THÜRINGER KULTUSMINISTERIUM
|
|
|
- Bernhard Fuhrmann
- vor 10 Jahren
- Abrufe
Transkript
1 Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten. Zusätzlich zur Arbeitszeit werden 30 Minuten gewährt, die zur persönlichen Einarbeitung in die ausgewählten Aufgaben und die dazu gestellten Arbeitsanweisungen verwendet werden können. Im Bereich Pflichtaufgaben sind alle Aufgaben zu lösen. Von den Wahlaufgaben ist nur eine zu bearbeiten.
2 2 Der Lösungsweg muss erkennbar sein, auch bei Aufgaben, deren Ergebnis mit dem Taschenrechner ermittelt wird. Geometrische Konstruktionen und Zeichnungen, ausgenommen Skizzen und Planfiguren sind auf unliniertem Papier auszuführen. Graphen von Funktionen sind in rechtwinkligen Koordinatensystemen auf Millimeterpapier darzustellen. Als Hilfsmittel sind zugelassen: - die im Unterricht verwendete Formelsammlung, - Zeichengeräte (einschließlich Kurvenschablonen), - nichtprogrammierbarer und nichtgraphikfähiger Schultaschenrechner, - ein im Unterricht verwendetes Wörterverzeichnis zur deutschen Rechtschreibung
3 3 Pflichtaufgaben 1. Christine möchte sich ein Moped kaufen. a) Das Moped kostet 3 400,00 DM. Berechnen Sie die darin enthaltene Mehrwertsteuer von 16%! b) Der Händler bietet ihr bei Barzahlung 2% Skonto an. Berechnen Sie den Barzahlungspreis für das Moped! Christines Eltern hatten für sie vor fünf Jahren ein Guthaben von 2 500,00 DM mit einem jährlichen Zinssatz von 6,15% fest angelegt. Die Zinsen wurden mitverzinst. c) Welchen Betrag erhielt Christine bei Ablauf der Geldanlage ausgezahlt? d) Um wie viel Prozent ist das Guthaben in den fünf Jahren angewachsen? Bis zur Auslieferung des Mopeds bietet sich für den ausgezahlten Betrag ein Termingeld zu einem jährlichen Zinssatz von 3,2% an. e) Berechnen Sie, wie viel Zinsen Christine nach einem viertel Jahr bekommt!
4 4 2. Gegeben ist der Graph einer quadratischen Funktion f(x) mit x R und dem Scheitelpunkt S (siehe Abbildung). (Eine Einheit entspricht 1,0 cm.) a) Übertragen Sie die Parabel in ein rechtwinkliges Koordinatensysstem und geben Sie die Koordinaten des Scheitelpunkts S an! b) Bestimmen Sie die Gleichung der Funktion f(x)! c) Berechnen Sie die Nullstellen der Funktion f(x)! Durch die Gleichung y = g(x) = 2x + 4 mit x R ist eine lineare Funktion gegeben. d) Zeichnen Sie den Graphen der Funktion g(x) in dasselbe Koordinatensystem! Der Graph der Funktion g(x) schneidet die y-achse im Punkt A und die x-achse im Punkt B. e) Spiegeln Sie den Graphen der Funktion g(x) an der Symmetrieachse der Parabel! Der Bildpunkt von A sei A und von B sei B. f) Berechnen Sie den Flächeninhalt des Trapezes ABB A!
5 5 3. Für den Bau eines Skiliftes zwischen den Stationen A und C liegen folgende Vermessungsergebnisse vor: AB = 760 m C α = 160 β = 8 h δ = 29. δ A α β B Skizze (nicht maßstäblich) a) Berechnen Sie die Länge AC des Skiliftes! b) Welchen Höhenunterschied h überwindet der Lift? c) Konstruieren Sie das Dreieck ABC in einem geeigneten Maßstab! Geben Sie den Maßstab an! Der Lift soll in 10 Sekunden 17 Meter zurücklegen. d) Wie lange wird eine Fahrt mit dem Lift dauern? Geben Sie das Ergebnis in Minuten an!
6 6 4. a) Lösen Sie die Klammern auf und fassen Sie zusammen! (2x 0,5y) (4x + y) b) Bestimmen Sie die den Flächeninhalt der grau dargestellten Fläche! Die Seitenlänge der Einheitsquadrate beträgt 1,0 cm. c) Zeichnen Sie den Graphen der Funktion y = f(x) = cos x mindestens im Intervall 90 x 270! d) Für eine Tagesfahrt wurde ein Festpreis für den Bus vereinbart. Bei 27 Schülern bezahlt jeder 32,00 DM. Welcher Preis pro Schüler ergibt sich bei 24 Teilnehmern? e) Berechnen Sie die Höhe h der Pyramide! h a = 7, 8 cm h a = 5, 2 cm h a a a Skizze (nicht maßstäblich)
7 7 f) Geben Sie das Ergebnis in Liter an! ml + dm cm g) Im Diagramm sind zwei Tarife eines Fahrradverleihs dargestellt. Wieviel DM spart man bei einer Leihzeit von 10 Tagen im günstigeren Tarif ein? Preis in DM Tarif 2 Tarif Leihzeit in Tagen
8 8 Wahlaufgaben Von den folgenden drei Aufgaben brauchen Sie nur eine zu lösen. Lösen Sie mehr als eine Aufgabe, wird die Aufgabe mit den meisten Punkten zur Bewertung herangezogen. Für jede weitere vollständig richtig gelöste Wahlaufgabe wird ein Zusatzpunkt erteilt Die Verpackung einer Sorte Kartoffelchips hat die Form eines Kreiszylinders mit einem Durchmesser von 16,4 cm und einer Höhe von 33,6 cm. a) Berechnen Sie das Volumen dieser Verpackung! b) Zeichnen Sie das Netz dieses Zylinders im Maßstab 1:4! Wenn man die Höhe dieses Zylinders halbiert, spart man Verpackungsmaterial ein. c) Berechnen Sie den Radius eines solchen Zylinders, wenn das Volumen beibehalten wird! d) Wie viel Quadratzentimeter des Verpackungsmaterials können eingespart werden? e) Berechnen Sie, wie viel Prozent des Materials eingespart werden können!
9 5.2. Auf einer landwirtschaftlichen Nutzfläche werden Sonnenblumen angebaut. 9 C D c AB = a = 500 m d b BC = b = 420 m A. a B CD = c = 350 m AD = d = 250 m Skizze (nicht maßstäblich) a) Konstruieren Sie die Fläche in einem geeigneten Maßstab! b) Berechnen Sie den Winkel DCB! c) Berechnen Sie den Flächeninhalt der landwirtschaftlichen Nutzfläche! Der durchschnittliche Ernteertrag an Sonnenblumenkernen beträgt 35 dt je Hektar. d) Wie viel Dezitonnen Sonnenblumenkerne können auf dem gesamten Feld als Ernte erwartet werden? Sonnenblumenkerne haben einen Ölgehalt von 43%. e) Wie viel Liter Sonnenblumenöl kann man gewinnen, wenn ein Liter Sonnenblumenöl 0,89 kg wiegt?
10 5.3. Gegeben ist eine lineare Funktion der Form y = f(x) = mx + n mit x R. Der Anstieg der Funktion ist m = 1,5 und die Nullstelle x o = 3. a) Zeichnen Sie den Graphen der Funktion y = f(x) in ein rechtwinkliges Koordinatensystem! b) Geben Sie die Gleichung die Funktion y = f(x) an! 10 Durch die Gleichung y = g(x) = 0,5x + 2,5 mit x R ist eine weitere Funktion gegeben. c) Berechnen Sie die Nullstelle der Funktion y = g(x)! d) Stellen Sie diese Funktion in demselben Koordinatensystem graphisch dar! Geben Sie die Koordinaten des Schnittpunktes S beider Graphen an! e) Betrachten Sie die beiden Funktionsgleichungen als lineares Gleichungssystem und lösen Sie dieses rechnerisch! f) Zeichnen Sie eine Parallele p zur x-achse, die durch den Punkt P 0 ; 5 verläuft! ( ) Der Graph der Funktion f(x) schneidet die x-achse im Punkt A und die Parallele p im Punkt D. Der Graph g(x) schneidet die x-achse im Punkt B und die Parallele p im Punkt C. g) Berechnen Sie den Winkel BAD! Im Dreieck ABS sei h 1 die Höhe bezüglich AB und im Dreieck DCS sei h 2 die Höhe bezüglich CD. h) In welchem Verhältnis steht die Höhe h 1 zur Höhe h 2?
Thüringer Kultusministerium
Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer
Realschulabschluss Schuljahr 2008/2009. Mathematik
Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.
Realschulabschluss Schuljahr 2006/2007. Mathematik
Prüfungstag: Mittwoch, 3. Juni 2007 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2006/2007 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 50 Minuten.
THÜRINGER KULTUSMINISTERIUM
THÜRINGER KULTUSMINISTERIUM Realschulabschluß 1997 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten. Zusätzlich zur Arbeitszeit werden 30 Minuten
Schriftliche Abschlußprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1995/96 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Qualifizierender
Thüringer Kultusministerium
Prüfungstag: Donnerstag, 8. Juni 2 Prüfungsbeginn: 8. Uhr Thüringer Kultusministerium Qualifizierender Hauptschulabschluss Schuljahr 1999/2 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer
Schriftliche Realschulprüfung 1997 Mathematik
Mecklenburg - Vorpommern Schriftliche Realschulprüfung 1997 Mathematik E Mecklenburg - Vorpommern Realschulprüfung 1997 Ersatzarbeit A/B Seite 2 Hinweise für Schülerinnen und Schüler: Von den vorliegenden
Realschulabschluss Schuljahr 2007/2008. Mathematik
Prüfungstag: Mittwoch, 4. Juni 2008 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2007/2008 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.
10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr)
10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 010 (3. Juni 010 von :30 bis 11:00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren Schulabschlusses
THÜRINGER KULTUSMINISTERIUM
THÜRINGER KULTUSMINISTERIUM Qualifizierender Hauptschulabschluß 1998 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 120 Minuten. Zusätzlich zur Arbeitszeit
Schriftliche Abschlußprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1996/97 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Realschulabschluß
THÜRINGER KULTUSMINISTERIUM
Prüfungstag: Donnerstag, 1. Juli 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Qualifizierender Hauptschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer
Teil A Arbeitsblatt. Teil B Pflichtaufgaben
Sächsisches Staatsministerium für Kultus und Sport Schuljahr 2009/2010 Geltungsbereich: für Klassenstufe 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Hauptschulabschluss und qualifizierender
Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3
Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen
Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.
Mittlere-Reife-Prüfung 2010 Mathematik Seite 2 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle Aufgaben zu bearbeiten.
Qualifizierender Hauptschulabschluss Schuljahr 2003/2004. Mathematik
Prüfungstag: Dienstag, 8. Juni 2004 Prüfungsbeginn: 8.00 Uhr Qualifizierender Hauptschulabschluss Schuljahr 2003/2004 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit
Schriftliche Abschlußprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1997/98 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Qualifizierender
THÜRINGER KULTUSMINISTERIUM
THÜRINGER KULTUSMINISTERIUM Qualifizierender Hauptschulabschluß 1997 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 120 Minuten. Zusätzlich zur Arbeitszeit
Realschulabschluss Schuljahr 2003/2004. Mathematik
Prüfungstag: Freitag, 4. Juni 2004 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2003/2004 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.
- 2 - AP WS 10M. 1 Finanzmathematik Punkte
- 2 - AP WS 10M 1 Finanzmathematik Punkte Frau Werner hat vor einigen Jahren bei einer Versicherungsgesellschaft einen Vertrag für eine Lebensversicherung abgeschlossen. Am Ende der Laufzeit dieser Versicherung
Mathematik. Prüfung zum mittleren Bildungsabschluss 2009. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2009 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten
Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten
Hauptschulabschlussprüfung 2010 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Fach: Mathematik Wahlaufgaben Seite 2 von
Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport
Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 003/004 Schulform: Gesamtschule Erweiterungskurs Allgemeine Arbeitshinweise
Orientierungsaufgaben für den Realschulabschluss ab 2016 MATHEMATIK
Orientierungsaufgaben für den Realschulabschluss ab 2016 MATHEMATIK erarbeitet von den Fachberaterinnen und Fachberatern Mathematik Regelschule Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer
Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten
Repetitionsaufgaben: Lineare Funktionen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl
Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten
Schriftliche Abiturprüfung Leistungskursfach Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach
1 Finanzmathematik (20 Punkte)
- 2-1 Finanzmathematik (20 Punkte) Herr Lindner hat vor fünf Jahren bei seiner Bank für 20.548,17 einen Sparbrief erworben, der in diesem Jahr fällig wird. Herr Lindner bekommt 25.000,00 ausbezahlt. 1.1
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 2012/2013 Geltungsbereich: Klassenstufe 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss
Mecklenburg - Vorpommern
Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht
Tag der Mathematik 2012
Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Bepunktung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner
Vergleichsarbeit Mathematik
Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)
Schriftliche Abschlußprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1993/94 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlußprüfung Mathematik Realschulabschluß
Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008
Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2008 im Fach Mathematik 23.06.2008 Arbeitsbeginn: Bearbeitungszeit: 11:00 Uhr 120 Minuten
Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Wahlteil sind von den vier Wahlaufgaben mindestens zwei zu bearbeiten.
Realschulabschlussprüfung 2000 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht aus einem Pflicht- und einem Wahlteil. Im Pflichtteil sind alle vier Aufgaben zu
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 2004/2005 Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender
THÜRINGER KULTUSMINISTERIUM
THÜRINGER KULTUSMINISTERIUM Realschulabschluß 1998 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten. Zusätzlich zur Arbeitszeit werden 30 Minuten
Mathematik. Prüfungen am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport
Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jahrgangsstufe 10 Mathematik Schriftliche Prüfung Schuljahr: 003/004 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 160 Minuten.
Funktionen (linear, quadratisch)
Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)
Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.
Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen
Probematura Mathematik
Probematura Mathematik Mai / Juni 2013 Seite 1 von 5 Probematura Mathematik VHS 21 / Sommertermin 2013 1. Tennis Tennisspieler trainieren häufig mit einer Ballwurfmaschine. Die hier beschriebene befindet
Quadratische Funktionen (Parabeln)
Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte
Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).
1) Handytarif Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). Euro Gesprächsminuten Tragen Sie in der folgenden Tabelle ein, welche Bedeutung
Unterlagen für die Lehrkraft
Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung
Gegeben ist die Funktion f durch. Ihr Schaubild sei K.
Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,
Abschlussprüfung 2010 an zwei-, drei- und vierstufigen Wirtschaftsschulen
Abschlussprüfung 2010 an zwei-, drei- und vierstufigen Wirtschaftsschulen Prüfungsfach: Mathematik Prüfungstag: Donnerstag, 1. Juli 2010 Arbeitszeit: 180 Minuten Zugelassene Hilfsmittel: Elektronischer,
Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik
Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik. Lineare
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.
Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler
Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport
Ministerium für Bildung, Jugend und Sport Prüfung am Ende der Jahrgangsstufe 10 Schriftliche Prüfung Schuljahr: 014/015 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 135 Minuten. Jede
Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A
Schriftliche Prüfung Schuljahr: 2006/2007 Schulform: Gesamtschule Erweiterungskurs. Mathematik
Ministerium für Bildung, Jugend und Sport Prüfungen Ende der Jahrgangsstufe 0 Schriftliche Prüfung Schuljahr: 2006/2007 Schulform: Gestschule Erweiterungskurs Mathematik Allgemeine Arbeitshinweise Die
Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)
Qualifizierender Hauptschulabschluss Schuljahr 2005/2006. Mathematik
Prüfungstag: Dienstag, 13. Juni 2006 Prüfungsbeginn: 8.00 Uhr Qualifizierender Hauptschulabschluss Schuljahr 2005/2006 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )
Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule
Mathematik VERA-8 in Bayern Testheft B: Realschule Wirtschaftsschule - 1 - ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz,
Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min
Aufgabe 1: Wortvorschriften Gib zu den Wortvorschriften je eine Funktionsgleichung an: a) Jeder Zahl wird das Doppelte zugeordnet b) Jeder Zahl wird das um 6 verminderte Dreifache zugeordnet c) Jeder Zahl
Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten Wenn du deine Arbeit abgibst,
http://www.olympiade-mathematik.de 4. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 8 Saison 1964/1965 Aufgaben und Lösungen
4. Mathematik Olympiade Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
Kaufmännische Berufsmatura 2011
Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete
Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten
Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10
Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de
1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht
T Nach- bzw. Wiederholungsprüfung:
Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:
Probeunterricht 2013 an Wirtschaftsschulen in Bayern. Mathematik 7. Jahrgangsstufe
M 7 Zahlenrechnen Probeunterricht 2013 an Wirtschaftsschulen in Bayern Mathematik 7. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 8: Arbeitszeit Teil II (Textrechnen) Seiten 9 bis 13:
MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009
EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer
Kaufmännische Berufsmatura 2010 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
- 2 - AP WS 09M. 1.3 Stellen Sie einen Tilgungsplan für die ersten zwei Jahre auf, wenn Annuitätentilgung vereinbart ist.
- - AP WS 09M 1 Finanzmathematik Punkte Frau Seufert möchte für den Bau eines Mietshauses, den sie in sechs Jahren beginnen will, ein Startkapital in Höhe von 10.000 ansparen. 1.1 Berechnen Sie, wie hoch
Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis
Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die
EXPEDITION Mathematik 3 / Übungsaufgaben
1 Berechne das Volumen und die Oberfläche eines Prismas mit der Höhe h = 20 cm. Die Grundfläche ist ein a) Parallelogramm mit a 12 cm; b 8 cm; ha 6 cm b) gleichschenkliges Dreieck mit a b 5 cm; c 60 mm;
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 9 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Qualifizierender
Orientierungsaufgaben für das ABITUR 2014 MATHEMATIK
Orientierungsaufgaben für das ABITUR 01 MATHEMATIK Im Auftrag des TMBWK erarbeitet von: Aufgabenkommission Mathematik Gymnasium, Fachberater Mathematik Gymnasium, CAS-Multiplikatoren Hinweise für die Lehrerinnen
Informationen zum Aufnahmetest Mathematik
Erwachsenenschule Bremen Abendgymnasium und Kolleg Fachvertretung Mathematik Informationen zum Aufnahmetest Mathematik Der Aufnahmetest Mathematik ist eine schriftliche Prüfung von 60 Minuten Dauer. Alle
Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert
Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte
5. Lineare Funktionen
5. Lineare Funktionen Lernziele: -Eine lineare Funktion grafisch darstellen -Geradengleichung (Funktionsgleichung einer linearen Funktion) -Deutung von k- und d-wert -Grafische Lösung von Gleichungssystemen
Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1
Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden
D6. Ein 45 000 Liter Wassertank wird mit einer Geschwindigkeit von 220 Litern pro Minute gefüllt.
D6. Ein 45 000 Liter Wassertank wird mit einer Geschwindigkeit von 220 Litern pro Minute gefüllt. Schätzen Sie auf eine halbe Stunde genau, wie lange es dauert, den Tank zu füllen. A. 4 Stunden B. 3 1
Darstellungsformen einer Funktion
http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die
Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten
Mathetest 1b. Schulabschlussfragen üben: 20 Fragen in 60 Minuten Name: Datum: Zeit: 60:00 Minuten Frage 1 von 20 Theo und Jenny sollen für eine Messeveranstaltung einen Holztisch mit 100 cm x 100 cm und
Lösung. Prüfungsteil 1: Aufgabe 1
Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)
Qualifizierender Hauptschulabschluss Schuljahr 2008/2009. Mathematik
Prüfungstag: Montag, 25. Mai 2009 Prüfungsbeginn: 8.00 Uhr Qualifizierender Hauptschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt
Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015
Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen
Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein. Zentrale Abschlussarbeit 2013. Realschulabschluss
Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Realschulabschluss Impressum Herausgeber Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein
( ) als den Punkt mit der gleichen x-koordinate wie A und der
ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1998/99 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen
Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses
Falten regelmäßiger Vielecke
Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.
Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note
Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich Mathematik Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen. Wenn
Umgekehrte Kurvendiskussion
Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen
Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011
LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik 18.
BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)
Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel
Aufgaben zur Flächenberechnung mit der Integralrechung
ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph
Gymnasium. Testform B
Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Gymnasium Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau im
Fit in Mathe. Juni 2014 Klassenstufe 9. Lineare Funktionen
Thema Musterlösungen Juni 0 Klassenstufe 9 Lineare Funktionen a) Vervollständige die Tabelle mit den Funktionswerten: x 6 8 0 6 0 x 5 6 7 8 9 0 b) Gib die Funktionsgleichung an x 6 8 0 6 0 8 x,5,75,5 0,5-0,5
Mathematik. Lineare Funktionen. Vergleich von Handy - Tarifen
Mathematik Lineare Funktionen Vergleich von Handy - Tarifen Thema der Unterrichtseinheit: Funktionen Thema der Unterrichtsstunde: Grafische Darstellung linearer Funktionen Bedeutung des Schnittpunktes
Orientierungstest für angehende Industriemeister. Vorbereitungskurs Mathematik
Orientierungstest für angehende Industriemeister Vorbereitungskurs Mathematik Weiterbildung Technologie Erlaubte Hilfsmittel: Formelsammlung Taschenrechner Maximale Bearbeitungszeit: 1 Stunde Provadis
