Mathematik mathbu.ch
|
|
|
- Gretel Klein
- vor 9 Jahren
- Abrufe
Transkript
1 Mathematik mathbu.ch 1. Serie Bestimmungen: Die Prüfungsdauer beträgt 10 Minuten. Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner. Jede richtig gelöste Aufgabe wird mit Punkten bewertet. Der Lösungsweg muss bei jeder Aufgabe eindeutig ersichtlich sein. Berechnungen (Berechnungsterme, algebraische Ausdrücke, Operatordarstellungen), Überlegungsfiguren etc. gehören auf das abzugebende Blatt. Berechnungen, Überlegungsfiguren etc. auf Notizpapier werden nicht bewertet. Einheiten bei Resultaten müssen angegeben werden. Konstruktionen sind vollständig durchzuführen (z.b. Tangentenkonstruktion mit Berührungspunkten) und kurz zu beschreiben. Falsche Lösungsansätze und ungültige Ergebnisse müssen deutlich als solche gekennzeichnet werden. Jede Aufgabe ist mit ihrer Nummer zu versehen. Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Die Prüfungsarbeiten müssen mit Tinte, Kugelschreiber oder Filzstift geschrieben werden. Geometrische Konstruktionen sind mit Bleistift auszuführen. Aufgabe 1: a) Welche natürlichen Zahlen können für x eingesetzt werden, damit x 4 kleiner als 3 1 wird? b) Vereinfache soweit als möglich: a a 8a + a 4 a+ 4 a 16 Aufgabe : a) Welche Zahlen erfüllen die folgende Gleichung? Nenne die Lösungsmenge. 4x+ 13 ( x + 3) = b) Herr Müller zieht die 100 Franken für die Tickets zum Fussballmatch von seinen 1 Schülerinnen und Schülern ein. Er bekommt nur 0er und 50er Noten, insgesamt 63 Noten. Wie viele 0er und 50er Noten sind es? Abschlussprüfung 010: Mathematik 1. Serie Seite 1 von 3
2 Aufgabe 3: Ein Fussballclub hat beschlossen, 7 neue Fussbälle für 36 Fr. pro Stück zu kaufen. Linus verhandelt mit dem Lieferanten und bekommt einen Rabatt von 0% und dann noch 4% Skonto, wenn er die Rechnung innerhalb von 10 Tagen bezahlt. Wie viele zusätzliche Bälle könnte Linus mit dem eingesparten Betrag kaufen? Aufgabe 4: Nr. Nr. 3 Nr. 4 Setze die obige Figuren-Folge nach links und nach rechts um je einen Schritt fort (Zeichnung auf das Lösungsblatt). Halte die Ergebnisse protokollarisch in einer Tabelle der folgenden Art fest. Übertrage diese ebenfalls auf das Lösungsblatt. Figur Nr. 1 Nr. Nr. 3 Nr. 4 Nr. 5 Anzahl Zuwachs Welche Aussage kann man über den Zuwachs machen? Nenne zusätzlich die Anzahl der Elemente in der Figur 03. Nenne einen Term, mit dessen Hilfe sich die Anzahl der Elemente in der n-ten Figur berechnen lässt. Aufgabe 5: a) Konstruiere einen Rhombus (Raute) aus der Diagonale e = AC = 8.5 cm und dem Winkel CDA = δ = 1. b) In der nebenstehenden Skizze erkennt man das Quadrat MCED sowie ein grösseres ABCD, in das ein Inkreis eingezeichnet ist. Welches ist das Verhältnis zwischen dem Flächeninhalt des kleinen Quadrates MCED und jenem des Kreises? D E C M A B Abschlussprüfung 010: Mathematik 1. Serie Seite von 3
3 Aufgabe 6: Eine Gerade g geht durch den Punkt (1/0) und hat die Steigung m = 1.5. Diese Gerade g wird dann am Punkt (0/1) gespiegelt. Durch die Spiegelung entsteht eine Gerade g*. a) Zeichne die Gerade g, das Spiegelungszentrum und die Bildgerade g* in einem Koordinatensystem auf. b) Erstelle zu g und zu g* Wertetabellen. c) Stelle zu g und zu g* die Geradengleichungen auf. d) Kommentiere in einem Satz die wichtigste Eigenschaft der Geraden g* im Bezug zu g. Aufgabe 7: Vereinfache soweit als möglich: x ax+ + 6ax+ 9a ( x+ + 1 ) ( x x 9a x 1 ) + 5a Aufgabe 8: a) Beim Busbetrieb Aarau gibt es eine Ringlinie durch die Quartiere Goldern und Zelgli, die in beiden Richtungen je im Halbstunden-Takt befahren wird. Die Linie 5 befährt die Ringstrecke im Uhrzeigersinn mit einer Fahrzeit von 3 Minuten und startet am Bahnhof jeweils zu den Minuten.1 und.4. Die Linie 7 befährt die Ringstrecke im Gegenuhrzeigersinn mit einer Fahrzeit von ebenfalls 3 Minuten und startet am Bahnhof, gegenüber der Linie 5 um eine Viertelstunde versetzt, jeweils zu den Minuten.7 und.57. Berechne einen Kreuzungs-Zeitpunkt, wenn man von gleichbleibenden mittleren Fahrgeschwindigkeiten ausgeht. Welche Aussage kann man zu Kreuzungs-Orten machen? Begründe deine Aussage. b) Lisa besitzt die unten skizzierte Blumenvase. Sie stellt eine Sonnenblume mit einem 91 cm langen geraden Stängel so schräg ein, dass ein möglichst grosser Teil des Stängels unter Wasser ist (ohne ihn jedoch zu verbiegen). Wie weit schaut die Sonnenblume oben aus der Vase? Ansicht von der Seite 3 cm 3 cm Ansicht von oben 3 cm 3 cm 15 cm 3 cm 0 cm 30 cm 3 cm 0 cm 0 cm Abschlussprüfung 010: Mathematik 1. Serie Seite 3 von 3
4 Abschlussprüfungen an den Bezirksschulen 010 Mathematik mathbu.ch 1. Serie Lösungen, Teillösungen. 1. a) L = { 1,, 3 } oder L = { 0, 1,, 3 } 1 P x < 10 b) 3 a+ 4 Term gleichnamig gemacht 1 P. a) L = {} 1 P Nennerfreie Gleichung vereinfacht, z.b. 4 x + 1= 4x+ 13 b) Es sind 35 0er Noten und 8 50er Noten 1 P 3. 1 Bälle P 93 Bälle 1.5 P Nettopreis für 7 Fussbälle Fr oder für einen Fussball Fr P 4. Zeichnungen und Tabelle (Anzahl: 8, 1, 16, 0, 4; Zuwachs: je 4) Der Zuwachs ist stets Elemente (Nr. 03) (n+) - n oder 4n+4 5. a) Rhombus mit Konstruktionsbericht 1 P (mit Ortsbogen oder mit Parallelen zur Winkelhalbierenden, oder mit Winkelberechnung, oder mit Mittelsenkrechten u. Winkelverschiebung) Nur Ortsbogen oder nur Mittelsenkrechte auf Diagonale e b) : π oder 1 : (π/) 1 P r : (πr ) ungekürzt 6. a) g und g* mit Spiegelpunkt (0/1) korrekt konstruiert b) Beide Wertetabellen c) g: y = 1.5x und g*: y = 1.5x d) Die Geraden g* und g haben die gleiche Steigung oder Die Geraden sind parallel 7. P a Linker Summand vereinfacht x+ Zähler rechter Summand vereinfacht x+ 5a Nenner rechter Summand vereinfacht x+ je Abschlussprüfung 010: Mathematik 1. Serie Seite 1
5 8. a) Jeder Bus der beiden Linien 5 und 7 trifft auf seiner Rundstreckenfahrt zweimal auf einen Bus der anderen Ringlinie erstmals nach 4 Minuten, zum zweiten Mal 19 Minuten nach dem Start. Die Begegnungen geschehen also alle 15 Minuten - zu den Minuten x.01, x.16, x.31 und x.46. Ein Begegnungs-Zeitpunkt ist richtig genannt. Die Kreuzungsorte liegen beide relativ nahe beim Startpunkt, also nahe beim Bahnhof. Absolute Angaben über den Ort kann man nicht machen, weil die Länge der Rundstrecke nicht bekannt ist. Eine relative Angabe kann man machen: die Treffpunkte teilen die Strecke im Verhältnis 4 : 19 oder angenähert im Verhältnis 1 : 5. Die erste Begegnung findet statt, wenn etwa 1/6 der Strecke zurückgelegt ist, die zweite nach ca. 5/6 der Strecke. Eine (begründete) Aussage im Sinne der obigen Überlegungen ist dargestellt. b) 40 cm 1 P Stiellänge im Gefäss Erweiterte Lösungshinweise und Notenskala ab ca Uhr einsehbar auf Abschlussprüfung 010: Mathematik 1. Serie Seite
Abschlussprüfungen an den Bezirksschulen des Kantons Aargau
estimmungen: Jede richtig gelöste Aufgabe wird mit Punkten bewertet. Der Lösungsweg muss bei jeder Aufgabe eindeutig ersichtlich sein. erechnungen (erechnungsterme, algebraische Ausdrücke, Operatordarstellungen,
Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.
KANTON AARGAU Abschlussprüfung der Bezirksschule Aargau 2013 Mathematik 1. Serie Bestimmungen: Die Prüfungsdauer beträgt 120 Minuten. Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.
Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Maximale Punktzahl Erreichte Punktzahl 3 3 3 3 3 3 18 Note Ø Die Algebra 2-Prüfung umfasst 6 Aufgaben. Ø Als Hilfsmittel ist ein nicht algebrafähiger und
Gestalterische, Gewerbliche, Gesundheitlich-Soziale und Technische Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 006 Serie B Teil Fach: Teil Zeit: 45 Minuten Hilfsmittel: - Geometriewerkzeuge, kein Taschenrechner Vorschriften: - Der Lösungsvorgang muss vollständig ersichtlich sein. - Ungültiges ist
Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:
St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe
St.Gallische Kantonsschulen Aufnahmeprüfung 010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 3 4 5 6 7 8 9 10 11 1 13 Punkte Löse
Name:... Vorname:...
Zentrale Aufnahmeprüfung 2012 für die Kurzgymnasien des Kantons Zürich Mathematik 2./3. Sekundarschule Bisheriges Lehrmittel Bitte zuerst auszufüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90
Grundwissen 7 Bereich 1: Terme
Bereich 1: Terme Termwerte 1.1 S1 T (1) = 6 T (2) = 7 T ( 2) 3 = 12 1 4 = 12, 25 1.2 S1 m 2 0, 5 0 1 2 1 3 6 6 2 A(m) 7 11 5 0 1 Setzt man die Zahl 5 ein, so entsteht im Nenner die Zahl 0. Durch 0 zu teilen
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (2. Sek)
Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2016 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht
Übertrittsprüfung 2014
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
Mathematik, 2. Sekundarschule
Zentrale Aufnahmeprüfung 2010 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name: Vorname:... Prüfungsnummer:
Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total Maximale Punktzahl Erreichte Punktzahl 6 6 6 4 6 6 4 6 44 Note Die Prüfung Algebra 2 umfasst 8 Aufgaben. Als Hilfsmittel ist ein nicht algebrafähiger
Zentrale Aufnahmeprüfung 2014 für die Handelsmittelschulen des Kantons Zürich
Zentrale Aufnahmeprüfung 2014 für die Handelsmittelschulen des Kantons Zürich Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle deine Lösungen in dieses Heft schreiben. Wenn
Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort:
Musterprüfung Gymnasiale Maturitätsschulen Name/Vorname: Wohnort: Mathematik schriftlich Zeit: 120 Minuten Hinweise: Schreibe auf jedes Blatt deinen Namen. Löse alle Aufgaben direkt auf den Prüfungsblättern.
Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)
(Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie
Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule (Neues Lehrmittel, Erprobungsversion) Von der Kandidatin oder vom Kandidaten
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte
Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT
Sekundarschule 4. Klasse Niveau P Name Vorname Schuljahr 2005006 Datum der Durchführung Donnerstag, 17.11.05 ORIENTIERUNGSARBEIT Sekundarschule Mathematik Niveau P (M6) Lies zuerst Anleitung und Hinweise
PROBEABITUR Mai 2004 MATHEMATIK. MITTLERES NIVEAU II. 135 Minuten
PROBEABITUR Mai 2004 MATHEMATIK MITTLERES NIVEAU II. 135 Minuten Es stehen Ihnen 135 Minuten Arbeitszeit zur Verfügung. Nach Ablauf dieser Zeit müssen Sie die Arbeit beenden. Die Reihenfolge der Bearbeitung
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Lineare Funktionen und Gleichungssysteme, GSBM 2014
Lineare Funktionen und Gleichungssysteme, GSBM 2014 Prüfungsdauer Hilfsmittel Bedingungen 80 Minuten Nicht programmierbarer Taschenrechner, ohne CAS! Dokumentieren Sie den Lösungsweg sauber. Der Lösungsweg
Aufnahmeprüfung Mathematik
Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei
MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben!
KANTONALE PRÜFUNG 2015 für den Übertritt in eine Maturitätsschule auf Beginn des 10. Schuljahres GYMNASIEN DES KANTONS BERN MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! Die Aufgabenserie umfasst
Repetition Mathematik 8. Klasse
Repetition Mathematik 8. Klasse. Berechne schrittweise mit einem korrekten Lösungsweg: + 3 3 4 : 3. Berechne schrittweise mit einem korrekten Lösungsweg: 0 + 0 b.) 3 4 + 3 5 c.) 9 8 8 9 5 3. Berechne schrittweise
St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium. Note:
Kand.-Nummer St.Gallische Kantonsschulen Aufnahmeprüfung 2006 Gymnasium Mathematik ohne Taschenrechner Dauer 90 Minuten Name: Vorname: Bisherige Schule: Klasse: Schwerpunktfach: Aufgabe 2 3 4 5 6 7 8 9
- Zeichenutensilien, kein Taschenrechner, keine Formelsammlung
Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel (alt): Arithmetik und Algebra (Hohl) Fach Mathematik Teil 1 Serie D Dauer 45 Minuten
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E2 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Mathematik, 3. Sekundarschule
Zentrale Aufnahmeprüfung 2010 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name: Vorname:... Prüfungsnummer:
Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total Maximale Punktzahl Erreichte Punktzahl 6 3 7 6 4 6 8 6 46 Note Die Prüfung Algebra 1 umfasst 8 Aufgaben. Als Hilfsmittel ist ein nicht algebrafähiger
Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Maximale Punktzahl Erreichte Punktzahl 3 3 3 3 3 3 18 Note Die Prüfung Algebra 2 umfasst 6 Aufgaben. Als Hilfsmittel ist ein nicht algebrafähiger und nicht
MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK. 22. Juni :30 Uhr 11:00 Uhr. Platzziffer (ggf. Name/Klasse):
MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2016 MATHEMATIK 22. Juni 2016 8:0 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen
Montag, 31. August 2015, Uhr
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 2 Mit Taschenrechner Prüfungsbedingungen: Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»
Mathematik. Name, Vorname:
Kantonsschule Rychenberg Fachmittelschule Aufnahmeprüfung 2010 Mathematik Name, Vorname: Nr.: Zeit: 90 Minuten erlaubte Hilfsmittel: Taschenrechner aus der Sekundarschule, also weder programmierbar noch
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf dem Lehrmittel: «Mathematik Sekundarstufe I» Serie: B1 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
Jahresprüfung Mathematik. 1. Klasse / KSR. Donnerstag, 27. Mai Uhr
Erreichte Punktezahl: / Note: (Maximale Punktezahl: 68) Jahresprüfung 2010 Mathematik 1 Klasse / KSR Donnerstag, 27 Mai 2010 1310-1440 Uhr Das GROSSGEDRUCKTE: Unbedingt zuerst durchlesen! - Prüfung auf
KANTONSSCHULE TROGEN. Name. Vorname. Bisherige Schule. Klasse. Erreichte Punktzahl. Note. Kantonsschule Trogen. Aufnahmeprüfung BFS W / FMS
KANTONSSCHULE TROGEN Name Vorname Bisherige Schule Klasse Erreichte Punktzahl Note Kantonsschule Trogen Aufnahmeprüfung BFS W / FMS MATHEMATIK ohne Taschenrechner / September 2013 Mathematik Teil 1 Ohne
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Lösungen Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 4 5 6 6 6 6 33 Die Prüfung dauert
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel «Mathematik Sekundarstufe I» Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Jahresprüfung Mathematik. 1. Klassen Kantonsschule Reussbühl Luzern. Dienstag, 26. Mai 2015
Jahresprüfung Mathematik 1. Klassen Kantonsschule Reussbühl Luzern Dienstag, 26. Mai 2015 Zeit: Hilfsmittel: 90 Minuten (13.10-14.40 Uhr) Taschenrechner (TI-30) maximum: 75 Notenmassstab: 68 ergeben die
Aufnahmeprüfung Juni 2017 Mathematik
Berufsmaturitätsschulen des Kantons Aargau Aufnahmeprüfung Juni 2017 Kandidaten Nr.: Name: Vorname: Geburtsdatum: / / Erreichte Punkte / 20 Note: Examinator: Koexaminator: Allgemeine Hinweise: Dauer der
Mathematik Aufnahmeprüfung 2013 Profile m,n,s
Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: A1 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2015 Teil 1 Ohne Taschenrechner Prüfungsbedingungen Der Taschenrechner darf nicht verwendet werden. Die Aufgaben sind direkt unterhalb der Aufgabe zu
4. Mathematikschulaufgabe
.0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.
MATHEMATIK 7. Schulstufe Schularbeiten
MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 2. April 2014 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2014 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Maximale Punktzahl Erreichte Punktzahl 3 3 3 3 3 3 18 Note Ø Die Algebra 1-Prüfung umfasst 6 Aufgaben. Ø Als Hilfsmittel ist ein nicht algebrafähiger und
Pädagogische Maturitätsschule Kreuzlingen Aufnahmeprüfung Januar MATHEMATIK Teil A
Pädagogische Maturitätsschule Kreuzlingen Aufnahmeprüfung Januar 2008 MATHEMATIK Teil A Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken, die einzelnen Schritte müssen sauber und übersichtlich
Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 8. Klasse
Kantonale Prüfungen 2012 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2016 Mathematik (3. Sek)
Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2016 Kurzgymnasium (Anschluss 3. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht
Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.
Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Mathematik Aufnahmeprüfung 2013 Profile m,n,s
Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel «Mathematik Sekundarstufe I» Serie: A1 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich
Kanton Zürich Bildungsdirektion Aufnahmeprüfung 2017 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Dauer: 90 Minuten Serie: B2 basierend auf dem Lehrmittel «Mathematik Sekundarstufe I»
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz
2. Mathematikschulaufgabe
1.0 Lineare Funktionen: 1.1 Die Gerade g 1 hat die Steigung m 1 = - 0,5 und verläuft durch den Punkt P 1 (-1/-1,5). Bestimme die Gleichung der Geraden g 1. 1.2 Die Gerade g 2 steht auf der Geraden g 1
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2016 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf dem Lehrmittel: «Mathematik Sekundarstufe I» Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2015 MATHEMATIK
Berufsfachschulen Graubünden 8. April 2015 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2015 MATHEMATIK Name:. Vorname:.. Zeitrahmen 90 Minuten (Teil 1: 5 Minuten/Teil 2: 5 Minuten) Hinweise: Löse die Aufgaben auf
Unterrichtsreihe zur Parabel
Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis
Zentrale Aufnahmeprüfung 2014 für die Kurzgymnasien des Kantons Zürich
Zentrale Aufnahmeprüfung 2014 für die Kurzgymnasien des Kantons Zürich Bitte zuerst ausfüllen: Name:........................ Vorname:..................... Prüfungsnummer:............... Du hast 90 Minuten
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 014 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Maximale Punktzahl Erreichte Punktzahl
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Maximale Punktzahl 3 3 3 3 3 3 18 Erreichte Punktzahl Note Die Algebra 1-Prüfung umfasst 6 Aufgaben. Als Hilfsmittel ist ein nicht algebrafähiger und nicht
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss
Resultate, die nicht ganzzahlig sind, sind auf zwei Stellen nach dem Dezimalpunkt zu runden.
Mathematik Zeit: 120 Minuten Löse jede Aufgabe auf dem dafür vorgesehenen Platz auf den Prüfungsblättern. Wenn zu wenig Platz vorhanden ist, kannst du die Rückseite benutzen. Zeige dies mit einem Pfeil
Teil 1 Ohne Taschenrechner
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September 2012 Mathematik Prüfungsbedingungen: Der Taschenrechner darf nicht gebraucht werden! Teil 1 Ohne Taschenrechner Die
Aufnahmeprüfung 2016 FMS. (zutreffendes ankreuzen) Prüfungsnummer: (auf jeder Seite oben links eintragen)
Kantonale Schulen Berufsmaturität BM / Fachmittelschule FMS Aufnahmeprüfung 2016 BM FMS Solothurn FMS Olten (zutreffendes ankreuzen) Prüfungsnummer: (auf jeder Seite oben links eintragen) Prüfungsfach:
2.6. Aufgaben zu Kongruenzabbildungen
Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck
Sekundarschulabschluss für Erwachsene. Geometrie A 2012
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
Kantonsschule Rychenberg Aufnahmeprüfung Mathematik. Name, Vorname:
Kantonsschule Rychenberg Aufnahmeprüfung 2011 Fachmittelschule Mathematik Name, Vorname: Nr.: Zeit: 90 Minuten erlaubte Hilfsmittel: Taschenrechner aus der Sekundarschule, also weder programmierbar noch
Übungen. Löse folgende Aufgaben mit GeoGebra
Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
1. Mathematikschulaufgabe
Klasse 8 / I I 1.0 Gib in Mengenschreibweise an: 1.1 Zur Menge M gehören alle Punkte, deren Abstand von parallelen Geraden g und h gleich ist, oder die von einem Punkt A mehr als 4 cm entfernt sind. 1.
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Sekundarschule, Teil 2. Übungsheft
Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Sekundarschule, Teil 2 Übungsheft Lektion 7 Konstruktionen 1 Lektion 7 Konstruktionen 1 1. Konstruiere ein Dreieck mit folgenden ngaben:
Berufsmaturitätsprüfung 2006 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2006 Mathematik Zeit: 180 Minuten Hilfsmittel: Hinweise: Formel- und Tabellensammlung ohne gelöste Beispiele,
Vierte Schularbeit Mathematik Klasse 3E am
Vierte Schularbeit Mathematik Klasse 3E am 22.05.2014 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19
Mathematik II (Geometrie)
Mathematik II (Geometrie) Zeit: 120 Minuten Jede Aufgabe gibt maximal 5 Punkte. Zum Lösen jeder der sieben Aufgaben steht jeweils ein Blatt zur Verfügung. Verwende auch die Rückseite, falls du auf der
JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 5 50 Punkte = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK. KLASSEN KANTONSSCHULE REUSSBÜHL 6. Mai 014 Zeit: 1.10 14.40 Uhr Allgemeines: unbedingt
Kantonale Fachmittelschulen Aufnahmeprüfung Mathematik
Kantonale Fachmittelschulen Aufnahmeprüfung 010 Beachten Sie bitte: Mathematik Schreiben Sie auf jedes Blatt Ihren Namen und Ihre Prüfungsnummer. Zum Lösen der Aufgaben stehen 10 Minuten zur Verfügung.
Mathematik Aufnahmeprüfung 2016
Mathematik Aufnahmeprüfung 2016 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate
Mathematik, 3. Sekundarschule
Zentrale Aufnahmeprüfung 2009 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 3. Sekundarschule Von der Kandidatin oder vom Kandidaten auszufüllen: Name:........................
Berufsmittelschulen der Kantone St. Gallen, Appenzell und Glarus MATHEMATIK. Vorname: Nummer: Aufgabe Nr. 2 erreichte Punkte. (max. 2 Pkt.
Berufsmittelschulen der Kantone St. Gallen, Appenzell und Glarus Aufnahmeprüfung 2009 Kaufmännische Richtung MATHEMATIK Name: Vorname: Nummer:..... Aufgabe Nr. 1 erreichte Punkte. (max. 2 Pkt.) Aufgabe
Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.
Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur
Mathematik 1. Kanton St.Gallen Bildungsdepartement. St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung (ohne Taschenrechner)
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2016 Mathematik 1 (ohne Taschenrechner) Dauer: 90 Minuten Kandidatennummer: Geburtsdatum: Korrigiert von: Punktzahl/Note:
Modulprüfung 2006 Klasse B 05 / B1. Mathematik
Modulprüfung 2006 Klasse B 05 / B1 Mathematik Zeit: 120 Minuten WIR1-2006/ 25 /Burgdorf/B 152 Fr 24.2.06/10.25-12.05 2 Bedingungen: Alle Probleme sind selbständig zu lösen. Unehrenhaftes Verhalten hat
Übertrittsprüfung 2013
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 013 Aufgaben Prüfung an die 3. Klasse Sekundarschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
5v ( 3) ( 6v)+ 6 9v ] (5a) 2 +8a 2 9ab 2 : = 5v [18v +2 3v] = 5v 15v 2 20v 2. = 33a2 9ab 2 ab
Mathematik Aufnahmeprüfung 016 Lösungen Aufgabe 1 (a) Vereinfache so weit wie möglich: (b) Vereinfache so weit wie möglich: [ 5v ( 3) ( 6v)+ 6 9v ] 3 (5a) +8a 9ab : 3 ab =? =? (a) [ 5v ( 3) ( 6v)+ 6 9v
Aufnahmeprüfung Gymnasium 2015, Mathematik
Kantonsschulen Solothurn und Olten Aufnahmeprüfung Gmnasium 2015, Mathematik Prüfungsnummer: Zeit: 120 Minuten Endresultate, welche nicht ganzzahlig sind, sollen auf zwei Dezimalstellen nach dem Komma
AUFNAHMEPRÜFUNG 2015 MATHEMATIK. Name Vorname. Kandidaten Nr. Ausbildung HMS KVM MMK
AUFNAHMEPRÜFUNG 2015 MATHEMATIK Name Vorname Kandidaten Nr. Ausbildung HMS KVM MMK Die Entstehung des Resultats muss ersichtlich sein. Ist kein logischer Lösungsweg ersichtlich, wird die Aufgabe nicht
Mathematik: Korrekturanleitung
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2014 Mathematik: Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen Aufgaben
Ergänzungsprüfung. zum Erwerb der Fachhochschulreife Mathematik (nichttechnische Ausbildungsrichtung)
Ergänzungsprüfung zum Erwerb der Fachhochschulreife 2006 Prüfungsfach: Mathematik (nichttechnische Ausbildungsrichtung) Prüfungstag: Donnerstag, 22. Juni 2006 Prüfungsdauer: 09:00 12:00 Uhr Hilfsmittel:
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 2002/2003 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender
