Mathematik. Name, Vorname:
|
|
|
- Albert Eberhardt
- vor 7 Jahren
- Abrufe
Transkript
1 Kantonsschule Rychenberg Fachmittelschule Aufnahmeprüfung 2010 Mathematik Name, Vorname: Nr.: Zeit: 90 Minuten erlaubte Hilfsmittel: Taschenrechner aus der Sekundarschule, also weder programmierbar noch grafik- oder algebrafähig Bemerkungen Du kannst die 8 Aufgaben in beliebiger Reihenfolge lösen. Schreibe deine Lösungen zu jeder Aufgabe mit Tintenstift oder Kugelschreiber direkt in dieses Heft. Falls du nicht genügend Platz hast, benütze die rechte Seite oder die letzten Seiten des Heftes (dort Aufgabennummer dazu schreiben!). Du darfst kein zusätzliches Notizpapier verwenden. Das Bezeichnen von Winkeln und Seiten sowie das Eintragen von Hilfslinien in die Figuren ist gestattet. Deine Lösungswege müssen klar ersichtlich sein. Sämtliche Zwischenresultate oder Überlegungsfiguren gehören in dieses Heft. Hebe deine Schlussresultate deutlich hervor. Verwende deinen mitgebrachten Taschenrechner. Runde erst das Endresultat und vergiss nicht, die richtige Einheit anzugeben. Du solltest in diesem Heft 8 Aufgaben finden. Bitte kontrolliere dies und schreibe auf dieser ersten Seite des Heftes deinen Namen, Vornamen und die Prüfungsnummer. Viel Erfolg! Für die Korrektur: Aufgabe Total Note Punkte
2 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 2 Aufgabe 1 Vereinfache die Terme so weit wie möglich. 2 1 a) : 2x x 2 c) 1 b) a ( 2 ( 3a 4 ) ) x x + 1 x 2 1
3 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 3
4 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 4 Name, Vorname: Aufgabe 2 Nr.: Bestimme die Lösungsmengen ( Q, y Q) x. a) 2x 5 = y 3y = x b) x x 3 x + 1 = 9 3x
5 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 5
6 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 6 Aufgabe 3 Ein Solarpionier will sein neues Solarmobil mit Batterien ausrüsten. Er hat folgende Angebote: Batterietyp liefert Strom für eine Preis pro Stück Gewicht pro Stück Reichweite von A 26 km Fr kg B 19 km Fr kg Da die teureren Batterien viel kleiner sind und der Platz für lauter billige nicht ausreicht, baut er Batterien beider Typen ein, insgesamt 15 Stück. So erhält er Strom für eine Reichweite von genau 313 km. a) Wie viele Batterien von jedem Typ baut er ein? b) Wie schwer werden seine Batterien insgesamt und wie viel kosten sie? Hinweis: Für die volle Punktzahl ist die Aufgabe mit einer Gleichung zu lösen.
7 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 7
8 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 8 Aufgabe 4 Hanna erhält einen Brief, in dem ihr ein Jahresabonnement (52 Nummern) der im August 2010 neu erscheinenden Zeitschrift NOVAMODA zum Preis von Fr angeboten wird. Schliesst sie den Vertrag für dieses Abonnement vor dem 1. Juni 2010 ab, erhält sie 15 % Ermässigung auf den Abonnementspreis. Der Verlag behauptet, mit dem normalen Jahresabonnement für Fr fahre sie um mindestens 25 % günstiger, als wenn sie die 52 Nummern einzeln am Kiosk kaufe. a) Wie viel muss Hanna für ein Jahresabonnement bezahlen, wenn sie den Vertrag vor dem 1. Juni 2010 abschliesst? b) Wie viel sollte, nach der Behauptung im Brief, ein Einzelexemplar von NOVA-MODA am Kiosk mindestens kosten? (Auf 5 Rappen runden.) c) Wir nehmen an, NOVAMODA werde für Fr pro Exemplar verkauft. Um wie viele Prozente ist das normale Jahresabonnement dann günstiger als der Kauf von 52 Einzelnummern? (Runde das Resultat auf 2 Stellen nach dem Komma.)
9 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 9
10 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 10 Aufgabe 5 Die Geschwister Achill und Berta gehen immer zusammen zur Schule. Für den 2 km langen Weg benötigen sie 24 Minuten. Heute merkt Achill nach einem Viertel des Weges, dass er den Taschenrechner zu Hause vergessen hat. Er kehrt um und rennt heim, während Berta mit unveränderter Geschwindigkeit weitergeht. Daheim holt Achill den Rechner, wofür er eine Minute braucht, und rennt sofort wieder Berta hinterher. 200 m vom Schulhaus entfernt holt er Berta ein und geht mit ihr zur Schule. km a) Gib die durchschnittliche Geschwindigkeit von Berta in an. h b) Wie lange ist Berta allein unterwegs? c) Welche Strecke rennt Achill? km d) Wie schnell rennt Achill? Gib die durchschnittliche Geschwindigkeit von Achill in h an und runde das Resultat auf 2 Stellen nach dem Komma.
11 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 11
12 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 12 Aufgabe 6 Die Gerade g geht durch die Punkte P( 1/2) und Q(2/8). Die Gerade h geht durch den Punkt R(3/4) und hat die Steigung m = 1. a) Gib die Funktionsgleichungen der Geraden g und h an. b) Bestimme (rechnerisch oder graphisch) die Koordinaten des Schnittpunktes der Geraden g und h. c) Bestimme rechnerisch, wo die Gerade g die x-achse schneidet.
13 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 13
14 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 14 Aufgabe 7 ABCD ist ein Trapez mit AD = BC = 5 cm, DC = 10 cm und CE = 3 cm. Das Dreieck ABF ist gleichseitig. M ist der Mittelpunkt der Strecke DC. Berechne den Flächeninhalt der grau markierten Fläche. (Runde das Resultat auf 2 Stellen nach dem Komma.) D M E C F A B
15 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 15
16 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 16 Aufgabe 8 Aus einem Holzwürfel mit Kantenlänge 31 cm wird ein symmetrischer Sternkörper herausgeschnitten (Zeichnung). Die Seitenlänge des mittleren, kleinen Quadrats in der Vorderfläche beträgt 7 cm. a) Berechne die Oberfläche des Sternkörpers. b) Berechne das Volumen des Sternkörpers.
17 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 17
18 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 18
19 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 19
20 Kantonsschule Rychenberg FMS-Aufnahmeprüfung 2010, Mathematik Seite 20
Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)
Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:
Name:... Vorname:...
Zentrale Aufnahmeprüfung 2013 für die Kurzgymnasien des Kantons Zürich Mathematik Bisheriges Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst
Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT
Sekundarschule 4. Klasse Niveau P Name Vorname Schuljahr 2005006 Datum der Durchführung Donnerstag, 17.11.05 ORIENTIERUNGSARBEIT Sekundarschule Mathematik Niveau P (M6) Lies zuerst Anleitung und Hinweise
Kandidatennummer / Name... Gruppennummer... Aufgabe Total Note
Mathematik Zweiter Teil mit Taschenrechner Kandidatennummer / Name... Gruppennummer... Vorname... Aufgabe 1 2 3 4 5 6 Total Note Punkte total Punkte erreicht 6 6 4 5 4 6 31 Die Prüfung dauert 45 Minuten.
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
Zentrale Aufnahmeprüfung 2014 für die Kurzgymnasien des Kantons Zürich
Zentrale Aufnahmeprüfung 2014 für die Kurzgymnasien des Kantons Zürich Bitte zuerst ausfüllen: Name:........................ Vorname:..................... Prüfungsnummer:............... Du hast 90 Minuten
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: B2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:
JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr
KLASSE: NAME: VORNAME: Mögliche Punktzahl: 5 50 Punkte = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK. KLASSEN KANTONSSCHULE REUSSBÜHL 6. Mai 014 Zeit: 1.10 14.40 Uhr Allgemeines: unbedingt
Aufnahmeprüfung 2014 Mathematik
Aufnahmeprüfung Berufsmatura Mathematik 2. April 201 Berufsfachschulen Graubünden Aufnahmeprüfung 201 Mathematik Vorname: - Teil A und B dauern je 5 Minuten. - Teil A ist ohne Taschenrechner zu lösen.
Aufnahmeprüfung 2016 FMS. (zutreffendes ankreuzen) Prüfungsnummer: (auf jeder Seite oben links eintragen)
Kantonale Schulen Berufsmaturität BM / Fachmittelschule FMS Aufnahmeprüfung 2016 BM FMS Solothurn FMS Olten (zutreffendes ankreuzen) Prüfungsnummer: (auf jeder Seite oben links eintragen) Prüfungsfach:
Aufnahmeprüfung Mathematik
Zeit Reihenfolge Hilfsmittel Bewertung Lösungen 90 Minuten Die Aufgaben dürfen in beliebiger Reihenfolge gelöst werden. Taschenrechner ohne Grafik und CAS Beiliegende Formelsammlung Aus der Summe der bei
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich
Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Hohl) Serie: E1 Dauer: 90 Minuten Lösungen Hilfsmittel: Vorschriften: Bewertung:
Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Total Maximale Punktzahl Erreichte Punktzahl 3 3 3 3 3 3 18 Note Ø Die Algebra 2-Prüfung umfasst 6 Aufgaben. Ø Als Hilfsmittel ist ein nicht algebrafähiger und
- Zeichenutensilien, kein Taschenrechner, keine Formelsammlung
Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel (alt): Arithmetik und Algebra (Hohl) Fach Mathematik Teil 1 Serie D Dauer 45 Minuten
ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter
Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese
Mathematik Aufnahmeprüfung 2013 Profile m,n,s
Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe
(3r) r 2 =? xy 3y a + 6b 14. ( xy
Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:
Mathematik, 2. Sekundarschule Neues Lehrmittel Mathematik, Erprobungsversion
Zentrale Aufnahmeprüfung 2010 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule Neues Lehrmittel Mathematik, Erprobungsversion Von der Kandidatin oder
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner
Aufnahmeprüfung BM (BBZ / BFS W) und FMS Mathematik 2014 Teil 2 Mit Taschenrechner Prüfungsbedingungen Erlaubte Hilfsmittel: Taschenrechner (keine CAS-Rechner), keine Handys! Die Aufgaben sind direkt unterhalb
Mathematik Serie 5 (60 Min.)
Aufnahmeprüfung 014 Mathematik Serie 5 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! -
Zeit: 90 Minuten 4. Klasse FMS rb/th AUFNAHMETEST. Nummer: Name und Vorname:.
KANTONSSCHULE GLARUS AUFNAHMEPRÜFUNG (Beispiel) Zeit: 90 Minuten 4. Klasse FMS rb/th AUFNAHMETEST 1. Teil: Mathematik-Basis-Test 2. Teil: Anwendungsaufgaben Hinweise - Beide Tests erhalten bei der Benotung
Teil 1 Ohne Taschenrechner
Kantonsschule Trogen / BBZ Herisau Aufnahmeprüfung BM (BBZ / BFS W) und FMS September 2012 Mathematik Prüfungsbedingungen: Der Taschenrechner darf nicht gebraucht werden! Teil 1 Ohne Taschenrechner Die
Übertrittsprüfung 2015
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2015 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
3e 1. Schularbeit/ A
3e 1. Schularbeit/ A 27.10.1997 1) Löse folgende Gleichung: 5 + 4 x = 7 ( 4 P ) 10 2) Berechne und kürze das Ergebnis so weit es geht: 2 1 11 : 3 3 + 1 1 * 2 2 = ( 9 P ) 16 12 4 24 15 3 a) Konstruiere
Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich. Vorname:... Aufgaben 1 2 3 4 5 6 7 8 9 Total Note
Zentrale Aufnahmeprüfung 2015 für die Handelsmittelschulen des Kantons Zürich Mathematik Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen. Wenn
Mathematik Aufnahmeprüfung Teil 1
Berufsmaturitätsschulen St.Gallen, Buchs, Rapperswil, Uzwil 2010 Mathematik Aufnahmeprüfung Teil 1 Technische Richtung Name, Vorname:... Zeit: 60 Minuten Erlaubte Hilfsmittel: Massstab, Zirkel, kein Rechner,
Übertrittsprüfung 2011
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2011 Aufgaben Prüfung an die 1. Klasse Sekundarschule / 1. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des
Maturitätsprüfung Mathematik
Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen
Berufsmaturitätsprüfung 2013 Mathematik
GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste
Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung
Aufnahmeprüfung 5. Mai 2007 Name: Berufsmaturitätsschule für Erwachsene, naturwissenschaftliche Richtung Fach: Mathematik Zeit: 100 Minuten für 15 Aufgaben Die Aufgaben müssen auf den Frageblättern gelöst
Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 2013 Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt! -
MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 2014 MATHEMATIK. 26. Juni :30 Uhr 11:00 Uhr
MITTLERER SCHULABSCHLUSS AN DER MITTELSCHULE 014 MATHEMATIK 6. Juni 014 8:30 Uhr 11:00 Uhr Platzziffer (ggf. Name/Klasse): Die Benutzung von für den Gebrauch an der Mittelschule zugelassenen Formelsammlungen
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Mathematik. Aufnahmeprüfung vom 15. Juni
Berufsmaturität 1 Mathematik Aufnahmeprüfung vom 15. Juni 2016 Kandidaten-Nr.: Name: Vorname:......... Allgemeine Hinweise: Die Prüfungszeit beträgt 60 Minuten. Erlaubte Hilfsmittel: Netzunabhängiger Taschenrechner
Mathematik Aufnahmeprüfung 2015
Mathematik Aufnahmeprüfung 2015 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate
MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben!
KANTONALE PRÜFUNG 2015 für den Übertritt in eine Maturitätsschule auf Beginn des 10. Schuljahres GYMNASIEN DES KANTONS BERN MATHEMATIK LÖSUNGEN Es werden nur ganze Punkte vergeben! Die Aufgabenserie umfasst
Name:... Vorname:...
Zentrale Aufnahmeprüfung 2012 für die Kurzgymnasien des Kantons Zürich Mathematik, 2./3. Sekundarschule Neues Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten
Name:... Vorname:...
Zentrale Aufnahmeprüfung 2013 für die Kurzgymnasien des Kantons Zürich Mathematik Neues Lehrmittel Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle
Aufnahmeprüfung technische Berufsmaturitätsschule Mathematik 2012
Aufnahmeprüfung technische Berufsmaturitätsschule Mathematik 01 Name: Kandidatennummer: Note: Zeit: Hilfsmittel: 90 Minuten Taschenrechner erlaubt Bewertung: Löse alle Aufgaben auf den Blättern dieser
Fach Mathematik Serie A Datum 26. April 2011 Zeit 120 min. Name... Schulort... Punkte... Note... Visum 1... Visum 2...
Aufnahmeprüfung 2011 FMS Fach Mathematik Serie A Datum 26. April 2011 Zeit 120 min Name... Schulort... Vorname... Punkte... Note... Visum 1... Visum 2... Nummer 1 2 3 4 5 6 7 8 9 10 Punkte Wichtige Hinweise
Zentrale Aufnahmeprüfung 2015 für die Kurzgymnasien des Kantons Zürich
Zentrale Aufnahmeprüfung 2015 für die Kurzgymnasien des Kantons Zürich Bitte zuerst ausfüllen: Name:... Vorname:... Prüfungsnummer:... Du hast 90 Minuten Zeit. Du musst alle Aufgaben in dieses Heft lösen.
Name:... Vorname:... Prüfungsnummer:... Schule:...
Zentrale Aufnahmeprüfung 2016 für die Langgymnasien des Kantons Zürich Mathematik Name:............................. Vorname:............ Prüfungsnummer:........... Schule:..................... Allgemeine
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
AUFNAHMEPRÜFUNG 2015 MATHEMATIK. Name Vorname. Kandidaten Nr. Ausbildung HMS KVM MMK
AUFNAHMEPRÜFUNG 2015 MATHEMATIK Name Vorname Kandidaten Nr. Ausbildung HMS KVM MMK Die Entstehung des Resultats muss ersichtlich sein. Ist kein logischer Lösungsweg ersichtlich, wird die Aufgabe nicht
FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe
Aufnahmeprüfung 2012 Mathematik FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner Name:....................... Kandidatennummer/ Gruppennummer Vorname:....................... Aufgabe Nr.: 1 2 4 5 6 7 Summe
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:
MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2014 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 00/00 DES LANDES HESSEN AUFGABEN DER GRUPPE A PFLICHTAUFGABEN P. Von 40 Schülern fahren 44 mit öffentlichen Verkehrsmitteln zur Schule. Wie viel Prozent sind das? P. Nach einer Preiserhöhung
Berufsmaturitätsschule naturwissenschaftliche Richtung
Name: Aufnahmeprüfung 3. Mai 2008 Berufsmaturitätsschule naturwissenschaftliche Richtung Fach: Mathematik Zeit: 100 Minuten für 15 Aufgaben Die Aufgaben müssen auf den Fragekatalog gelöst werden. Wenn
Mathematik I Prüfung für den Übertritt aus der 8. Klasse
Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Berufs-/Fachmittelschulen Aufnahmeprüfung Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total
Aufgabe Nr. 1 Nr. 2 Nr. 3 Nr. 4 Nr. 5 Nr. 6 Nr. 7 Nr. 8 Total Maximale Punktzahl Erreichte Punktzahl 6 3 7 6 4 6 8 6 46 Note Die Prüfung Algebra 1 umfasst 8 Aufgaben. Als Hilfsmittel ist ein nicht algebrafähiger
Lösungen des Mathematik-Basis-Tests
FACHMITTELSCHULE GLARUS AUFNAHMETEST / 1. TEIL SEPTEMBER 2015 Lösungen des Mathematik-Basis-Tests 1. Schreibe folgende Grössen mit der in der Klammer angegebenen Einheit: a) 3.71 10 g=37.1 t b) 860 cm
Aufnahmeprüfung 2012 LÖSUNGEN Mathematik Serie 1 (60 Min.)
Aufnahmeprüfung 01 LÖSUNGEN Mathematik Serie 1 (60 Min.) Hilfsmittel: Taschenrechner Name... Vorname... Adresse...... ACHTUNG: - Resultate ohne Ausrechnungen bzw. Doppellösungen werden nicht berücksichtigt!
Mathematik schriftlich
WS KV Chur Lehrabschlussprüfungen 2008 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
3. Mathematikschulaufgabe
1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere
Tag der Mathematik 2013
Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende
Übertrittsprüfung 2009
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2009 Aufgaben Prüfung an die 3. Klasse Sekundarschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
Gymnasium Muttenz Maturitätsprüfung Mathematik. (Schwerpunktfächer: F/ G / I / L / M / S / W / Z )
Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: F/ G / I / L / M / S / W / Z ) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede
F u n k t i o n e n Lineare Funktionen
F u n k t i o n e n Lineare Funktionen Dieses Muster entstand aus der Drehung einer Geraden um einen kleinen Kreis. Dieser kleine Kreis dreht wiederum um einen grösseren Kreis. ADSL Internetanschlüsse
Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:
GRUNDWISSENTEST 05 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.
Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.
Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren
Repetition Mathematik 7. Klasse
Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro
Mathematik 8. Jahrgangsstufe
M 8 Zahlenrechnen Probeunterricht 2014 an Wirtschaftsschulen in Bayern Mathematik 8. Jahrgangsstufe Arbeitszeit Teil I (Zahlenrechnen) Seiten 1 bis 6: 45 Minuten Arbeitszeit Teil II (Textrechnen) Seiten
Mathematik. Name, Vorname:
Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note:
MATHEMATIK - Teil A Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2015 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
Resultate, die nicht ganzzahlig sind, sind auf zwei Stellen nach dem Dezimalpunkt zu runden.
Mathematik Zeit: 120 Minuten Löse jede Aufgabe auf dem dafür vorgesehenen Platz auf den Prüfungsblättern. Wenn zu wenig Platz vorhanden ist, kannst du die Rückseite benutzen. Zeige dies mit einem Pfeil
Lösungen und definitive Korrekturanweisung
Bündner Mittelschulen Einheitsprüfung 2016 Geometrie Lösungen und definitive Korrekturanweisung Es werden nur ganze Punkte vergeben. Negative Punktzahlen sind nicht möglich. Punktzahl in die freie Spalte
Kantonale Prüfungen Mathematik II Prüfung für den Übertritt aus der 8. Klasse
Kantonale Prüfungen 2012 für die Zulassung zum gymnasialen Unterricht im 9. Schuljahr Mathematik II Serie H8 Gymnasien des Kantons Bern Mathematik II Prüfung für den Übertritt aus der 8. Klasse Bitte beachten:
Übertrittsprüfung 2013
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2013 Aufgaben Prüfung an die 1. Klasse Sekundarschule / 1. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des
Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich
Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich Aufnahmeprüfung 2013 Für Kandidatinnen und Kandidaten mit herkömmlichem Lehrmittel Mathematik Name:... Nummer:... Dauer der Prüfung:
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)
Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung
Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Hilfsmittel: Nicht-programmierbarer Taschenrechner erlaubt, nicht aber Formelsammlungen usw.
MATHEMATIK - Teil B Prüfungsnummer «Kan_Nr» «Name» «Vorname» Punkte: Note: Aufnahmeprüfung 2014 Pädagogische Maturitätsschule Kreuzlingen Zur Verfügung stehende Zeit: 45 Minuten. Die Lösungsgedanken und
AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2015 LÖSUNGEN MATHEMATIK
Berufsfachschulen Graubünden 8. April 2015 AUFNAHMEPRÜFUNG BERUFSMATURITÄT 2015 LÖSUNGEN MATHEMATIK Zeitrahmen 90 Minuten (Teil 1: 45 Minuten/Teil 2: 45 Minuten) Hinweise: Löse die Aufgaben auf den beigelegten
(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte
Mathematik Aufnahmeprüfung 015 Aufgabe 1 3 4 5 6 7 8 9 10 11 1 Summe Punkte 4 4 3 3 3 3 4 4 4 4 40 Punkte für die Teilaufgaben: (a) Punkte, (b) Punkte (a) 1 Punkt, (b) 1 Punkt, (c) Punkte (a) 1 Punkt,
Mathematik Grundlagenfach. Lukas Fischer 180 Minuten
Schriftliche Maturitätsprüfung 015 Kantonsschule Alpenquai Luzern Fach Mathematik Grundlagenfach Prüfende Lehrperson Lukas Fischer ([email protected]) Klasse 6Wa Prüfungsdatum 6. Mai 015 Prüfungsdauer
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik
Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe
Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe (an Gesamtschulen) 2012
Die Senatorin für Bildung, Wissenschaft und Gesundheit Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 zur Erlangung des Mittleren Schulabschlusses mit der Berechtigung für die Gymnasiale Oberstufe
Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, )
Mathematik bla Funktionen 1. Einführung 167 René Descartes Cartesius (Frankreich, 1596-1650)...führt das kartesische Koordinatensystem ein. Er beschreibt einen Punkt als ein Paar von reellen Zahlen und
Mathematik (Schwerpunktfächer: A / B)
Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: A / B) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede Aufgabe ergibt maximal.
Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule Mathematik (A)
Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 Gymnasiales Niveau für die Gesamtschule 2010 Mathematik (A) Teil 1 Taschenrechner und Formelsammlung sind
r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:
Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck
Raumgeometrie - schiefe Pyramide
1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild
MW-E Mathematikwettbewerb der Einführungsphase
MW-E Mathematikwettbewerb der Einführungsphase. Februar 0 MW-E Mathematikwettbewerb der Einführungsphase Hinweis: Von jeder Schülerin bzw. jedem Schüler werden fünf Aufgaben gewertet. Werden mehr als fünf
10. Klasse der Haupt-/Mittelschule. Abschlussprüfung. zum Erwerb des. Mittleren Schulabschlusses
0. Klasse der Haupt-/Mittelschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 0 Hinweise zur Auswahl, Korrektur und Bewertung der Prüfungsaufgaben Mathematik Nicht für den Prüfling bestimmt!
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS
Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):
Mathematik schriftlich
WSKV Chur Lehrabschlussprüfungen 2006 für die Berufsmatura kaufmännische Richtung Mathematik schriftlich Kandidatennummer Name Vorname Datum der Prüfung Bewertung mögliche erteilte Punkte Punkte 1. Aufgabe
Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der
Graph der linearen Funktion
Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)
Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten
Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS
Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007
Mathematik Matur-Aufgaben 2006 Stefan Dahinden 26. Juni 2007 Rotationskörper Lassen Sie die Kurve mit der Gleichung y = 9 x für 0 x 9 um die x- Achse rotieren und berechnen Sie das exakte Volumen des entstehenden
Pangea Ablaufvorschrift
Pangea Mathematik-Wettbewerb 2011 Klassenstufe 7 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten
min km/h
Proportionalität 1. Gegeben sind die folgenden Zuordnungen: 1) x - 3-1 0 0,5 4 y 9 3 0-1,5-6 -1 y : x - 3-3 ) km/h 30 45 60 70 85 100 min 45 30,5 13,5 min km/h 1350 1350 1350 3) s -,5 3,3 7, 8 9,1 4) t
Mecklenburg - Vorpommern
Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht
Repetition Mathematik 6. Klasse (Zahlenbuch 6)
Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von
Mathematik. Prüfung zum mittleren Bildungsabschluss Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse:
Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 60 Minuten Fach: Mathematik Wahlaufgaben
KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Schriftliche Abschlussprüfung 2004 Mathematik (B-Kurs)
KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Schriftliche Abschlussprüfung 004 Mathematik (B-Kurs) Arbeitszeit: 80 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu bearbeiten. Pflichtaufgaben
Berechnungen am Dreieck
Berechnungen am Dreieck 1 ImDreieck OBAmitO(0 0),B(b 0)undA(0 a) ist H(x y) der Fußpunkt der Höhe von O auf AB Weitere Bezeichnungen: y a A h = OH, p = AH, q = HB und c = AB y p H(x y) Drücke c, h, p,
