Lernziele Matbu. ch 8
|
|
|
- Alfred Ralf Melsbach
- vor 10 Jahren
- Abrufe
Transkript
1 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene Zahlen addieren, subtrahieren, multiplizieren und dividieren. Ich kann gemeine Brüche oder Dezimalbrüche mit und ohne Variablen schriftlich oder mit dem Taschenrechner addieren, subtrahieren, dividieren und multiplizieren. Doppelbruch 3 1 von minus bis plus : Negative Zahlen addieren und subtrahieren. 4 1 Verpackte Zahlen: Gleichungen durch Umformen lösen. 5 2 Kopfgeometrie: Das Raumvorstellungsvermögen weiter entwickeln. Ich kann ganze positive und negative Zahlen mit und ohne Variablen im gesamten Bereich des Zahlenstrahles (positive und negative Zahlen) addieren und subtrahieren. Ich kann Summen und Differenzen mit und ohne Variablen addieren und subtrahieren und dabei die Klammern vorher lösen. Ich kann angewandte Aufgabendazu lösen. Ich kann Zahlenfolgen im gesamten Zahlenbereich weiterführen. Ich kann Gleichungen ersten Grades mit einer Unbekannten lösen. Ich kann Textaufgaben in Gleichungen umsetzen. ganze Zahlen Z, negative, positive Zahlen Vorzeichen, entgegengesetzte Zahl Lernziele Mathbu.ch 8 Seite 1 Sekundarschule Weesen-Amden / FB
2 6 1 entwicklung von zwei bis acht : Vielecke berechnen und konstruieren. 8 1 Zehn hoch : Die Bedeutung negativer Exponenten zur Basis 10 kennen. Mit Zehnerpotenzen rechnen und die wissenschaftliche Schreibweise des Taschenrechners verstehen Zins, Gewinn/Verlust und Steuern: Zins, Gewinn / Verlust und Steuern mit Hilfe von Prozenten berechnen und vergleichen. Ich kann spezielle Vierecke aufgrund ihrer Eigenschaften erkennen und benennen. Ich kenne die Formeln zur Flächen und Umfangberechnung der speziellen Vierecke. Ich kann angewandte Aufgaben zur Berechnung von Fläche und Umfang von Vierecken lösen. Ich kann Vierecke kontruieren. Ich kann spezielle Eigenschaften von Vierecken erkennen und nennen. Ich kann Zehnerpotenzen mit negativen und positiven Exponenten multiplizieren. dividieren und potenzieren. Ich kann Zahlen in wissenschaftlicher Schreibweise auf einem Zahlenstrahl markieren und der Grösse nach ordnen. Ich kann Zehnerpotenzen in gewöhnliche und Dezimalbrüche umwandeln und umgekehrt. Ich kenne die Potenzgesetze in bezug auf Zehnerpotenzen. Ich kenne die Jahreszins und Marchzinsformel mit ihren Symbolen und kann sie notieren. Ich kann mit Hilfe der beiden Formeln alle Variablen in Textaufgaben, Tabellen usw. berechnen. Ich kann Rabatt und Skonto auf Rechnungsbeträge berechnen. Ich kann Jahreszins, Rabatt, Veränderungen in Statistiken und ähnliche Sachverhalte in Prozenten ausdrücken. Ich kann Gewinne und Verluste in Geldbeträgen und in Prozenten berechnen. Quadrat, Rechteck, Rhombus, Rhomboid, Parallelogramm, Trapez, Drachenviereck, allgemeines Viereck Prozent, Promille, Prozentsatz, Prozentwert, Kapital, Zins, Marchzins, Rabatt, Skonto, Gewinn, Verlust, Steuern, MWST Lernziele Mathbu.ch 8 Seite 2 Sekundarschule Weesen-Amden / FB
3 13 1 Der Satz des Pythagoras: Einen der berühmtesten Sätze der Mathematik kennen lernen und verstehen, wieso er gilt. Berechnungen mit Hilfe des Satzes durchführen Wurzeln: Die Bedeutung von Quadratwurzeln verstehen. Quadratwurzeln bestimmen Etwa: Sich Zahlen und Grössen vorstellen, schätzen und überschlagen Schattenbilder und Schrägbilder: Schrägbilder von Würfeln und Würfelgebäuden zeichnen. Ich kenne den Satz des Pythagoras, kann ihn notieren und kann ihn in Skizzen erklären. Ich kann mit Hilfe des Satzes von Pythagoras angewandte Aufgaben lösen. Ich kann aus Quadratzahlen ohne Taschenrechner die Qurzel ziehen. Ich kann Zahlen und ihre Wurzeln auf Zahlengeraden markieren. Ich kann die Quadratwurzel aller positiver Zahlen mit Hilfe des Taschenrechners berechnen. Ich erkenne Gestzmässigkeiten zwischen Quadratwurzeln und kann sie in Aufgaben anwenden. Ich kann Terme mit Quadratwurzeln berechnen und vergleichen. Ich kann mit Hilfe des Satzes von Pythagoras Quadratwurzeln konstruieren. Ich kann Quadratwurzeln in Diagrammen darstellen. Kathete, Hypotenuse, Körperdiagonale Wurzel, Quadratwurzel (2. Wurzel) Lernziele Mathbu.ch 8 Seite 3 Sekundarschule Weesen-Amden / FB
4 18 1 Hat ein Dreieck eine Mitte? Eigenschaften von speziellen Linien und Punkte im Dreieck kennen und dreht und dreht : Längen von Kreislinien berechnen Kornkreise: Bedeutung der Zahl π kennen und Kreisflächen berechnen. Ich kann die vier speziellen Linien im Dreieck nennen, konsturieren und deren Eigenschaften beschreiben. Ich kann je die Schnittpunkte der vier Linien im Dreieck nennen, kontruieren und deren Eigenschaften beschreiben. Ich kenne die Eigenschaften der Winkelhalbierenden und der Mittelsenkrechte als geometrische Örter. Ich kann Dreiecke mit Hilfe der speziellen Linien und deren Eigenschaften konstruieren. Ich kenne die Zahl π auf 3 Stellen genau und kann ihre Bedeutung als Quotient von Umfang und Durchmesser eines Kreises erklären. Ich kenne die zwei Formeln für die Berechnung des Umfanges eines Kreises und kann sie notieren. Ich kann angewandte Aufgaben zur Kreisberechnung lösen. Ich kenne die Formeln zur Berechnung von Kreisflächen und Kreissektoren, kann sie notieren und angewandte Aufgaben dazu lösen. Ich kenne die Begriffe Zentriwinkel, Bogen (Bogenlänge), Kreissektor und Kreisring und kann angewandte Aufgaben dazu lösen. Ich kenne die Volumenformel von Zylindern, kann sie notieren und angewandte Aufgaben dazu lösen. Winkelhalbierende, Mittelsenkrechte, Seitenhalbierende, Schwerpunkt, Inkreis ( mittelpkt.), Umkreis ( mittelpt.) Pi Kreissektor, Kreisring, Bogenlänge, Zentriwinkel Lernziele Mathbu.ch 8 Seite 4 Sekundarschule Weesen-Amden / FB
5 21 1 Malkreuze mit negativen Zahlen: Die vier Grundoperationen mit positiven und negativen Zahlen ausführen Binome multiplizieren: Die drei binomischen Formeln verstehen Grundfläche Höhe: Oberflächen und Volumen von Prismen und Zylinder berechnen Der Altar von Delos: Geometrische Probleme experimentell und mit Hilfe von Gleichungen lösen. Ich kann Multiplikationen und Divisionen mit positiven und negativen Zahlen mit und ohne Variablen im Kopf, schriftlich und mit dem Taschenrechner durchführen. Ich kann Gleichungen ersten Grades und ohne Brüche lösen. Ich kann Multiplikationen mit und ohne Variablen mit Hilfe von Malkreuzen lösen. Ich kann angewandte Aufgaben zum Thema der Malkreuze lösen. Ich kenne die drei binomischen Formeln auswendig und kann sie allgemein formulieren. Ich kann die binomischen Formeln mit dem Malkreuz und dem Rechteckmodell veranschaulichen. Ich kann Gleichungen mit binomischen Formeln lösen. Ich kann das Pascal sche Dreieck erstellen. Ich kann Volumen und Oberfläche von Prismen und Zylindern berechnen. Ich kann Terme und Formeln zur Berechnung von Volumen oder Flächen aufstellen. Ich kann Netze der Körper zeichnen. Ich kenne die Eigenschaften der Prismen und Zylinder und kann angewandte Aufgaben dazu lösen. Binom Prisma, Zylinder, Grundfläche, Deckfläche, Mantelfläche, Oberfläche Lernziele Mathbu.ch 8 Seite 5 Sekundarschule Weesen-Amden / FB
6 25 2 Aufwärts abwärts: Steigungen in unterschiedlichen Sachverhalten und Zusammenhängen erfahren und bestimmen Alles bewegt sich: Strecken, Zeiten und Geschwindigkeiten messen, berechnen und grafisch darstellen Summen als Produkte darstellen: Summen als Produkte und Produkte als Summen darstellen. Ich kann in Termen mit Summen und Differenzen den ggt der Summanden, resp. Minuenen und Subtrahenden bestimmen und ausklammern. Ich kann in Bruchtermen wenn möglich ausklammern und diese so weit als möglich kürzen. Ich erkenne in Termen binomische Formeln und kann sie mit ihrer Hilfe faktorisieren. Ich kann einfache quadratische Terme in Faktoren mit Summen oder Differenzen zerlegen. [z.b.: x 2 + 5x 6 = (x + 6). (x 1)] Lernziele Mathbu.ch 8 Seite 6 Sekundarschule Weesen-Amden / FB
7 30 1 Primzahlen: Primzahlen als unteilbare Bausteine der natürlichen Zahlen kennen lernen. ggt / kgv 31 2 Zahl folgt auf Zahl folgt auf Zahl : Zahlenfolgen unterscuhen und beschreiben Gewinnen: Experimente zur Kombinatorik / Wahrscheinlichkeit durchführen und hinterfragen Gesetze des Zufalls: Möglichkeiten kennen lernen, wie man Wahrscheinlichkeiten durch Experimente oder Überlegungen abschätzen kann Quod erat demonstradum: Am Beispiel von Winkelsätzen Einblick in geometrische Beweisführung erhalten. Kreiswinkelsätze. Ich kann alle Primzahlen zwischen Null und Hundert notieren. Ich kenne die Definition einer Primzahl. Ich kenne die Teilbarkeitsregeln. Ich kann mit Hilfe einer Tabelle bestimmen, ob eine natürliche Zahl Primzahl ist oder nicht. Ich kann die Teiler einer Zahl mit Hilfe einer Tabelle bestimmen. Ich kann jede natürliche Zahl in ihre Primfaktoren zerlegen. Ich kenne die Methoden zur Bestimmung des kgv und des ggt und kann sie in Aufgaben anwenden. Ich kann angewandte Aufgaben lösen. Ich kann die Methode von Erathostenes beschreiben und anwenden. Sehne, Tangente, Berührungspunkt, Berührungsradius Lernziele Mathbu.ch 8 Seite 7 Sekundarschule Weesen-Amden / FB
Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)
KK/Werkjahr mit Mindeststandards [Druckversion] Leitdeen/Richtziele Stundentafeln Sprache Geometrisches Zeichnen Mensch und Umwelt Gestalten und Musik Sport Individuum und Gemeinschaft Niveaus E P Links
GA Grundanforderungen EA erweiterte Anforderungen. LU Ziele und Inhalte GA EA Hinweise Hilfsmittel
Planungshilfe für das mathbu.ch 8 / 8+ 3. Klasse Bezirksschule Allgemeine Hinweise: - Die Aufgaben sind in Grundanforderungen (Minimalziele für alle Schülerinnen und Schüler gemäss den verbindlichen Zielen
II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...
Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen
Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)
Niveau Leitdeen/Richtziele Stundentafeln Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) [Druckversion] Sprache Anwendungen der Geometrisches Zeichnen Mensch und Umwelt Gestalten
Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man
die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40
Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 7
1. Rationale Zahlen Vernetzen Geben Ober- und Unterbegriffe an und führen Beispiele und Gegenbeispiele als Beleg an (z.b. Proportionalität, Viereck) Überprüfen bei einem Problem die Möglichkeit mehrerer
IGS Robert-Schuman-Schule Frankenthal
Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für
Brüche. Zuordnungen. Arithmetik/Algebra. 1 Multiplizieren von Brüchen 2 Dividieren von Brüchen 3 Punkt vor Strich. Klammern Üben Anwenden Nachdenken
Brüche Schuleigener Lehrplan Mathematik Klasse 7 auf der Basis der Kernlehrpläne Stand August 2009 Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Schnittpunkt 7 5 Doppelstunden Kommunizieren
inhaltsbezogene Kompetenzbereiche/Kompetenzen Ordnen und vergleichen Zahlen
Arithmetik/Algebra 1. Rechnen mit Brüchen Vergleichen und bewerten Lösungswege Argumentationen und Darstellungen Erkunden Untersuchen Muster und Beziehungen bei Zahlen und Figuren und stellen Vermutungen
Stichwortverzeichnis. Symbole. Stichwortverzeichnis
Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
Quadratische Gleichungen
Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl
Mathematik 9 Version 09/10
Verbalisieren Erläutern mathematischer Zusammenhänge und Kommunizieren Überprüfung und Bewertung von Problembearbeitungen Vergleichen und Bewerten von Lösungswegen und Problemlösungsstrategien (Funktionsplotter)
Übungsbuch Algebra für Dummies
...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe
Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr.
Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr. 85478) Viele der im Kernlehrplan aufgeführten Kompetenzbereiche
MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE
Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER
Zeichen bei Zahlen entschlüsseln
Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren
Projekt: Winkel im Igelweg
JAHRESARBEITSPLAN denkstark 2 978-3-507-84816-0 Schulwoche Zeitraum Leitidee Projekte und Inhalt denkstark 2 978-3-507-84816-0 Kompetenzen denkstark 2 1-3 3 Wochen Messen Raum und Form Projekt: Winkel
II* III* IV* Niveau. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...
Titel MB 8 LU Nr nhaltliche Allg. Buch Arbeitsheft AB * * V* Zins, Gewinn / Verlust und Steuern MB 8 LU 10 nhaltliche Allg. Buch Arbeitsheft AB Prozentwerte mit verschiedenen Methoden bestimmen 1 den Jahreszins,
Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.
R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable
Repetitionsaufgaben Wurzelgleichungen
Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen
Themenkreise der Klasse 5
Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.
Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau
Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp
Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6
Übungsblatt Teiler, Vielfache, Teilbarkeit und Primzahlen Klasse 6 1. Bestimme jeweils die Teilermenge der folgenden Zahlen: a) 62 b) 25 c)71 d) 28 Lösungsbeispiel: T 62 = {...} (Einzelne Elemente der
Bildungszentrum Limmattal. Semesterplan Mathematik. Logistik und Technologie Polymechaniker/in, Konstrukteur/in V17.4
Bildungszentrum Limmattal Logistik und Technologie Semesterplan Mathematik V17.4 2/5 1. Semester XXF1.1 Grundlagen der Mathematik XXF1.1.1 Zahlen, Zahlendarstellung, Gebrauch des Taschenrechners XXF1.1.2
Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation
Klasse 9 Maximalplan Kurs A Minimalplan Kurs B Zahlenbereich bis 10.000/100.000 (B) und 1.000.000 (A) - Grundrechenarten Bis 1.000.000 erarbeiten; Zahlenhaus, Stellentafel, Zahlenhaus, Stellentafel, Grundrechnen
1. Sem. 60 Lektionen. Profil E 140 Lektionen. Mathematik
1. Sem. 60 Lektionen Grundlagen / 15L Zahlen, Zahlendarstellung, Gebrauch des Taschenrechners Koordinatensystem, grafische Darstellungen SI-Einheiten Zeitberechnungen Prozente, Promille Taschenrechner
GA Grundanforderungen EA erweiterte Anforderungen. LU Ziele und Inhalte GA EA Hinweise Hilfsmittel
Planungshilfe für das mathbu.ch 8 3. Klasse Realschule Allgemeine Hinweise: - Die Aufgaben sind in Grundanforderungen (Minimalziele für alle Schülerinnen und Schüler gemäss den verbindlichen Zielen und
Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10
Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen
Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen
TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009
Kompetenzraster Mathematik 7
Bruchrechnen Ich kann mit Brüchen Grundrechenarten sicher durchführen. Ich kann mit Brüchen Anwendungsaufgaben lösen. Ich kann Bruchterme und Bruchgleichungen aufstellen. Zahlen Ich kann mit positiven
1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen
Stoffverteilungsplan EdM 8RhPf Abfolge in EdM 8 Bleib fit im Umgang mit rationalen Zahlen Kompetenzen und Inhalte Umgang mit rationalen Zahlenim Zusammenhang 1. Terme und Gleichungen mit Klammern Leitidee
Terme und Formeln Umgang mit Termen
Terme und Formeln Umgang mit Termen Al Charazmi (* um 780, um 840) war ein persischer Mathematiker, Astronom und Geograph. Vom Titel seines Werkes Al-kitab al-mukhtasar fi hisab al- abr wa l-muqabala (Arabisch
Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005
Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen
Schulinternes Curriculum Klasse 7
Schulinternes Curriculum Klasse 7 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Methodische Vorgaben/ Lambacher Schweizer Zeitdauer (in Wochen) Arithmetik/Algebra mit Zahlen und Symbolen umgehen
Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft
Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick
Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5
Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel
Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen
Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3
Planungshilfe für das mathbu.ch 8 3. Klasse Sekundarschule
Planungshilfe für das mathbu.ch 8 3. Klasse Sekundarschule Allgemeine Hinweise: - Die Aufgaben sind in Grundanforderungen (Minimalziele für alle Schülerinnen und Schüler gemäss den verbindlichen Zielen
Mathematik 4 Primarstufe
Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige
Realschule Gebhardshagen Stoffverteilungsplan Mathematik inhaltsbezogene Kompetenzen
Realschule Gebhardshagen Stoffverteilungsplan Mathematik inhaltsbezogene Kompetenzen Gültigkeit ab dem Schuljahr 2012/2013 Grundlagen: Kerncurriculum Mathematik für Realschulen in Niedersachsen Faktor,
In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln.
In Form mit Formeln Formeln spielen in der Mathematik und in der Physik eine wichtige Rolle. Bring dich in Form mit Formeln. Die Schülerinnen und Schüler können Zahl- und Operationsbeziehungen sowie arithmetische
Curriculum Mathematik. Bereich Schulabschluss
Curriculum Mathematik Bereich Schulabschluss Im Folgenden finden Sie eine Übersicht über alle Lerneinheiten im Fach Mathematik. Das Fach Mathematik ist in Lernstufen, Kapitel, Lerneinheiten und Übungen
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)
WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG HAUPTSCHULE Fachcurriculum Klasse 7H Mathematik Schwerpunkte Kompetenzen Inhalte Mathematische
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Übersicht. 1. Zuordnungen. Arbeitsblätter... 15 32 Lösungen...255 257. 2. Prozent- und Zinsrechnung. Arbeitsblätter... 33 54 Lösungen...
Übersicht 1. Zuordnungen Arbeitsblätter... 15 32 Lösungen...255 257 2. Prozent- und Zinsrechnung Arbeitsblätter... 33 54 Lösungen...258 260 3. Geometrie: Figuren - Kongruenz Arbeitsblätter... 55 118 Lösungen...261
Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu.
Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglich eines Computers im Mathematikunterricht mit dem mathbu.ch 7 9 / 9+ Sj LU Aufgabe(n) Adressat Lernphase Mathematischer Inhalt Beschreibung
Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!
Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren
Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als
Kapitel im Fokus. Ich kann / kenne. 5. Klasse Stand Juni **Anzahl der KA: 6 pro Schuljahr** Daten und Zufall. Größen messen
Daten und Zufall Sammeln und Auswerten von Daten Strichliste Absolute Häufigkeit Säulendiagramm Daten erfassen (Strichlisten, Tabellen). gesammelte Daten auswerten. Daten mithilfe von Diagrammen darstellen.
Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem
Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT
Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen
Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1
MS Naturns Fachcurriculum Mathematik überarbeitet die Dezimalzahlen - definieren
Jahrgangstufe: 1. Klasse Basiswissen Kompetenzen Der Schüler/die Schülerin kann Thema: Natürliche Zahlen Inhalte: Vergleichen, ordnen, zählen, Daten sammeln und darstellen Thema: Zahlensysteme Inhalte:
Cube Du setzt dich mit Volumen und Oberfläche von Würfeln und Quadern auseinander und trainierst gleichzeitig dein Vorstellungsvermögen.
Cube Du setzt dich mit Volumen und Oberfläche von Würfeln und Quadern auseinander und trainierst gleichzeitig dein Vorstellungsvermögen. bereich verstehen und verwenden die Begriffe Koordinaten, Ansicht,
Inhalt 1 Natürliche Zahlen 2 Addition und Subtraktion natürlicher Zahlen 3 Multiplikation und Division natürlicher Zahlen
Inhalt 1 Natürliche Zahlen 1.1 Der Zahlbegriff... 6 1.2 Das Zehnersystem... 7 1.3 Andere Stellenwertsysteme... 8 1.4 Römische Zahlen... 10 1.5 Große Zahlen... 11 1.6 Runden... 13 1.7 Rechnen mit Einheiten...
Mein Schnittpunkt-Lernplan: Kapitel 1 Kreis und Winkel
Kapitel 1 Kreis und Winkel Ich kann Übungen Kapitel 1 Das kann 1 Kreis (Seiten 8 9) 1 Kreise sauber zeichnen und die Begriffe Radius und Durchmesser erklären. Nr.1 Nr. 2, 3, 4, S. 20 Nr. 1, 2, 3 2 Kreisausschnitt
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar.
Die folgenden Aufgaben stellen als Überblick die Grundlagen für einen erfolgreichen Start im EA-Kurs dar. Es gelten der Stoff aus www.mathbu.ch 8+ resp. 9+. A00 Arithmetisches Rechnen / allgemeines Rechnen
Stoffverteilungsplan Mathematik 8 auf der Grundlage des Lehrplans Schnittpunkt 8 Klettbuch
K5: Mit Variablen und Termen arbeiten K5: Mit Variablen und Termen arbeiten K2: Geeignete heuristische Hilfsmittel (z. B. informative Figuren), Strategien und Prinzipien zum Problemlösen auswählen und
Kompetenzraster Mathematik 8
Terme 0 Ich kann Terme vereinfachen und die Grundrechenarten bei diesen anwenden. Ich kann Bruchteile aufstellen und vereinfachen. Ich kann Wurzelterme bestimmen. Gleichungen Ich kann einfache Gleichungen
5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben
Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und
Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)
Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck
50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte
50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien
Schuljahr 20 / Schule: Lehrkraft: Wochenstundenzahl:
Schuljahr 20 / Schule: Lehrkraft: Wochenstundenzahl: S E P T E M B E R 9.1 Prozent- und Zinsrechnung 5 Überblick ca. 12 AWT 9.5 9.1 Prozentrechnung Vorbereitende Übungen zum Prozentrechnen (Wiederholung)
http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen
2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und
1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R
C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Teilbarkeit von natürlichen Zahlen
Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch
Curriculum Mathematik
Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von
Allgemeine Ziele / inhaltliche Schwerpunkte
9 Aus den Planungsrastern sind zu den vier Kompetenzbereichen und inhaltliche Schwerpunkte ersichtlich, die bei der jeweiligen Lernumgebung im Vordergrund stehen. Die Übersichten können in der Planungsphase
Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014
egelsammlung mb2014 THM Friedberg von 6 16.08.2014 15:04 Brückenkurs Mathematik, THM Friedberg, 15 19.9.2014 Sammlung von Rechenregeln, extrahiert aus dem Lehrbuch: Erhard Cramer, Johanna Neslehová: Vorkurs
Fördermaterialienordner Mathematik 5/6
Fördermaterialienordner 5/6 Inhaltsverzeichnis 1 Zahl und Zahlbereiche 1.1 Natürliche Zahlen 1.2 Rechnen mit natürlichen Zahlen 1.3 Rechnen mit Größen 1.4 Brüche 1.5 Teilbarkeit 1.6 Rechnen mit Brüchen
BLICKPUNKT MATHEMATIK 3
BLICKPUNKT MATHEMATIK 3 (Ausgabe Rovina / Schmid) Stand: September 2010 BLICKPUNKT MATHEMATIK 3 Seite 1 von 17 A Ganze und rationale Zahlen Blatt Buch Die Zahlengerade 1A 14 Die Zahlengerade Lösungen 1L
Kompetenzen am Ende der Einheit GRUNDWISSEN
Kompetenzen am Ende der Einheit GRUNDWISSEN A) Grundrechenarten mit - 1.Natürlichen Zahlen : Berechne ohne Taschenrechner : a) 6438 + 64742 b) 8633 5877 c) 28 * 36 d) 7884 : 9-2. Brüchen : Berechne ohne
Stoffverteilungsplan Werkrealschule. Einblicke Mathematik für die Werkrealschule in Baden-Württemberg. 978-3-12-746390-3 Lehrer:
Stoffverteilungsplan Werkrealschule Einblicke Mathematik für die Werkrealschule in Baden-Württemberg Band 5 Schule: 978-3-12-746390-3 Lehrer: Woche Leitidee Kompetenzstandards Zeitraum 1 mit Mathematik
2 Terme 2.1 Einführung
2 Terme 2.1 Einführung In der Fahrschule lernt man zur Berechnung des Bremsweges (in m) folgende Faustregel: Dividiere die Geschwindigkeit (in km h ) durch 10 und multipliziere das Ergebnis mit sich selbst.
Arithmetik/Algebra mit Zahlen und Symbolen umgehen
UNTERRICHTSVORHABEN 1 Arithmetik/Algebra mit Zahlen und Symbolen umgehen ggf. fächerverbindende Kooperation mit Thema: Umfang: 8 Wochen Jahrgangsstufe 9 Zehnerpotenzen/ Potenzschreibweise mit ganzzahligen
Grundwissen Mathematik 7.Klasse Gymnasium SOB
1 Grundwissen Mathematik 7.Klasse Gymnasium SOB 1.Figurengeometrie 1.1.Achsensymmetrie Sind zwei Punkte P und P achsensymmetrisch bezüglich der Achse a, dann gilt [PP ] a und a halbiert [PP ]. a Jeder
fwg Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: Zahlenstrahl
M 5.1 Die Zahlen Nimmt man auch die Natürliche Zahlen und Zahlenstrahl nennt man natürliche Zahlen: hinzu, schreibt man: Zahlenstrahl 0 1 2 3 4 5 6 7 8 Je weiter rechts eine Zahl auf dem Zahlenstrahl liegt,
Schulcurriculum DSW Mathematik Klasse 9
Schulcurriculum DSW Mathematik Klasse 9 Das Schulcurriculum orientiert sich an den Lehrplänen für Mathematik des Landes Thüringen. Hierbei sind die Anforderungen, die für den Realschulabschluss relevant
Inhaltsverzeichnis / Modul 1
Inhaltsverzeichnis / Modul 1 i Der Taschenrechner - Einführung 1 Der Taschenrechner - 2 Besonderheiten 2 Der Taschenrechner - 3 Übungen 3 Stellenwerte- 1 Addition 4 Stellenwerte - 2 Subtraktion 5 10, 100,
Curriculum Mathematik
Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von
7 Rechnen mit Polynomen
7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn
Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10
Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)
Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel
Probleme beim Arbeiten mit Variablen, Termen und Gleichungen
Probleme beim Arbeiten mit Variablen, Termen und Gleichungen Tage des Unterrichts in Mathematik, Naturwissenschaften und Technik Rostock 2010 Prof. Dr. Hans-Dieter Sill, Universität Rostock, http://www.math.uni-rostock.de/~sill/
Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1
B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,
Simplex-Umformung für Dummies
Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit
BLICKPUNKT Mathematik 3 1. Februar 2007
BLICKPUNKT Mathematik 3 1. Februar 2007 Verzeichnis der zur Verfügung stehenden Arbeitsblätter (Kopiervorlagen) A Ganze und rationale Zahlen Blatt Buch Addieren ganzer Zahlen (Pfeildarstellung) 1A 20 Addieren
Informationen zum Aufnahmetest Mathematik
Erwachsenenschule Bremen Abendgymnasium und Kolleg Fachvertretung Mathematik Informationen zum Aufnahmetest Mathematik Der Aufnahmetest Mathematik ist eine schriftliche Prüfung von 60 Minuten Dauer. Alle
Prozentrechnung. Klaus : = Karin : =
Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar
JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen
JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen
Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html
Leistungsbeurteilung mit der 4.0 Skala Mathematik 7. Schulstufe
Leistungsbeurteilung mit der 4.0 Skala Mathematik 7. Schulstufe Nach Jahresplanung: 1.) Mein Wissen aus der 2. Klasse (Zahlen und Maße, Geometrische Figuren und Körper, Operieren, Interpretieren, Darstellen
MatheBlatt (Version 2)
MatheBlatt (Version 2) Bilder und Formvorlagen für Mathe-Arbeitsblätter / Inhaltsverzeichnis Copyright Hans Zybura Software, 2008. Alle Rechte vorbehalten. Formatvorlagen aus Word-Zeichnen Elementen und
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 1. Semester ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN
ARBEITSBLATT 3 RECHNEN MIT GANZEN ZAHLEN Wir wollen nun die Rechengesetze der natürlichen Zahlen auf die Zahlenmenge der ganzen Zahlen erweitern und zwar so, dass sie zu keinem Widerspruch mit bisher geltenden
Zahlen und Operationen (Klasse 3)
Zahlen und (Klasse 3) LZ überwiegend Zahldarstellungen, Zahlbeziehungen, Zahlvorstellungen verstehen beherrschen In Kontexten rechnen LZ voll Du orientierst Dich sicher im Zahlenraum bis 1000 und kannst
Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen?
Modulabschlussprüfung ALGEBRA / GEOMETRIE Lösungsvorschläge zu den Klausuraufgaben Aufgabe 1: Wie lässt sich die Multiplikation von Bruchzahlen im Operatorenmodell und wie im Größenmodell einführen? Im
Eignungstest Mathematik
Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für
