemischen
Umsatzberechnungen mit gelösten Stoffen und anderen Stoffgemischen Umsatzberechnungen, die nicht von Reinstoffen, sondern von ösungen ausgehen, lassen sich relativ einfach mit den Formeln c= n/v, M= m/n,
Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm
Energie bei chemischen Reaktionen Chemische Reaktionen sind Stoffumwandlungen bei denen Teilchen umgeordnet und chemische Bindungen gespalten und neu geknüpft werden, wodurch neue Stoffe mit neuen Eigenschaften
Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung
Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)
1. Standortbestimmung, Januar Chemie. Eine gedruckte und/oder eine persönlich erstellte und vom Dozenten visierte Formelsammlung,
1. Standortbestimmung, Januar 2015 Chemie Dauer der Prüfung: 90 Minuten Erlaubte Hilfsmittel: Eine gedruckte und/oder eine persönlich erstellte und vom Dozenten visierte Formelsammlung, Ein netzunabhängiger,
Arbeitsblatt: Energiegehalt von Holzkohle
Arbeitsblatt: Energiegehalt von Holzkohle Einleitung: Jede chemische Reaktion ist mit einem Energieumsatz verbunden. Dabei wird zwischen exothermen Reaktionen, bei denen Energie frei wird, und endothermen
Übungsblatt MWG und Spontanität 2 Seite 1 von 6
Übungsblatt MWG und Spontanität Seite 1 von 6 Aufgabe 1 Im Gleichgewicht H (g) + N (g) NH (g) mit 7.18. 10 - ka - betragen die Gleichgewichtsdrücke p(n ) 6.4 ka und p(nh ) 16.8 ka. Wie gross ist der Gleichgewichtsdruck
Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I Dr. Helge Klemmer
Mathematisch-Naturwissenschaftliche Grundlegung WS 2014/15 Chemie I 12.12.2014 Gase Flüssigkeiten Feststoffe Wiederholung Teil 2 (05.12.2014) Ideales Gasgesetz: pv Reale Gase: Zwischenmolekularen Wechselwirkungen
1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure
1.1 V 1 Überprüfung des Satzes von Hess mit der Reaktion von Calcium und Salzsäure In diesem Versuch soll der Satz von Hess (die umgesetzte Wärmemenge ist bei einer chemischen Reaktion unabhängig vom Weg)
Allgemeine Chemie I 2008/09 ÜBUNGSPRÜFUNG. Prof. J. Hulliger
Allgemeine Chemie I 2008/09 ÜBUNGSPRÜFUNG Prof. J. Hulliger 15.10.08 Aufgabe 1 (1 Punkt) Vervollständigen Sie nachstehende Reaktionen, (stöchiometrische Koeffizienten, Pfeile, Zustände wie ionisch, aq,
PC I Thermodynamik J. Stohner/M. Quack Sommer Übung 12
PC I Thermodynamik J. Stohner/M. Quack Sommer 2006 Übung 12 Ausgabe: Dienstag, 20. 6. 2006 Rückgabe: Dienstag, 27. 6. 2006 (vor Vorlesungsbeginn) Besprechung: Freitag, 30.6./Montag, 3.7.2006 (in der Übungsstunde)
Hinweise für den Schüler. Von den 2 Prüfungsblöcken A und B ist einer auszuwählen.
Abitur 2003 Chemie Gk Seite 2 Hinweise für den Schüler Aufgabenauswahl: Bearbeitungszeit: Von den 2 Prüfungsblöcken A und B ist einer auszuwählen. Die Arbeitszeit beträgt 210 Minuten, zusätzlich stehen
Thermochemie. Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2
Thermochemie Energie ist die Fähigkeit, Arbeit zu leisten. E pot = m g h E kin = ½ m v 2 Arbeit ist das Produkt aus wirkender Kraft F und Weglänge s. w = F s 1 J = 1 Nm = 1 kgm 2 /s 2 Eine wirkende Kraft
Orientierungstest für angehende Industriemeister. Vorbereitungskurs Chemie
Orientierungstest für angehende Industriemeister Vorbereitungskurs Chemie Weiterbildung Technologie Erlaubte Hilfsmittel: Periodensystem der Elemente Taschenrechner Maximale Bearbeitungszeit: 60 Minuten
Prüfung Allgemeine Chemie für Verfahrenstechniker (SS 2002)
ChVT 2002/1 Prüfung Allgemeine Chemie für Verfahrenstechniker (SS 2002) Aufgabe 4: Benzin soll vereinfacht nur aus Oktan (C 8 H 18 ) bestehen. a) Wie viel Gramm Wasser (H 2 O) und b) b) wie viel Liter
Grundlagen der Chemie für Nichtchemiker AUFGABENSAMMLUNG
AUFGABENSAMMLUNG 1. Chemische Grundlagen: Masse -Berechnungen 1-1. Berechnen Sie die molaren Massen folgender Stoffe: a)caco 3 ; b)caso 4 2H 2 O; c)agcl; d)al 2 O 3 ; e)phenol C 6 H 5 OH; f)magnesiumammoniumphosphat-
Chemie. Schwerpunktfach. Bitte lesen Sie die folgenden Hinweise sorgfältig durch bevor Sie mit dem Lösen der Aufgaben beginnen.
Maturitätsprüfung 2006 Klasse 4B + 4AB Gymnasium Muttenz Chemie Schwerpunktfach Name: Vorname: Klasse: Bitte lesen Sie die folgenden Hinweise sorgfältig durch bevor Sie mit dem Lösen der Aufgaben beginnen.
a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)
Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche
Klausur : Allgemeine und Anorganische Chemie. Name...Fachrichtung... Matr.-Nr...
Klausur : Allgemeine und Anorganische Chemie Mo. 1.03.11 : 13.30 16.30 Uhr 1 Beantworten Sie maximal zehn Fragen. Für jede Frage gibt es maximal 10 Punkte; die Klausur gilt als bestanden, wenn 50 Punkte
Name: Matrikelnummer: Geburtsdatum: Hilfsmittel: Formelsammlung (beigefügt), Periodensystem (beigefügt), Taschenrechner
Chemie für Physiker B. Sc. Physikalische Technik XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX Prof. Dr. Thomas Jüstel / Stephanie Möller M. Sc. Name: Matrikelnummer: Geburtsdatum: Denken Sie an eine korrekte Angabe
Schwerpunktfach Biologie / Chemie Teil: Chemie
Gruppe / Kandidat/in Nr... Name / Vorname:.. Schwerpunktfach Biologie / Chemie Teil: Chemie Verfasser: Richtzeit: Hilfsmittel: Hinweise: R.Guenin, J.Lipscher und S.Steiner 120 Minuten Eine Kopie des Periodensystems
Hausarbeit. Das Fällungs- und Löslichkeitsgleichgewicht. über. von Marie Sander
Hausarbeit über Das Fällungs- und Löslichkeitsgleichgewicht von Marie Sander Inhaltsverzeichnis 1. Einstieg in das Thema 2. Einflüsse auf das Löslichkeitsgleichgewicht - Das Prinzip von Le Chatelier 3.
Die Innere Energie U
Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.
Allgemeine Chemie für r Studierende der Medizin
Allgemeine Chemie für r Studierende der Medizin Allgemeine und Anorganische Chemie Teil 4+5 Dr. Ulrich Schatzschneider Institut für Anorganische und Angewandte Chemie, Universität Hamburg Lehrstuhl für
7.2 Energiebilanz bei chemischen Stoffumwandlungen
7.2 Energiebilanz bei chemischen Stoffumwandlungen Betrachtung eines Reaktionsgefäßes mit eintretenden Edukten und austretenden Produkten am Beispiel der Verbrennung eines Brennstoffes mit Luft (kinetische
Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E
Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 [email protected] www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2014/2015 Wie zählen wir Mengen in der Chemie? Stefan
LN Vortermin SS 02. PC Teil
LN Vortermin SS 02 PC Teil 1. 15g Magnesium werden mit Salzsäure im Überschuß versetzt. Folgende Standardbildungsenthalpien bei 198K sind dazu gegeben: Mg 2+ -466,85 kj/mol Cl - aq -167,16 kj/mol a) Berechnen
Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen
Chemie für Biologen Vorlesung im WS 200/05 V2, Mi 10-12, S0 T01 A02 Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen (Teil : 03.11.200) MILESS: Chemie für Biologen 66 Chemische
Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie
Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion
* Die Gesamtnote im Bereich Naturwissenschaften setzt sich aus den Noten in den drei Prüfungsteilen (Biologie, Chemie, Physik) zusammen.
Eidgenössisches Departement des Innern EDI Schweizerische Maturitätskommission SMK Schweizerische Maturitätsprüfung Prüfung gemäss neuem Recht (Prüfungsverordnung, Stand am 1. Januar 2012) Grundlagenfach
Chemie Zusammenfassung KA 2
Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen
Übung zu den Vorlesungen Organische und Anorganische Chemie
Übung zu den Vorlesungen Organische und Anorganische Chemie für Biologen und Humanbiologen 12.11.08 1. Stellen sie die Reaktionsgleichung für die Herstellung von Natriumsulfid aus den Elementen auf. Wieviel
Übungen zur VL Chemie für Biologen und Humanbiologen Was wird gebildet, wenn Natrium oxidiert wird und Chlor reduziert wird?
Übungen zur VL Chemie für Biologen und Humanbiologen 12. 11.2010 1. Was wird gebildet, wenn Natrium oxidiert wird und Chlor reduziert wird? Natrium gibt bei der Oxidation ein Elektron ab und bildet damit
2. Übung Grundlagen der Hauptgruppenchemie AC02
Allgemeine und Anorganische Chemie 2. Übung Grundlagen der Hauptgruppenchemie AC02 Aufgabe 1: Vervollständigen und gleichen Sie die folgenden Gleichungen aus: a) CaO + H 2 O Ca(OH) 2 b) Al 2 O 3 + 6 H
Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 2,
Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr., 6.04.11 1. Sie legen 100 ml einer 0, mol/l Natronlauge vor. Als Titrant verwenden Sie eine 0,8 mol/l Salzsäure. Berechnen
PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5
Musterlösung Übung 5 ufgabe 1: Enthalpieänderungen bei Phasenübergängen Es ist hilfreich, zuerst ein Diagramm wie das folgende zu konstruieren: (Die gesuchten Werte sind in den umrandeten oxen.) sub X
c C 2 K = c A 2 c B 2mol /l 2 0,5mol /l 2 4 mol /l K =4l /mol
Berechnungen zum Massenwirkungsgesetz 1/13 Jakob 2010 Fall 1a: Gegeben: Gleichgewichtskonzentrationen aller Stoffe; Gesucht: Gleichgewichtskonstante Die Reaktion 2A + B 2C befindet sich im Gleichgewicht.
Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6
Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie
Rechnen mit Gasen (in Anlehnung an Aufgaben aus der Abschlussprüfung Teil 1)
Rechnen mit Gasen (in Anlehnung an Aufgaben aus der Abschlussprüfung Teil 1) 1. Wie viel Liter Methan ( 4 ) von 20 und 1000 mbar entstehen bei der Umsetzung von 50 g Aluminiumcarbid (Al 4 ) mit Wasser?
T6 - Verbrennungswärmen
T6 - Verbrennungswärmen 1. Problemstellung: Die molaren Standardbildungs- und Standardverbrennungsenthalpien und V ür n-exan und Cyclohexan, zweier verwandter Strukturen, sind zu bestimmen. Die unterschiedlichen
Chemie für Geowissenschaftler. SSem Wiederholungsklausur. Datum
Chemie für Geowissenschaftler SSem 2009 Wiederholungsklausur Datum 15.10.2009 Name: Vorname: Matr.-Nr.: Erreichte Punktzahl: 1. Am Ozeanboden wird Methangas durch sulfat-reduzierende Bakterien in Hydrogen-carbonat
Homogenes Gleichgewicht
Knoch, Anastasiya Datum der Durchführung: Petri, Guido 08.12.2015 (Gruppe 11) Datum der Korrektur: 02.02.2016 Praktikum Physikalische Chemie I. Thermodynamik Homogenes Gleichgewicht 1. Aufgabenstellung
Lösungen zum Arbeitsblatt: y = mx + b Alles klar???
I. Zeichnen von Funktionen a) Wertetabelle x -4-3 - -1 0 1 3 4 y =,5x -10-7,5-5 -,5 0,5 5 7,5 10 y = - x,7 1,3 0,7 0-0,7-1,3 - -,7 3 y = x 1,5-9,5-7,5-5,5-3,5-1,5 0,5,5 4,5 6,5 y = - 1 x + 4 3,5 3,5 1,5
Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 10
Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 10 1. Berechnen Sie die Viskosität von Benzoldampf bei 0 C, 0 C und 900 C, verwenden sie dabei einen mittleren Stoßquerschnitt von σ 0,88 nm.
Klausur zur Vorlesung "Allgemeine Chemie " am
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Σ Klausur zur Vorlesung "Allgemeine Chemie " am 08.02.2007 Name: Vorname: Matr.-Nr. Studiengang: Platz.-Nr. Hinweise für die Bearbeitung der Aufgaben 1) Hilfsmittel außer
Bearbeiten Sie eines der beiden Themen! Thema I:
Bearbeiten Sie eines der beiden Themen! Thema I: Chlor kommt in der Natur in verschiedenen Verbindungen vor. Die wichtigsten Chlorverbindungen in der Natur sind Chloride. Natriumchlorid zum Beispiel ist
Anorganische-Chemie. Dr. Stefan Wuttke Butenandstr. 11, Haus E, E
Dr. Stefan Wuttke Butenandstr. 11, Haus E, E 3.039 [email protected] www.wuttkegroup.de Anorganische-Chemie Grundpraktikum für Biologen 2016 Wie zählen wir Mengen in der Chemie? Stefan
Organische Chemie. Schreiben Sie bitte Ihre Lösungen ausschließlich auf diese Aufgabenblätter!
Organische Chemie Name: Fachprüfung Vorname: 11. März 2002, 8 00-10 00 h Matr.-Nr.: Raum 204 + 206 Schreiben Sie bitte Ihre Lösungen ausschließlich auf diese Aufgabenblätter! Jede Aufgabe wird mit 10 Punkten
Klausur zur Vorlesung "Grundzüge der Chemie" für Studierende des Maschinenbaus BITTE AUSFÜLLEN BITTE HALTEN SIE IHREN STUDENTAUSWEIS BEREIT
1 PUNKTZAL NTE Klausur zur Vorlesung "Grundzüge der hemie" für Studierende des Maschinenbaus Termin: 17. Juni 2003 rt: Z 10 Zeit: 9.30-11.30 Uhr Dauer: 120 Minuten BITTE AUSFÜLLEN BITTE ALTEN SIE IREN
2. Chemische Reaktionen und chemisches Gleichgewicht
2. Chemische Reaktionen und chemisches Gleichgewicht 2.1 Enthalpie (ΔH) Bei chemischen Reaktionen reagieren die Edukte zu Produkten. Diese unterscheiden sich in der inneren Energie. Es gibt dabei zwei
Physikalische Chemie in der Schule
Universität Kassel, Grundpraktikum Physikalische Chemie Studiengang Lehramt Chemie Physikalische Chemie in der Schule I. Anfangsunterricht: Die Merkmale der chemischen Reaktion (Lit. Elemente chemie I
Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1. Bestimmung der Verbrennungsenthalpie
Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1 Bestimmung der Verbrennungsenthalpie Praktikumsaufgaben 1. Ermittlung der Kalorimeterkonstante durch Verbrennung von Benzoesäure. 2. Bestimmung der
Vorlesung Chemie für Biologen: Klausur 1 WS Sa
1 Vorlesung Chemie für Biologen: Klausur 1 WS 02-03 Sa 07.12.02 Name:... Ihre Unterschrift:... Vorname:... Matrikel-Nr.:... Studienbeginn: SS: WS:...... Tutor der Übungen: (Dort Klausureinsicht.) Punkteschlüssel
3.2. Aufgaben zu Säure-Base-Gleichgewichten
.. Aufgaben zu Säure-Base-Gleichgewichten Aufgabe : Herstellung saurer und basischer Lösungen Gib die Reaktionsgleichungen für die Herstellung der folgenden Lösungen durch Reaktion der entsprechenden Oxide
Abi 1999 Chemie Gk Seite 1
Abi 1999 Chemie Gk Seite 1 Abi 1999 Chemie Gk Seite 2 Hinweise für den Schüler Aufgabenauswahl: Von den 2 Prüfungsblöcken A und B ist einer auszuwählen. Bearbeitungszeit: Die Arbeitszeit beträgt 210 Minuten,
Physikalische Chemie 0 Klausur, 22. Oktober 2011
Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden
Klausur Physikalische Chemie für TUHH (Chemie III)
07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6
ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14,
ÜBUNGEN ZUR VORLESUNG Physikalische Chemie I (PC I) (Prof. Meerholz, Hertel, Klemmer) Blatt 14, 12.02.2016 Aufgabe 1 Kreisprozesse Mit einem Mol eines idealen, monoatomaren Gases (cv = 3/2 R) wird, ausgehend
Studienbegleitende Prüfung Modul 12 Anorganisch-Chemisches Grundpraktikum SS
Studienbegleitende Prüfung Modul 12 Anorganisch-Chemisches Grundpraktikum SS 2003 20.10.2003 Name: Vorname: Matrikelnummer: Fachsemester: Punkte: Note: Frage 1 Bei 25 C lösen sich 0,02869 g CuBr in einem
Wasser à. Nachweis: Wasser ist
Arbeitsblatt zu Kap. 5. Atome Bausteine der Stoffe 5.1 Elemente und Verbindungen Elektrolyse des Reinstoffes Wasser Wasser à Nachweis: Wasser ist Stoffeinteilung 5.2 Von den Elementen zu den Atomen Synthese
Vorlesung Anorganische Chemie
Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Login Prüfungsanmeldung Nur Bachelor! https://www.verwaltung.uni-freiburg.de/qis E-Mail Frau Jones: [email protected]
2. Standortbestimmung / Äquivalenzprüfung. Chemie. Mittwoch, 20. Mai 2015, 18.40-20.10 Uhr
Seite 1 von 6 2. Standortbestimmung / Äquivalenzprüfung Chemie Mittwoch, 20. Mai 2015, 18.40-20.10 Uhr Dauer der Prüfung: 90 Minuten Erlaubte Hilfsmittel: Eine gedruckte und/oder eine persönlich erstellte
Spezialfälle. BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz. bei V, n = konstant: p = const.
Spezialfälle BOYLE-MARIOTT`sches Gesetz p V = n R T bei T, n = konstant: p V = const. GAY-LUSSAC`sches Gesetz p V = n R T bei V, n = konstant: p = const. T Druck Druck V = const. Volumen T 2 T 1 Temperatur
Schriftliche Abschlussprüfung Chemie
Sächsisches Staatsministerium für Kultus Schuljahr 2005/2006 Geltungsbereich: für Klassenstufe 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Chemie Realschulabschluss
NATURWISSENSCHAFTEN. Grundlagenfach Bereich. Und nun wünschen wir Ihnen viel Erfolg!
Gruppe / Kandidat/in Nr:... Name/Vorname:... Grundlagenfach Bereich Teil: NATURWISSENSCHAFTEN Chemie Verfasser: Richtzeit: Hilfsmittel: Hinweise: R. Guenin, J. Lipscher, S. Steiner 80 Minuten (von total
