Übertrittsprüfung 2013
|
|
|
- Leopold Ursler
- vor 8 Jahren
- Abrufe
Transkript
1 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 013 Aufgaben Prüfung an die 3. Klasse Sekundarschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule... Prüfungsdatum 4. Juni 013 Fach Prüfungsdauer Erlaubte Hilfsmittel Nicht erlaubte Hilfsmittel Mathematik Problemlösen 60 Minuten Taschenrechner, Geodreieck, Zirkel Formelsammlung Punkt- bzw. Fehlerzahl... Note... Visum 1 Visum......
2 Jede Aufgabe wird mit Punkten bewertet. Notiere deinen Lösungsweg genau, damit man sehen kann, welche Überlegungen du gemacht hast. Auch richtige Zwischenergebnisse zählen eventuell. Unterstreiche die Schlussresultate doppelt und vergiss die Einheit nicht. Nimm für π = 3.14 oder die π-taste deines Taschenrechners. 1. a.) Wenn ich zu einer Zahl achtzehn addiere, erhalte ich vier mehr als ihr Dreifaches. Welche Zahl ist das? Löse mit oder ohne Gleichung. Rechnungsweg muss sichtbar sein. b.) Wenn ich zu einer Zahl zwei addiere und das Ergebnis vervierfache, erhalte ich genau viel, wie wenn ich die Zahl von achtundzwanzig subtrahiere. Welche Zahl ist das? Löse mit oder ohne Gleichung. Rechnungsweg muss sichtbar sein.. In der Familie Bellini besitzt jeder ein Sparkonto bei der Money Bank. Auf den Konten sind folgende Beträge Ende Jahr 013: Vater Bellini 500 CHF, Mutter Bellini 300 CHF, Luca 680 CHF, Gina 560 CHF. Wie viel Jahreszins bekommen die Personen jeweils und wie gross ist der Betrag auf den Konten anfangs 014, wenn der Zinssatz für die Eltern 1 ¼ % und für Luca und Gina 1 ¾ % ist? Runde auf 5 Rp. genau. 3. Ein Haus brennt im 5. Stock, der sich 1.5 m über dem Boden befindet. Das Feuerwehrauto hält in 8 m Entfernung. Wie lange muss die Leiter ausgefahren werden, damit gelöscht werden kann? Mache eine Skizze und beschrifte sie. Denke an Pythagoras! 4. Aus einem quadratischen Blech von 68 cm Seitenlänge wird die möglichst grösste Kreisscheibe herausgeschnitten. Wie viel cm² (auf ganze cm² gerundet) Blechabfall bleibt übrig? Mach eine Skizze! 5. Das Nichtschwimmerbecken der Badi Rotmatt braucht einen neuen Schutzanstrich. Die Masse des Beckens sind: Länge 18m, Breite 1m, Tiefe 0.8m. Maler Kurt macht eine Offerte für CHF. Maler Meili offeriert 1.50 CHF pro m. Die Gemeinde entscheidet sich für den billigeren Anbieter. Welcher ist das? Rechne. 6. Pascals Mutter feiert ihren 36. Geburtstag und ist damit genau viermal so alt wie Pascal und seine Schwester Sarah die drei Jahre älter ist als ihr Bruder zusammen. Wie alt sind Sarah und Pascal? Löse die Aufgabe mit einer Gleichung! 7. Ein Kunstmaler möchte in ein dreieckiges, gleichschenkliges Kirchenfenster eine kreisförmige Figur einzeichnen, die alle drei Seiten des Dreiecks berührt. Das Kirchenfenster hat folgende Masse: c = 70 cm, a = b = 90 cm. Überlege und zeichne das Dreieck im Massstab 1:10 und konstruiere den gesuchten Kreis. Beschreibe deine Konstruktion. Aufgaben /3
3 8. Ein Multimediageschäft hat unter anderem neue Games und DVDs eingekauft. Der Händler verkauft die Artikel in seinem Laden zum regulären Verkaufspreis, d.h. er gibt eine Marge auf den Selbstkostenpreis. Während des Geschäftsjahrs können nicht alle Artikel zum regulären Preis verkauft werden. Die restlichen Stücke werden im Ausverkauf zu einem reduzierten Preis abgesetzt. Die Tabelle zeigt einen lückenhaften Computerauszug über die Gewinn- und Verlustrechnung. Berechne die fehlenden Werte, setze die Zahlen ein und schreibe in einem Antwortsatz, ob der Händler nun Gewinn oder Verlust machte mit den DVDs. Artikel Games DVDs Selbstkosten in CHF 5 15 Anzahl angekaufter Artikel Marge in % Verkaufspreis regulär?? Ausverkaufsrabatt in % Anzahl verkaufter Artikel 1 4 regulär Anzahl verkaufter Artikel 18 6 reduziert Gewinn / Verlust in CHF ? Aufgaben 3/3
4 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 013 Lösungen Prüfung an die 3. Klasse Sekundarschule Prüfung Fach Prüfungsdauer Mathematik Problemlösen 60 Minuten Erlaubte Hilfsmittel Nicht erlaubte Hilfsmittel Taschenrechner, Geodreieck, Zirkel Formelsammlung
5 Korrekturanweisungen: Pro Aufgabe werden maximal Punkte erteilt. Teilergebnisse werden mit ganzen oder halben Punkten bewertet. Bei offensichtlichen Folgefehlern max. Punktzahl 1.5 P. Maximalpunktzahl: 16 Punkte 1. a.) x + 18 = 3x + 4 x = 7 Die Zahl heisst 7. 1 P. b.) 4 (x + ) = 8 x x = 4 Die Zahl heisst 4. 1 P. P. Ohne Rechnungsweg max. 0.5 P. pro Aufgabe!. Vater Zins 31.5 CHF Konto CHF jedes Resultat 0.5 P. Mutter Zins CHF Konto CHF falsch gerundet 0.5 P Luca Zins CHF Konto CHF Gina Zins 9.80 CHF Konto CHF P. 3. Skizze 0.5 P. Beschriftung a = Höhe bis 5. Stock b = Abstand Feuerwehrauto c = Leiter 0.5 P. c = a² + b² 0.5 P. c = ( 1.5m)² + (8m)² = m 1 P. P. 4. A Quadrat = = ( 68 cm ) 4'64 cm (0.5P.) ( 34cm ) = cm π 3' / cm² (0.5P.) Abfall = A Quadrat - A Kreis = 99.3 cm² / cm 0.5 P. Korrekte Skizze 0.5 P. P. 5. Zu bemalende Fläche: x 0.8m x 18m = 8.8m 0.5 P. x 0.8m x 1m = 19.m 0.5 P. 1 x 18 m x 1m = 16m 0.5 P. Total 64m 0.5 P. Offerte Meili 64 x 1.50 CHF= CHF 0.5 P. Maler Kurt macht das günstigere Angebot. P (x + (x + 3)) = P. 4 (x + x + 3) = 36 4 (x + 3) = 36 8x + 1 = 36 / 0.5 P. 8x = 4 x = 3 Jahre Pascal / x + 3 = 6 Jahre Sarah 1 P. P. Ohne Gleichung, aber Lösungsweg sichtbar max. 1.5 P., ohne Lösungsweg max. 1 P. 7. Masse richtig verkleinert 0.5 P. Zeichnung Dreieck 1: P. Zeichnung Inkreis 0.5 P. Konstruktionsbericht 0.5 P. P. KB: c (7cm)abtragen A,B / von A (B) aus b (a = 9cm)) abtragen C / Winkelhalbierende konstruieren M (Innkreis) / Senkrechte durch M auf c Innkreisradius / Innkreis zeichnen 8. Artikel Games DVDs Selbstkosten in CHF 5 15 Anzahl angekaufter Artikel (50 x 15 CHF = 750 CHF) 0.5p Marge in % Verkaufspreis regulär 1.35 x 5 CHF = CHF 1.4 x 15 CHF = 1 CHF je 0.5p Ausverkaufsrabatt in % (VP = 0.55 x 1 CHF = CHF) Anzahl verkaufter Artikel regulär 1 4 (4 x 1 CHF = 504 CHF) 0.5p Anzahl verkaufter Artikel reduziert 18 6 (6 x 0.55 x 1 CHF = CHF) 0.5p Gewinn / Verlust in CHF CHF CHF 0.5p Lösungen /
Übertrittsprüfung 2011
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2011 Aufgaben Prüfung an die 1. Klasse Sekundarschule / 1. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des
Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008
Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008 Arbeitsbeginn: Bearbeitungszeit: 11:00 Uhr 120 Minuten
Kaufmännische Berufsmatura 2013
Kaufmännische Berufsmatura 03 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung
Mathematik Serie 2 (60 Min.)
Aufnahmeprüfung 2008 Mathematik Serie 2 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtig! -
http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen
2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines
Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten Wenn du deine Arbeit abgibst,
n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.
Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler
Kaufmännische Berufsmatura 2011
Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Schriftliche Realschulprüfung 1997 Mathematik
Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik E Mecklenburg - Vorpommern Realschulprüfung 1997 Ersatzarbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden
Mathematik. Prüfung zum mittleren Bildungsabschluss 2009. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2009 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten
BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)
Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel
Terme und Formeln Umgang mit Termen
Terme und Formeln Umgang mit Termen Al Charazmi (* um 780, um 840) war ein persischer Mathematiker, Astronom und Geograph. Vom Titel seines Werkes Al-kitab al-mukhtasar fi hisab al- abr wa l-muqabala (Arabisch
Lernziele Matbu. ch 8
Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene
Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.
Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen
Übertrittsprüfung 2010
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2010 Aufgaben Prüfung an die 3. Klasse Sekundarschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 013 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Löse die Aufgaben auf diesen Blättern. Der Lösungsweg
Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.
6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich
GA Grundanforderungen EA erweiterte Anforderungen. LU Ziele und Inhalte GA EA Hinweise Hilfsmittel
Planungshilfe für das mathbu.ch 8 / 8+ 3. Klasse Bezirksschule Allgemeine Hinweise: - Die Aufgaben sind in Grundanforderungen (Minimalziele für alle Schülerinnen und Schüler gemäss den verbindlichen Zielen
THÜRINGER KULTUSMINISTERIUM
Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit
WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen
Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses
QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010. MATHEMATIK ( 54 Abs. 1 Nr. 1 VSO)
QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 00 BESONDERE LEISTUNGSFESTSTELLUNG AM 30.06.00 Teil A: Teil B: 8.30 Uhr bis 9.00 Uhr 9.0 Uhr bis 0.0 Uhr MATHEMATIK ( Abs. Nr. VSO) Hinweise zu:. Auswahl. Korrektur
Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.
KANTON AARGAU Abschlussprüfung der Bezirksschule Aargau 2013 Mathematik 1. Serie Bestimmungen: Die Prüfungsdauer beträgt 120 Minuten. Zugelassenes Hilfsmittel: Ein nicht programmierbarer Taschenrechner.
Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss
Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein
Kantonale Prüfungen 2013. Mathematik II Prüfung für den Übertritt aus der 8. Klasse
Kantonale Prüfungen 2013 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:
Lösung Finanz- und Rechnungswesen Serie 1
Lösung Finanz- und Serie 1 Prüfungsdauer 180 Minuten Hilfsmittel Nichtdruckender, netzunabhängiger Taschenrechner (Telekommunikationsmittel sind nicht zugelassen) / Auszug aus Kontenrahmen KMU Klasse Kand.
Übertrittsprüfung 2013
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2013 Aufgaben Prüfung an die 1. Klasse Sekundarschule / 1. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des
Themenkreise der Klasse 5
Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.
Nachholbildung Art. 32 BBV. Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016. Name. Vorname. Prüfungsdatum.
Nachholbildung Art. 32 BBV Einstufungstest Rechnen Kauffrau/Kaufmann E-/B-Profil Nullserie 2016 Name Vorname Prüfungsdatum Dauer 45 Minuten Bewertung Maximale Punktzahl 31 Punkte Erreichte Punktzahl Prozente
QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK
QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 010 BESONDERE LEISTUNGSFESTSTELLUNG AM 0.06.01 O Teil A: 8.0 Uhr bis 9.00 Uhr (Teil B: 9.10 Uhr bis 10.0 Uhr) MATHEMATIK Teil A Bei Teil A der besonderen Leistungsfeststellung
Vergleichsarbeit Mathematik
Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)
Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011
LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik 18.
Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten
Mathematik. Aufgabenheft. Testteil. für Schülerinnen und Schüler. Name: Zentrale Lernstandserhebung in der Jahrgangsstufe 9 LSE 2005
A Mathematik Aufgabenheft Testteil A1 für Schülerinnen und Schüler Name: Klasse/Kurs: Kennnummer: Zentrale Lernstandserhebung in der Jahrgangsstufe 9 LSE 2005 Lernstandserhebung 2005 Mathematik Aufgabenheft
Saarland Ministerium für Bildung, Kultur und Wissenschaft
Abschlussprüfung 2004 2003/2004 2001 Saarland Ministerium für Bildung, Kultur und Wissenschaft Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52,
Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84
Niedersächsisches Abschlussprüfung zum Erwerb des Sekundarabschlusses I Hauptschulabschluss Schuljahrgang 9, Schuljahr 2012/2013 Mathematik G- und E-Kurs Prüfungstermin 30. April 2013 Name: Klasse / Kurs:
Mathematik VOLKSSCHULEN KANTONE SOLOTHURN BASEL-LANDSCHAFT ORIENTIERUNGSARBEIT. Primarschule. Lösungen und Korrekturanweisungen
VOLKSSCHULEN KANTONE BASEL-LANDSCHAFT SOLOTHURN Primarschule 5. Klasse Name Vorname Schuljahr 2014/2015 Datum der Durchführung 4. September 2014 ORIENTIERUNGSARBEIT Primarschule Mathematik Lösungen und
Mathematik-Dossier. Die lineare Funktion
Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der
Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten
Hauptschulabschlussprüfung 2010 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Fach: Mathematik Wahlaufgaben Seite 2 von
Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.
Mittlere-Reife-Prüfung 2010 Mathematik Seite 2 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle Aufgaben zu bearbeiten.
Qualifikationsverfahren Montage-Elektrikerin EFZ Montage-Elektriker EFZ
Serie 010 Berufskenntnisse schriftlich Pos. Technologische Grundlagen Qualifikationsverfahren Montage-Elektrikerin EFZ Montage-Elektriker EFZ Name, Vorname Kandidatennummer Datum......... Zeit: Hilfsmittel:
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
IGS Robert-Schuman-Schule Frankenthal
Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für
Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)
KK/Werkjahr mit Mindeststandards [Druckversion] Leitdeen/Richtziele Stundentafeln Sprache Geometrisches Zeichnen Mensch und Umwelt Gestalten und Musik Sport Individuum und Gemeinschaft Niveaus E P Links
1 Ein Beispiel: Das Berechnen eines Schulzeugnisses
Funktionen in Excel 1 Ein Beispiel: Das Berechnen eines Schulzeugnisses Jim hat die folgenden Noten im 1. Trimester: Fach Prüfung 1 Prüfung 2 Prüfung 3 Englisch 35 38 43 Deutsch 44 42 48 Französisch 28
1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen
Stoffverteilungsplan EdM 8RhPf Abfolge in EdM 8 Bleib fit im Umgang mit rationalen Zahlen Kompetenzen und Inhalte Umgang mit rationalen Zahlenim Zusammenhang 1. Terme und Gleichungen mit Klammern Leitidee
Übungsaufgaben Klasse 7
Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.
Mathematik 2: (mit Taschenrechner) Korrekturanleitung
Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 2013 Mathematik 2: (mit Taschenrechner) Korrekturanleitung Löse die Aufgaben auf diesen Blättern. Der Lösungsweg
Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1
Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße
Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.
Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die
http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen
7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit
4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule
4.4 Zu ausgewählten Inhalten des Geometrieunterrichts in der Grundschule Lagebeziehungen Eigenschaften von Gegenständen Geometrische Figuren und Körper Muster, Ornamente, Symmetrien Größe und Umfang von
Mathematik. Hauptschulabschlussprüfung 2007. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:
Hauptschulabschlussprüfung 2007 Pflichtaufgaben 1. Teil Mathematik x+3 45 Name: Klasse: Die Aufgabenblätter sind Bestandteil der Prüfungsarbeit und müssen mit deinem Namen versehen werden. Du darfst in
Mathematik. Hauptschulabschlussprüfung 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben 1. Teil. Name: Vorname: Klasse:
Hauptschulabschlussprüfung 2008 Schriftliche Prüfung Pflichtaufgaben 1. Teil Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 45 Minuten
Nullserie zur Prüfungsvorbereitung
Nullserie zur Prüfungsvorbereitung Die folgenden Hilfsmittel und Bedingungen sind an der Prüfung zu beachten. Erlaubte Hilfsmittel Beliebiger Taschenrechner (Der Einsatz von Lösungs- und Hilfsprogrammen
Erster Prüfungsteil: Aufgabe 1
Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis
Finanz- und Rechnungswesen Serie 1
Serie 1 Arbeitsblätter Prüfungsdauer: 180 Minuten Hilfsmittel: Nichtdruckender, netzunabhängiger Taschenrechner (Telekommunikationsmittel sind nicht zugelassen) Auszug aus Kontenrahmen KMU Name: Kand.-Nummer:
Probeunterricht 2013 an Wirtschaftsschulen in Bayern. Mathematik 7. Jahrgangsstufe
M 7 Zahlenrechnen Probeunterricht 2013 an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 8: Arbeitszeit Teil II (Textrechnen) Seiten 9 bis 13:
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen
Aufgabe 1: Der Weidezaun
Aufgabe 1: Der Weidezaun Eine quadratische Viehweide mit der Fläche 870 m² soll eingezäunt werden. Dabei sollen 3 m für ein Tor freigelassen werden. Wie viel Meter Zaun werden benötigt? Informative Figur:
Becker I Brucker. Erfolg in Mathe 2015. Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen
Becker I Brucker Erfolg in Mathe 2015 Realschulabschluss Baden-Württemberg Wahlteil Übungsbuch mit Tipps und Lösungen Inhaltsverzeichnis Vorwort 1 Aufgaben 5 1 Algebra.......................................
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 2004/2005 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender
Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):
Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung
Eignungstest Mathematik
Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für
MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE
Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER
Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010
Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 00 im Fach Mathematik 6. Mai 00 LÖSUNGEN UND BEWERTUNGEN Mittlerer Schulabschluss 00, schriftliche
Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport
Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 003/004 Schulform: Gesamtschule Erweiterungskurs Allgemeine Arbeitshinweise
Basteln und Zeichnen
Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle
Linearen Gleichungssysteme Anwendungsaufgaben
Linearen Gleichungssysteme Anwendungsaufgaben Lb S. 166 Nr.9 Im Jugendherbergsverzeichnis ist angegeben, dass in der Jugendherberge in Eulenburg 145 Jugendliche in 35 Zimmern übernachten können. Es gibt
Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten
Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Name: Datum: Zeit: 60:00 Minuten Frage 1 von 20 Theo und Jenny sollen für eine Messeveranstaltung einen Holztisch mit 100 cm x 100 cm und
Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.
Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2015 Mathematik (3. Sek)
Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2015 Kurzgymnasium (Anschluss 3. Sekundarklasse) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil steht
5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben
Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und
Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)
Niveau Leitdeen/Richtziele Stundentafeln Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) [Druckversion] Sprache Anwendungen der Geometrisches Zeichnen Mensch und Umwelt Gestalten
Kompetenzen und Aufgabenbeispiele 4. Klasse
Institut für Bildungsevaluation Assoziiertes Institut der Universität Zürich Kompetenzen und Aufgabenbeispiele 4. Klasse Bereiche Lesen, Sprache im Fokus und Mathematik (Version Nidwalden) Informationen
Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de
1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht
Falten regelmäßiger Vielecke
Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.
Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft
Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick
Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011
LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 011 im Fach Mathematik 18. Mai
Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau
Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp
Kaufmännische Berufsmatura 2010 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
Schriftliche Abschlußprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1995/96 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Qualifizierender
Definition und Begriffe
Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist
Abschlussprüfung an den Realschulen in Bayern
bschlussprüfung an den Realschulen in Bayern 009 Mathematik II Nachtermin ufgaben - Lösungsmuster und Bewertung RUMGEOMETRIE OWerkstück MKegel+ M Zylinder+ großer Kreis kleiner Kreis+ OKugel BH sin BH
Steinmikado I. Steinmikado II. Steinzielwerfen. Steinwerfen in Dosen
Steinmikado I Steinmikado II : ab 4 : ab 4 : 20 Steine : 20 Steine Spielregel : M 10-01 In der Mitte des Raumes schichten wir einen Steinberg auf. Die Aufgabe besteht darin, vom Fuße des Berges jeweils
2008 Qualifikationsverfahren Detailhandelsassistentinnen/ Detailhandelsassistenten Detailhandelspraxis schriftlich Serie 1/3 Pos. 2.
2008 Qualifikationsverfahren Detailhandelsassistentinnen/ Detailhandelsassistenten Detailhandelspraxis schriftlich Serie 1/ Pos. 2.1 Name: Vorname: Prüfungsnummer: Prüfungsdatum:............ Zeit 5 Minuten
Thüringer Kultusministerium
Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer
Mathematik Aufgabenheft A1 für Schülerinnen und Schüler
A1 Mathematik Aufgabenheft A1 für Schülerinnen und Schüler Name: Klasse/Kurs: Kennnummer: Zentrale Lernstandserhebungen in der Jahrgangsstufe 9 Nordrhein-Westfalen 2004 2004 Herausgeber: Ministerium für
Lernen an Stationen Thema: Flächenberechnung
Lernen an Stationen Thema: Flächenberechnung 8. Jahrgang Mathematics is a way of thinking, not a collection of facts! Ausgehend von dieser grundsätzlichen Überzeugung sollte ein Unterricht zum Thema Flächenberechnung
Stoffverteilungsplan Werkrealschule. Einblicke Mathematik für die Werkrealschule in Baden-Württemberg. 978-3-12-746390-3 Lehrer:
Stoffverteilungsplan Werkrealschule Einblicke Mathematik für die Werkrealschule in Baden-Württemberg Band 5 Schule: 978-3-12-746390-3 Lehrer: Woche Leitidee Kompetenzstandards Zeitraum 1 mit Mathematik
Finanz- und Rechnungswesen Serie 1
Serie 1 Arbeitsblätter Prüfungsdauer: 180 Minuten Hilfsmittel: Nichtdruckender, netzunabhängiger Taschenrechner (Telekommunikationsmittel sind nicht zugelassen) Auszug aus Kontenrahmen KMU Name: Kand.-Nummer:
OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland
OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben
Quadratische Funktionen (Parabeln)
Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte
Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6
Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 1. Bestimme jeweils die Teilermenge der folgenden Zahlen: a) 62 b) 25 c)71 d) 28 Lösungsbeispiel: T 62 = {...} (Einzelne Elemente der
Realschulabschluss Schuljahr 2008/2009. Mathematik
Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.
Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.
Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines
Fritz verlangt einen Zins von 257.14% (Jahreszins. das ist übelster Wucher ) b) k = CHF 150.--, Zeit: 2 Monate, zm = CHF 10.
Seite 8 1 Zinssatz Bruttozins am 31.12. Verrechnungssteuer Nettozins am 31.12. Kapital k Saldo am 31.12. a) 3.5% 2436 852.60 1583.4 69 600 71 183.40 b) 2.3% 4046 1416.10 2629.90 175 913.05 178'542.95 c)
