Test Ereignisdiskrete Systeme
|
|
|
- Alwin Peters
- vor 8 Jahren
- Abrufe
Transkript
1 Test Ereignisdiskrete Systeme Wintersemester 008/009 Prof. Dr.-Ing. J. Lunze Dipl.-Ing. Y. Nke Dauer: 30 Minuten Name: Matrikel-Nr.: Diplomstudiengang Bachelor- bzw. Masterstudiengang (Zutreffendes ankreuzen!) Aufgabe Punktzahl Erreichte Punktzahl Punkte 9 Übungspunkte Erreichte Punktzahl in %:... (bestanden, wenn mehr als 50 % erreicht, also mindestens 5 Punkte)
2 Aufgabe Deterministischer Standardautomat 4 Punkte Geben Sie die Definition eines deterministischen Standardautomaten als Tupel an und benennen Sie die verwendeten Symbole.( Punkt) A = ( ). Geben Sie für den in der obigen Abbildung dargestellten Automaten die Zustandsübergangsfunktion in Matrixdarstellung an. ( Punkt) 3. Existieren für σ = im Automatengrafen stark zusammenhängende Zustände? Falls ja, welche? Falls nicht, begründen Sie ihre Antwort. ( Punkt) 4. Gehört die Folge εεεε zur Sprache des Automaten? Wenn ja, geben Sie die zugehörige Zustandsfolge an. Wenn nein, geben Sie eine Ereignisfolge an, die zur Sprache des Automaten gehört.( Punkt)
3 Aufgabe Modellierung eines Alarmsystems (9 Punkte) + ö s, x x, s A : auf zu ö Schließzylinder Alarmgeber Abbildung : Beschreibung eines vereinfachtes Alarmsystems Es wird ein vereinfachtes Alarmsystem betrachtet, das aus zwei Komponenten besteht, nämlich einem Sicherheitsschloss und einem Alarmgeber, der ggf. das Alarmhorn laut tönen lässt. Das Sicherheitsschloss bzw. der Schließzylinder der gesicherten Tür lässt sich wie folgt bedienen: Zum Öffnen der Tür ohne den Alarm auszulösen muss der Schlüssel zuerst vertikal eingesteckt werden. Dann muss er um +90 und anschließend um 90 zurückgedreht werden. So steckt der Schlüssel in vertikaler Position und kann herausgezogen werden. Der Alarmgeber ist entschärft. Zum Schließen der Tür und Scharfstellen des Alarmgebers muss der Schlüssel in vertikaler Position eingesteckt werden. Dann muss er zunächst um 90 und anschließend um +90 gedreht werden. Danach kann er herausgezogen werden. Der Alarmgeber ist scharf gestellt. Ein Wiederholen dieses Schließvorgangs löst den Alarm aus. Wird die oben beschriebene Prozedur nicht eingehalten z.b. durch einen falschen Drehwinkel oder das Herausziehen des Schlüssels zum falschen Zeitpunkt bzw. beim falschen Winkel, so wird der Alarm ausgelöst. Außerdem wird bzw. bleibt die Tür automatisch verriegelt. Ist der Alarm einmal ausgelöst worden, so kann er nur durch die beauftragte Sicherheitsfirma ferngesteuert durch ein Ausschaltsignal stillgelegt werden. Der Alarmgeber ist dann entschärft. Dementsprechend lassen sich folgende Ereignisse definieren: Symbol ö s x ru Bedeutung Schlüssel um +90, dann 90 gedreht und anschließend herausgezogen Schlüssel um 90, dann +90 gedreht und anschließend herausgezogen Fehlbedienung Stilllegen des Alarms per Fernsteuerung. Zunächst wird nur der Alarmgeber betrachtet. Tragen Sie in der unteren Tabelle die mögliche Zustände mit deren Bedeutungen ein, so dass das beschriebene Verhalten widergespiegelt wird.( Punkte) Symbol Bedeutung
4 . Zeichnen Sie den Automatengrafen eines vollständig definierten Standardautomaten A, der das Verhalten des Alarmgebers beschreibt.(3 Punkte) Betrachten Sie den Automaten A für den Schließzylinder in Abb. und den von Ihnen definierten Automaten A für den Alarmgeber. 3. Welche Kompositionsregel eignet sich am besten zur Beschreibung des gekoppeltes Systems Schließzylinder-Alarmgeber? Begründen Sie Ihre Antwort.( Punkt) 4. Geben Sie die Vorschrift zur Bildung der Zustandsübergangsfunktion δ((z, z ), σ) des Kompositionsautomaten für das gesamte System an.( Punkte) 5. Zeichnen Sie den Grafen des Kompositionsautomaten für den Schließzylinder und den Alarmgeber, der sich unter Anwendung der von Ihnen angegebenen Kompositionsregel ergibt. (4 Punkte)
5 Aufgabe 3 Minimierung deterministischer Standardautomaten 8 Punkte a a b 3 b a 4 c 5 a b 6 a. Unter welcher Bedingung sind zwei Automaten A (Z, Σ, δ, z 0, Z F ) und A (Z, Σ, δ, z 0, Z F ) äquivalent? ( Punkt). Unter welcher Bedingung sind zwei Zustände z und z eines Automaten äquivalent? ( Punkt) 3. Minimieren Sie den in der Abbildung dargestellten Standardautomaten und zeichnen Sie dessen Grafen. (5 Punkte) 4. Analysieren Sie den gegbenen Automatengrafen strukturell und benennen Sie zwei Eigenschaften, die dieser aufweist? ( Punkt)
6 Falls benötigt:
7 Aufgabe 4 Markovketten 7 Punkte 0, 0, 0,5 0,7 0,3 0, 0,6 3 0,4. Schreiben Sie die Definition der obigen Markovkette aus. Geben Sie dafür alle zugehörige Elemente des Tupels an.( Punkt) S = ( ). Mit welcher Wahrscheinlichkeit durchläuft der stochastische Automat die Zustandsfolgen Z (0... 4) = (,, 3,, 3) und Z (0... ) = (3,, ).( Punkte) 3. Existiert eine stationäre Zustandswahscheinlichkeit p? Begründen Sie ihre Antwort.( Punkt) 4. Mit welcher Wahrscheinlichkeit befindet sich die Markovkette für k im Zustand? (3 Punkte)
Ereignisdiskrete Systeme
Ereignisdiskrete Systeme Modellierung und Analyse dynamischer Systeme mit Automaten, Markovketten und Petrinetzen von Jan Lunze Mit 340 Abbildungen, 80 Anwendungsbeispielen und 110 Übungsaufgaben Oldenbourg
c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} c) {abcabc} d) {abcbc, abc, a} c) {aa, ab, ba, bb} d) {{aa}, {ab}, {ba}, {bb}}
2 Endliche Automaten Fragen 1. Was ergibt sich bei {a, bc} {de, fg}? a) {abc, defg} b) {abcde, abcfg} c) {abcde, abcfg, bcade, bcafg} d) {ade, afg, bcde, bcfg} 2. Was ergibt sich bei {abc, a} {bc, λ}?
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Wintersemester 2007 / 2008 Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik 29.10.2007 Reguläre Sprachen Ein (deterministischer) endlicher Automat
2 2 Reguläre Sprachen. 2.2 Endliche Automaten. Übersicht
Formale Systeme, Automaten, Prozesse Übersicht 2 2. Reguläre Ausdrücke 2.3 Nichtdeterministische endliche Automaten 2.4 Die Potenzmengenkonstruktion 2.5 NFAs mit ɛ-übergängen 2.6 Minimale DFAs und der
Algorithmen mit konstantem Platzbedarf: Die Klasse REG
Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August
Deterministische endliche Automaten - Wiederholung
Deterministische endliche Automaten - Wiederholung Die folgende Klasse Zahl stellt einen endlichen Automaten dar. Ermittle die Größen des Automaten und zeichne den Zustandsgraphen. Gib Zeichenfolgen an,
Frank Heitmann 2/47. 1 Ein PDA beginnt im Startzustand z 0 und mit im Keller. 2 Ist der Automat
Formale Grundlagen der Informatik 1 Kapitel 5 Über reguläre Sprachen hinaus und (Teil 2) Frank Heitmann [email protected] 21. April 2015 Der Kellerautomat - Formal Definition (Kellerautomat
3. Vortrag: Arithmetische Relationen und Gödelisierung
3. Vortrag: Arithmetische Relationen und Gödelisierung 1. Arithmetische und arithmetische Mengen und Relationen 2. Verkettung von Zahlen 3. Gödelisierung Arithmetische und arithmetische Mengen und Relationen
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Rolf Socher ISBN 3-446-22987-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-22987-6 sowie im Buchhandel Einführung.. 13 2 Endliche
1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie
1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften
Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23
1/23 Formale Methoden 1 Gerhard Jäger [email protected] Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich
Übung 1 in Ereignisdiskrete Systeme WS 2008/09
Ruhr Universität Bochum Fakultät für Elektrotechnik und Informationstechnik Prof. Dr. Ing. Jan Lune Übung in Ereignisdiskrete Systeme WS 008/09 Aufgabe. Arbeitsweise eines Fahrkartenautomaten Betrachten
Ereignisdiskrete Systeme
Ereignisdiskrete Systeme Modellierung und Analyse dynamischer Systeme mit Automaten, Markovketten und Petrinetzen von Prof. Dr.-ng. Jan Lunze 2., überarbeitete Auflage mit 369 Abbildungen, 93 Anwendungsbeispielen
1 Σ endliches Terminalalphabet, 2 V endliche Menge von Variablen (mit V Σ = ), 3 P (V (Σ ΣV )) {(S, ε)} endliche Menge von Regeln,
Theorie der Informatik 8. März 25 8. Reguläre Sprachen I Theorie der Informatik 8. Reguläre Sprachen I 8. Reguläre Grammatiken Malte Helmert Gabriele Röger 8.2 DFAs Universität Basel 8. März 25 8.3 NFAs
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax
2. Übungsblatt 6.0 VU Theoretische Informatik und Logik
2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum
Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14
Institut für Theoretische Informatik Prof. Dr. Jörn Müller-Quade Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 23/4 Vorname Nachname Matrikelnummer Hinweise Für die
Kontextfreie Sprachen
Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung
Probeklausur Lösungen
Probeklausur Lösungen 1. Aufgabe Der obere Teil in dem creenshot zeigt den Zustandsgraph. Es fehlen jedoch die Eingaben bzw. die Ausgaben. Im unteren Teil des creenshots ist die Übergangstabelle aufgeführt.
Theorie der Informatik
Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man
Automaten und Coinduktion
Philipps-Univestität Marburg Fachbereich Mathematik und Informatik Seminar: Konzepte von Programmiersprachen Abgabedatum 02.12.03 Betreuer: Prof. Dr. H. P. Gumm Referentin: Olga Andriyenko Automaten und
Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt
Grundbegriffe der Wahrscheinlichkeitstheorie Karin Haenelt 1 Inhalt Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeit Abhängige und unabhängige Ereignisse Stochastischer Prozess Markow-Kette 2 Wahrscheinlichkeitsraum
Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:
Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise
Theoretische Informatik 1
Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die
Stochastik I. Vorlesungsmitschrift
Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik 0 KIT 10.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.
Universität Augsburg, Institut für Informatik WS 2009/2010 Prof. Dr. W. Kießling 06. Nov Dr. A. Huhn, F. Wenzel, M. Endres Lösungsblatt 2
Universität Augsburg, Institut für Informatik WS 2009/2010 Prof. Dr. W. Kießling 06. Nov. 2009 Dr. A. Huhn, F. Wenzel, M. Endres Lösungsblatt 2 Aufgabe 1: ER-Modellierung 1. Siehe Unterstreichungen in
HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016
HM I Tutorium 1 Lucas Kunz 27. Oktober 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Logische Verknüpfungen............................ 2 1.2 Quantoren.................................... 3 1.3 Mengen und ihre
3.3. Drehungen und Spiegelungen
3.3. Drehungen und Spiegelungen Drehungen und Spiegelungen in der Ebene Die Multiplikation einer komplexen Zahl z = x + i y (aufgefaßt als Punkt oder Ortsvektor der Ebene) mit der Zahl w = e ( ) = i φ
3. Relationen Erläuterungen und Schreibweisen
3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob
Turing-Maschinen. Definition 1. Eine deterministische Turing-Maschine (kurz DTM) ist ein 6- Dem endlichen Alphabet Σ von Eingabesymbolen.
Turing-Maschinen Nachdem wir endliche Automaten und (die mächtigeren) Kellerautomaten kennengelernt haben, werden wir nun ein letztes, noch mächtigeres Automatenmodell kennenlernen: Die Turing-Maschine
7. Die Brownsche Bewegung
7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen
12 Digitale Logikschaltungen
2 Digitale Logikschaltungen Die Digitaltechnik ist in allen elektronischen Geräte vorhanden (z.b. Computer, Mobiltelefone, Spielkonsolen, Taschenrechner und vieles mehr), denn diese Geräte arbeiten hauptsächlich
Automaten und Formale Sprachen ε-automaten und Minimierung
Automaten und Formale Sprachen ε-automaten und Minimierung Ralf Möller Hamburg Univ. of Technology Literatur Gottfried Vossen, Kurt-Ulrich Witt: Grundkurs Theoretische Informatik, Vieweg Verlag 2 Danksagung
Pfadregel. 400 Kugeln durchlaufen die möglichen Pfade. Das Diagramm zeigt das Ergebnis am Ende der Versuchsdurchführung.
Würfelsimulation 1) Bezeichnen Sie in den Säulendiagrammen (Histogrammen - 2. Graphik) die senkrechten Achsen und vervollständigen Sie im ersten Diagramm die Achseneinteilung. Lesen Sie im Histogramm für
Mengenlehre. Aufgaben mit Lösungen
Mengenlehre Aufgaben mit Lösungen Inhaltsverzeichnis 1 Hilfsmittel 1 1. Zahlenmengen........................................ 1 2. Symbole........................................... 1 3. Intervalle: Schreibweise...................................
Kapitel 6 Martingale
Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse
PEKATRONIC/XCESS Fensterheber- und Schiebedachmodul Power Window Roll Up/Roll Down Interface
PEKATRONIC/XCESS Fensterheber- und Schiebedachmodul Power Window Roll Up/Roll Down Interface Artikel-Nr.: 3200-3060 Das XCESS Fensterhebermodul ist zur Steuerung von 2 elektrischen Fensterheber oder 1
Konstruktion der reellen Zahlen
Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert
Musterlösung MafI 1 - Blatt 5
Musterlösung MafI 1 - Blatt 5 Titus Laska Aufgabe 1 (Relationen). Die drei Relationen R, S, T N N sind jeweils auf Reflexivität, Symmetrie und Antisymmetrie zu untersuchen. Lösung. Erinnerung. Sei R A
Bachelorprüfung/Diplomvorprüfung Einführung in die Unternehmensführung (BWL 1)
Bachelorprüfung/Diplomvorprüfung Einführung in die Unternehmensführung (BWL 1) Sommersemester 2011, 8. September 2011 Name, Vorname:... Ich bestätige hiermit, dass ich der Veröffentlichung Matr. Nr.:...
Berechenbarkeit. Script, Kapitel 2
Berechenbarkeit Script, Kapitel 2 Intuitiver Berechenbarkeitsbegriff Turing-Berechenbarkeit WHILE-Berechenbarkeit Church sche These Entscheidungsprobleme Unentscheidbarkeit des Halteproblems für Turingmaschinen
Bipartite Graphen. Beispiele
Bipartite Graphen Ein Graph G = (V, E) heiÿt bipartit (oder paar), wenn die Knotenmenge in zwei disjunkte Teilmengen zerfällt (V = S T mit S T = ), sodass jede Kante einen Knoten aus S mit einem Knoten
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
Anschluss eines GSM-Alarmsystems an die originale DWA.
Anschluss eines GSM-Alarmsystems an die originale DWA. Der Beitrag zeigt Schritt für Schritt, wie der LIN-Bus Konverter in einen VW-T5 eingebaut wird. Prinzipiell funktioniert der Konverter auch bei allen
STERNBURG BINGO STERNBURG BINGO UND SO FUNKTIONIERT S: MITMACHEN UND TOLLE PREISE GEWINNEN! RAUM FÜR EIGENE BEMERKUNGEN, GRÜSSE ETC.
85 61 19 27 78 52 90 45 03 39 54 88 89 76 21 69 15 94 22 10 24 18 62 79 53 Aufschrift befindet sich eine neue -Zahl. Wenn Sie eine -Zahl aus dem obigen Sobald Sie eine Reihe von 5 - -Zahlen horizontal,
Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen
Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Vorschau: Lineare Abbildungen Wer Vektorräume studiert,
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2012/13 Aufgabenstellung und Ergebnisse Dr. Martin Becker Hinweise für die
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten
Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
Einführung in die Theoretische Informatik
Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 11 15. Juli 2010 Einführung in die Theoretische
Lexikalische Programmanalyse der Scanner
Der Scanner führt die lexikalische Analyse des Programms durch Er sammelt (scanned) Zeichen für Zeichen und baut logisch zusammengehörige Zeichenketten (Tokens) aus diesen Zeichen Zur formalen Beschreibung
Einige Beispiele zur Turingmaschine
Einige Beispiele zur Turingmaschine Beispiel 1: Addition von 1 zu einer Dualzahl Aufgabe: Auf dem Eingabe-Band einer Turingmaschine steht eine Dualzahl (= Binärzahl, bestehend aus 0-en und 1-en, links
Übungsblatt Nr. 5. Lösungsvorschlag
Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)
Einführung in die Theoretische Informatik
Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 3 14. Mai 2010 Einführung in die Theoretische
DKA und dkfs (mit Übungen)
DKA und dkfs (mit Übungen) Prof.Dr.Christian Wagenknecht mit Beiträgen von Herrn Dr.Michael Hielscher Prof.Dr.Chr. Wagenknecht Formale Sprachen und Automaten 1/15 kurz DKA Analog zu endlichen Automaten
Übungen zu Einführung in die Lineare Algebra und Geometrie
Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b
Mathematik (Schwerpunktfächer: A / B)
Gymnasium Muttenz Maturitätsprüfung 2006 Mathematik (Schwerpunktfächer: A / B) Kandidatin / Kandidat Name Vorname:... Klasse:... Hinweise - Die Prüfung dauert 4 Stunden. - Jede Aufgabe ergibt maximal.
Einführung in die Theoretische Informatik
Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische
Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende
Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,
Station 1: Nomenklatur von Alkanen
Station 1: Nomenklatur von Alkanen Station 1: Nomenklatur von Alkanen 1. a) 3-Ethyl-2-methylpentan e) 2,2-Dimethylpropan b) 3-Ethyl-2-methylpentan f) 2,3,5-Trimethylhexan c) 2,3,5-Trimethylhexan g) 2,3-Dimethylbutan
Diskrete Wahrscheinlichkeitstheorie - Probeklausur
Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11.
Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Prüfung Deskriptive Statistik und Wahrscheinlichkeitsrechnung Wintersemester 2010/11 Namensschild Dr. Martin Becker Hinweise für die Klausurteilnehmer
Zentrale Prüfungen 2009
Zentrale Prüfungen 2009 Mathematik, Hauptschule (Klasse 10 Typ B) Prüfungsteil 1: Aufgabe 1 a) Bestimme den Inhalt der grauen Fläche. Beschreibe z. B. mithilfe der Abbildung, wie du vorgegangen bist. b)
eduroam-wlan Windows 10 - Anleitung zur manuelle Konfiguration Version 1.0
eduroam-wlan Windows 10 - Anleitung zur manuelle Konfiguration Version 1.0 Diese Anleitung beschreibt die manuelle Konfiguration des WLAN-Zugangs zum UHH-WLAN eduroam unter Windows 10 mit systemeigenen
Funktionen. Packungsinhalt GER
GER Funktionen Die ASA-30 kann entweder als zusätzliche Sirene mit Ihrem Alarmsystem oder als eigenständige Sirene mit Fernbedienung und/ oder schnurlosen Detektoren verwendet und verbunden werden. - Schnurlose
Deterministischer Kellerautomat (DPDA)
Deterministische Kellerautomaten Deterministischer Kellerautomat (DPDA) Definition Ein Septupel M = (Σ,Γ, Z,δ, z 0,#, F) heißt deterministischer Kellerautomat (kurz DPDA), falls gilt: 1 M = (Σ,Γ, Z,δ,
Klausur zur Statistischen Physik SS 2013
Klausur zur Statistischen Physik SS 2013 Prof. Dr. M. Rohlfing Die folgenden Angaben bitte deutlich in Blockschrift ausfüllen: Name, Vorname: geb. am: in: Matrikel-Nr.: Übungsgruppenleiter: Aufgabe maximale
11 Unabhängige Ereignisse
11 Unabhängige Ereignisse In engem Zusammenhang mit dem Begriff der bedingten Wahrscheinlichkeit steht der Begriff der Unabhängigkeit von Ereignissen. Wir klären zuerst, was man unter unabhängigen Ereignissen
Einführung in die Informatik
Universität Innsbruck - Institut für Informatik Datenbanken und Informationssysteme Prof. Günther Specht, Eva Zangerle 24. November 28 Einführung in die Informatik Übung 7 Allgemeines Für die Abgabe der
I.2. Endliche Automaten (ohne Ausgabe)
I2 Endliche Automaten (ohne Ausgabe) I2 Deterministische endliche Automaten Beispiel: Pascal-Syntax für Zahlen hat folgende Form: ::=
SCHRIFTLICHE ABITURPRÜFUNG 2010 Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten
Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
γ(a, γ(b, c)) = γ(γ(a, b), c)). γ(e, x) = γ(x, e) = x.
Algebraische Strukturen, insbesondere Gruppen 1 Verknüpfungen M sei eine Menge. Dann heißt jede Abbildung γ : M M M eine Verknüpfung (jedem Paar von Elementen aus M wird auf eindeutige Weise ein Element
Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße. Was ist eine Zufallsgröße und was genau deren Verteilung?
Erwartungswert, Varianz und Standardabweichung einer Zufallsgröße Von Florian Modler In diesem Artikel möchte ich einen kleinen weiteren Exkurs zu meiner Serie Vier Wahrscheinlichkeitsverteilungen geben
Typ-1-Sprachen. Satz 1 (Kuroda ( ) 1964)
Typ-1-Sprachen Satz 1 (Kuroda (1934-2009) 1964) Eine Sprache L hat Typ 1 (= ist kontextsensitiv) genau dann, wenn sie von einem nichtdeterministischen LBA erkannt wird. Beweis: Sei zunächst L Typ-1-Sprache.
Sicherheitssysteme Verkabeltes Alarmsystem. Privat & Small Business
Sicherheitssysteme Verkabeltes Alarmsystem Privat & Small Business PM11 1 _ A- 6-2- 62 1 Ein beruhigendes Gefühl Welche bedeutende Rolle Sicherheit in unserem Leben spielt, bemerken wir oft erst dann,
Professur Konstruktionslehre
Professur Konstruktionslehre Prof. Dr. -Ing. E. Leidich / Dipl.- Ing. M. Curschmann / Dipl.- Ing. B. Fischer Lehrgebiet CAE-Systeme CATIA V5 CATIA V5 Grundkurs Diese Anleitung stellt eine grundlegende
Statistik Klausur Wintersemester 2012/2013 Hamburg, BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN!
Statistik 1 1. Klausur Wintersemester 2012/2013 Hamburg, 19.03.2013 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte
Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +
Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B
Gymnasium Muttenz Maturitätsprüfung 2016 Mathematik Profile A und B Name, Vorname:... Hinweise: Klasse:... Die Prüfung dauert 4 Stunden. Es können maximal 48 Punkte erreicht werden. Es werden alle Aufgaben
Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen
Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 18.4. 2012 176 Automatentheorie und formale Sprachen VL 5 Reguläre und nichtreguläre Sprachen Kathrin Hoffmann 18. Aptil 2012 Hoffmann (HAW
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik 0 KIT 17.05.2010 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik nationales Forschungszentrum Vorlesung in am
Expertenpuzzle Quadratische Funktionen
Phase Aufgaben für die Expertengruppe I Im Folgenden sollen die in IR definierten Funktionen a : x x, b : x,5x, und d: x x untersucht werden. Die Abbildung zeigt den Graphen G a von a. Zeichnet die Graphen
Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen
Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen
1 Mengen. 1.1 Definition
1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene
DIE SPRACHE DER WAHRSCHEINLICHKEITEN
KAPITEL 1 DIE SPRACHE DER WAHRSCHEINLICHKEITEN Es ist die Aufgabe der ersten drei Kapitel, eine vollständige Beschreibung des grundlegenden Tripels (Ω, A, P) und seiner Eigenschaften zu geben, das heutzutage
Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)
DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen
Endlicher Automat (EA)
Endlicher Automat (EA) 1 Motivation: Automaten für die Modellierung, Spezifikation und Verifikation verwenden! Definition Ein Endlicher Automat A = (S,I,Σ,T,F) besteht aus Menge von Zuständen S (normalerweise
Bäume und Wälder. Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann
Bäume und Wälder Seminar: Graphentheorie Sommersemester 2015 Dozent: Dr. Thomas Timmermann Ida Feldmann 2-Fach Bachelor Mathematik und Biologie 6. Fachsemester Inhaltsverzeichnis Einleitung 1 1. Bäume
Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1
Der Fünf- Farben-Satz Seminar aus reiner Mathematik, WS 13/14 Schweighofer Lukas, November 2013 Seite 1 Inhaltsverzeichnis Vorwort...3 Graphentheoretische Grundlagen...4 Satz 2 (Eulerscher Polyedersatz)...7
Grundbegriffe der Informatik
Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu
Grundbegriffe der Wahrscheinlichkeitsrechnung
Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n
