Kernmodelle! Inhalt: Kernradien Bindungenergien MassenbesFmmung Tröpfchenmodell Fermigas Model Kernspin und magnefsches Moment Schalenmodell

Größe: px
Ab Seite anzeigen:

Download "Kernmodelle! Inhalt: Kernradien Bindungenergien MassenbesFmmung Tröpfchenmodell Fermigas Model Kernspin und magnefsches Moment Schalenmodell"

Transkript

1 Inhalt: Kernradien Bindungenergien MassenbesFmmung Tröpfchenmodell Fermigas Model Kernspin und magnefsches Moment Schalenmodell Kernmodelle! Kerne sind zusammengesetzte Systeme aus Protonen und Neutronen: - Nur einfache Systeme können mit N- N WW beschrieben werden - Gesamtbeschreibung mit N- N WW zu komplex Klassen von Kernmodellen: - Independent par9cle models nnahme: quasifreie Bewegung der Nukleonen als unabhängige Teilchen in PotenFaltopf Beispiel: Schalenmodell - Kollek9ve Modelle Beispiel: Tröpfchenmodell

2 Kernmodelle! Äußere Eigenschaen von Kernen: Masse, Massenverteilung, Ladung, Größe. = Kollek9ve Eigenschaen eines zusammengesetzten Systems Nukleonen haben aber auch individuelle Eigenschaen: Bindungsenergie Nukleonenspin MulFpolmomente Kerne können (wie tome) angeregt werden. Symmetrien: Parität, Isospin

3 Kernradien!... BesFmmung misels Elektronenstreuung am Nukleon R ~ R 0 1/3 R 0 =1, 21 fm Für einen kugelförmigen Kern gilt dann: V = 4! R 3 / 3 = 4! R 0 3 / 3 Das Volumen wächst linear mit und besitzt eine konstante Dichte! V = konst = 0.17 Nukleonen fm 3 ˆ= 3!10 14 g/cm 3

4 Bindungsenergien! Experimentelle Untersuchung der Bindungsenergien durch Unterschied der Massen der Bauteile und Gesamtmasse: B(Z, ) / c 2 = Z! M p + ( " Z)! M n " M K (, Z) Experimentelle Bes9mmung im Massenspektrometer: Energie der Ionen erhält man durch blenkung im E- Feld:! F = Q E! = Mv2 r r E = M v 2 Q E Teilchenimpuls über blenkung im MagneZeld: Mv = p = Q! B! r r B = Mv QB

5 Massen! Einheit: 1u = 1 12 m(12 C) = MeV c 2 = !10 "27 kg - BesFmmung von Massen mit KernreakFonen: z.bsp. n + 1 H! 2 H +! B = (M n + M 1 H + M 2 H )c2 = E! + E! 2 = 2, 25 MeV 2M 2 c2 H - BesFmmung misels Penningfalle und Zyklotronfrequenz: Extreme Genauigkeit möglich! RelaFve Genauigkeit: 10-10!! C = QB Mc

6 Schlussfolgerungen! 1. Bindungsenergie pro Nukleon ist nahezu konstant für alle Kerne B/ ~ 7,5-8,5 MeV usnahmen nur für leichte Kerne ( < 10) 2. Bindungsenergie / Nukleon maximal bei ~60... Eisenhäufigkeit im Universum Spaltprozesse für >> 60, Fusion für < Kerne weisen eine konstante Dichte auf: - Säkgung der Kernkräme. - würden alle Nukleonen miteinander wechselwirken, wäre B ~ 2. - weil aber B ~: nur WW mit nächsten Nachbarn, ähnlich einer Flüssigkeit: Tröpfchenmodell

7 Tröpfchenmodell! Masse eines toms: Masse des Kerns + Masse der Elektronen Bindungsenergie der Elektronen Masse eines Kerns: m K ( Z, N) Zm p + Nm n m K ( Z, N) = Zm p + Nm n Δm K Differenz Δm ist der Massendefekt, gleich der Bindungsenergie E = mc² Die Bindungsenergie entspricht der Energie, die aufgewendet werden muss, um den Kern in seine KonsFtuenten zu zerlegen.... SeparaFonsenergie E = s E b Beispiele:

8 Weizsäcker Massenformel! M (, Z) Z M + Z m + N. M B( Z, ) / c² Bindungsenergie: B( Z, ) / c² = N = -Z a p = a Volumenterm: V S 2/3 Z ² ac 1/3 ( N Z)² aa 4 δ 1/ 2 e n a Oberflächenterm s = 17,23 fehlende Nachbarn Coulomb Term a c = 0,714 bstoßung von Protonen symmetrie Term Paarungsterm B R² N = Z N = Z bevorzugt gerade Zahl von p, n bevorzugt [MeV/c²] a v = 15,67 a S = 93,15 δ gg = -11,2; δ gu = 0; δ uu = +11,2

9 Tröpfchenmodell! E = E + E + E + E + b E b1 b2 b3 b4 b5

10 Tröpfchenmodell! Volumenterm: Kernbindungsenergie proportional zu Volumen des Kerns E ~ b 1 av Proportionalitätskonstante (modellabhängig) Weil V ~ : V Oberflächenterm: = 4πR³ / 3 1/3 R ~ Nukleonen an der Oberfläche erfahren im Mittel eine kleinere Bindung E b2 =!a o 2/3 Proportionalitätskonstante a o > 0

11 Tröpfchenmodell! Coulombterm: Positive Ladungen im Kern stoßen sich ab E b3 = a C Z² R = a C Z² 1/3 symmetrieterm: Für Kerne > 40 Ca werden Kerne mit Z = N instabil ( N Z)² - Proportionalitätskonstante positiv Eb4 = a - Wird später nochmals diskutiert

12 Tröpfchenmodell! Paarungsterm: E b5 = ± a P 1/ 2 Stärkere Bindung bei gerader nzahl an Neutronen resp. Protonen - gg, uu Kerne: Z und N gerade. a P positiv - gg, uu Kerne: Z und N ungerade. a P negativ - ug, gu Kerne:. a P = 0

13 Folgerungen aus dem Modell! Wichtige Phänomene, die mit dem Modell beschrieben werden können: - Variation der Kernmasse von Isobaren ( fixiert, anderes Z): Massenformel ~ Z² - für ungerades : Parabel - für gerades : 2 Parabeln wegen Paarungsterm - Nur ein stabiles Isobar mit ungeradem - Mehrere stabile Isobare mit geradem - Protonenzahl für minimale Masse bei fixiertem (Z des stabilsten Kerns Z 0 ): Tal der Stabilität in der Nuklidkarte 0 2) / ( ), ( 1 0 1/3 0 = = Z a Z a M m M Z Z M a C n e p 2/3 2/3 0 0,015 1,98 2 a a a m M M Z a C a e p n + = + + =

14 Stabilität der Kerne! bb.: Segre

15 Superschwere Kerne! Extrapolation zu sehr schweren Kernen: - Massenformel + Schalenmodell zusätzliche Information über ufbau der Kerne - Kerne schwere Z = 100 werden im Reaktor nicht mehr erzeugt, sondern am Beschleuniger (GSI Darmstadt, LBNL Berkeley, Dubna) - Isotope mit bis zu Z = 119 entdeckt Neue Doppelt magische Kerne erwartet: Insel der Stabilität? 108Hs - Schwere Kerne sind nicht sphärisch, sondern deformiert

16 Fermigas Modell! Tröfchenmodell: - Kann die Bindungsenergien gut beschreiben - Basiert auf empirischen Parametern Fermigas-Modell: - Beinhaltet keine Nukleon-Nukleon Wechselwirkungen - Größe des Kerns durch einen Potentialtopf bestimmt - Mittleres Potential durch alle Nukleonen erzeugt - Protonen und Neutronen bewegen sich frei im Potentialtopf - Protonen und Neutronen sind unterscheidbare Fermionen - Unterschiedliches Potential für p, n - Fermionen: Protonen und Neutronen haben Spin ½ - Pauli Prinzip

17 Fermigas Modell! 3D Kastenpotential: Lösung der Schrödingergleichung für ein Teilchen in einem Kastenpotential mit entsprechenden Randbedingungen: Stehende Wellen mit n Knoten Zahl der Zustände im Phasenraum mit Volumen V dn 4π p² dp = V (2π )³ Zustandsdichte als Energie ausgedrückt

18 Fermigas Modell! Bei T = 0 K (Kern im Grundzustand) sind die Zustände bis zur Fermi-Energie (Impuls) gefüllt: dn 3 pf = n = dn = V 6π ² 4π p² dp V (2π )³ Besetzungswahrscheinlichkeit als Funktion der nregungsenergie p F ³ 0 p F Fermi-Impuls Jeder Zustand kann mit 2 Nukleonen der gleichen rt gefüllt werden: N, P = 3 pf, n, p V 3π ² ³

19 Fermigas Modell! V ist das Kernvolumen R fm V 4 = π R³ = 3 4 πr 3 Impuls der Nukleonen für Z = N = /2, Kernradius für p,n gleich p 9π = ~ 250 MeV c F R 8 / 0 Fermienergie: Energie des höchsten besetzten Niveaus 1/3 3 0 E F = p2 F 2M ~ 33 MeV M Nukleonenmasse Tiefe des Potentials ~ E F + E B ~ 40 MeV

20 Fermigas Modell! Kinetische Energie und Potentialtiefe sind vergleichbar: Kerne sind nur schwach gebunden -> Ähnlich dem Fermigas in einem Metall Coulomb-bstoßung der Protonen verursacht zusätzlichen Term, der die Potentialtiefe für Protonen verringert (für ein Teilchen) V C α c = ( Z 1) R Potentialtöpfe für Protonen und Neutronen

21 Fermigas Modell! Für stabilen Kern ist E f,p ~ E f,n. (sonst Zerfall zu einem stabileren Kern) N > Z für schwere Kerne! Mittlere kinetische Energie pro Nukleon Gesamte kinetische Energie des Kerns: E kin = 3 5 p F 2 2M ~ 24 MeV E kin (N, Z) = N E kin + Z E kin = 3 10M Np 2 2 ( F,n + Zp F,n ) = 3 10M! 2 R 0 2 2/3! 9! $ N 5/3 + Z 5/3 # & " 4 % 2/3 Ohne Coulombenergie existiert ein Minimum bei N=Z...

22 Fermigas Modell! Entwickeln des symmetrieterms: Radius R 0 ist gleich für p,n; Volumen V = 4 π R E kin = ( N, Z) 3 10M R = 3 10M 9 π 4 2/3 R π /3 ( N N 5/3 Z) + Z 2/3 2 5/ E kin ist minimal bei N=Z für festes - E kin wächst mit Neutronen oder Protonenüberschuss (symmetrie Term) - Potential ändert sich für N Z

23 4.6.2 Fermigas Modell! Beispiel für eine experimentelle Bestätigung des Fermigas-Modells: Die Bewegung von Nukleonen im Kern Quasi-elastische Streuung von e- an Nukleonen im Kern Nukleonen haben Impuls ~ Fermi-impuls p F. bb.: Segre

Kapitel 5. Kernmodelle. 5.1 Tröpfchenmodell

Kapitel 5. Kernmodelle. 5.1 Tröpfchenmodell Kapitel 5 Kernmodelle Da Atomkerne Vielteilchensysteme sind, kann man sie praktisch nicht mit analytischen Methoden berechnen, und ist deshalb auf Modelle angewiessen. Die wichtigsten gängigen Kernmodelle

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

II.3 Atomkern als ideales Fermi-Gas

II.3 Atomkern als ideales Fermi-Gas N.BORGHINI Version vom 6. November 014, 15:41 Kernphysik II.3 tomkern als ideales Fermi-Gas In diesem bschnitt und dem folgenden wird die quantenmechanische Natur der einen tomkern bildenden Nukleonen

Mehr

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel

Kernphysik I. Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Kernphysik I Grundlegende Eigenschaften der Atomkerne: Bindungs-, Separationsenergie Massenmessungen Weizsäcker Massenformel Massendefekt und Bindungsenergie Kerne sind die einzigen gebundenen Systeme,

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Kerne und Teilchen. Uuo-294. Cf-249. Physik VI. Ca-48

Kerne und Teilchen. Uuo-294. Cf-249. Physik VI. Ca-48 Uuo-94 Kerne und Teilchen Cf-49 Physik VI Vorlesung # 03 0.4.010 Ca-48 Guido Drexlin, Institut für Experimentelle Kernphysik Eigenschaften stabiler Kerne - Kernmodelle: Überblick - Kernmassen & Bindungsenergien/Nukleon

Mehr

Globale Eigenschaften der Kerne

Globale Eigenschaften der Kerne Kerne und Teilchen Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Globale Eigenschaften der Kerne KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Kerne und Teilchen. Moderne Physik III

Kerne und Teilchen. Moderne Physik III Kerne und Teilchen Moderne Physik III Vorlesung # 3 Guido Drexlin, Institut für Experimentelle Kernphysik. Eigenschaften stabiler Kerne - Kernmodelle: Überblick - Kernmassen & Bindungsenergien/Nukleon

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen)

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) KIT-Fakultät für Physik Institut für Experimentelle Kernphysik Prof. Dr. Günter Quast Priv. Doz. Dr. Roger Wolf Dr. Pablo Goldenzweig Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 21 Übungsblatt Nr. 3 Bearbeitung bis 6.5.21 Aufgabe 1: Neutronensterne Im Allgemeinen kann man annehmen, dass die Dichte in Zentrum von Neutronensternen

Mehr

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell.

a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. ufgabe a) Notieren Sie die grundlegenden Modellvorstellungen zum Tröpfchenmodell. b) Interpretieren Sie die einzelnen Terme der semiempirischen Massenformel von v. Weizsäcker: W m c m c N ges n p 5 c)

Mehr

N.BORGHINI Version vom 20. November 2014, 21:56 Kernphysik

N.BORGHINI Version vom 20. November 2014, 21:56 Kernphysik II.4.4 b Kernspin und Parität angeregter Zustände Im Grundzustand besetzen die Nukleonen die niedrigsten Energieniveaus im Potentialtopf. Oberhalb liegen weitere Niveaus, auf welche die Nukleonen durch

Mehr

Kernmodell der Quantenphysik

Kernmodell der Quantenphysik M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis In diesem Abschnitt 1.1 Aufbau 1.2 Starke Wechselwirkungen Aufbau Tröpfchenmodell Atomkerns Wesentliche Eigenschaften von n können im Tröpfchenmodell

Mehr

Struktur des Atomkerns

Struktur des Atomkerns Struktur des Atomkerns den 6 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Struktur des Atomkerns. Die Eigenschaften des Kernkraftes. Bindungsenergie. Massendefekt. Tröpfchenmodell und Schallmodell. Magische

Mehr

Statische Eigenschaften von Atomkernen

Statische Eigenschaften von Atomkernen Kapitel 8 Statische Eigenschaften von Atomkernen 8.1 Bindungszustände von Nukleonen Seit den Streuexperimenten von Rutherford 1911 weiß man, daß die Atome kompakte Kerne haben, die etwa 10000 mal kleiner

Mehr

Kern- und Teilchenphysik. Kernkräfte und Kernmodelle: Fermigasmodell Neutronenstern Speicherring & LHC

Kern- und Teilchenphysik. Kernkräfte und Kernmodelle: Fermigasmodell Neutronenstern Speicherring & LHC Kern- und Teilchenphysik Kernkräfte und Kernmodelle: ermigasmodell Neutronenstern Speicherring & LHC ermigas-modell Kerne im Grundzustand können als entartetes ermigassysteme aus Nukleonen, mit hoher Dichte

Mehr

4. Kerneigenschaften, Kernkräfte und Kernstrukturmodelle

4. Kerneigenschaften, Kernkräfte und Kernstrukturmodelle 4. Kerneigenschaften, Kernkräfte und Kernstrukturmodelle 4.1. Größe, Massen- und Ladungsverteilung 4.2. Kernmassen- und bindungsenergien 4.3. Kernspin und elektromagn. Kernmoment 4.4. Kernkräfte im Nukleon-Nukleon-System

Mehr

41. Kerne. 33. Lektion Kerne

41. Kerne. 33. Lektion Kerne 41. Kerne 33. Lektion Kerne Lernziel: Kerne bestehen aus Protonen und Neutronen, die mit starken, ladungsunabhängigen und kurzreichweitigen Kräften zusammengehalten werden Begriffe Protonen, Neutronen

Mehr

r 2 /R 2 eine sehr gute Näherung. Dabei hängen die Parameter wie folgt von Massen- und Ladungszahl ab.

r 2 /R 2 eine sehr gute Näherung. Dabei hängen die Parameter wie folgt von Massen- und Ladungszahl ab. I.. Dichteverteilungen von Atomkernen I.. a Ladungsdichteverteilung Zur Beschreibung eines ausgedehnten elektrisch geladenen Bereichs, insbesondere eines Atomkerns, ist mehr als seine Gesamtladung Q erforderlich.

Mehr

Kernphysik I. Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin

Kernphysik I. Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin Kernphysik I Kernkräfte und Kernmodelle: Ladungsunabhängigkeit der Kernkräfte Isospin Kernphysik I Universität u Köln - Fachgruppe Physik Großes Physikalisches Kolloquium Dienstag, 0. Juni 008, 6:45 Uhr

Mehr

0 Vorlesung Übersicht

0 Vorlesung Übersicht 0 Vorlesung Übersicht Kernmodelle (Wiederholung Tröpfchenmodell) Fermigas-Modell Schalenmodell (Hyperkerne) 1.0 Wiederholung Hierarchie Atom Längenskala Anregungsenergie Kern, Elektron 3 Elektronenhülle

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

2) Kernstabilität und radioaktive Strahlung (2)

2) Kernstabilität und radioaktive Strahlung (2) 2) Kernstabilität und radioaktive Strahlung (2) Periodensystem der Elemente vs. Nuklidkarte ca. 115 unterschiedliche chemische Elemente Periodensystem der Elemente 7 2) Kernstabilität und radioaktive Strahlung

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Schalenmodell Kern- und Teilchenphysik Schalenmodell Das Tröpfchenmodell ist ein phänemonologisches Modell mit beschränktem Anwendungsbereich. Es wird an die Experimente angepasst (z.b. die Konstanten

Mehr

Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions

Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions Kernphysik II Kernstruktur & Kernreaktionen Nuclear Structure & Reactions Dozent: Prof. Dr. P. Reiter Ort: Seminarraum Institut für Kernphysik Zeit: Montag 14:00 14:45 Mittwoch 16:00 17:30 Kernphysik II

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Kern- und Teilchenphysik Johannes Blümer SS2012 Vorlesung-Website KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik

N.BORGHINI Version vom 11. Februar 2015, 14:53 Kernphysik Kinematik des γ-zerfalls. Mößbauer-Effekt Sei E die nregungsenergie des Mutterkerns, entsprechend einer Gesamtenergie in dessen Ruhesystem m Kern c 2 +E, mit m Kern der Masse des Tochternuklids. Unter

Mehr

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Cluster-Struktur in Kernen Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Die Struktur von 11 Li Beim Aufbruch von 11 Li wird nicht nur ein Neutron herausgeschlagen

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Vorlesung Kern- und Teilchenphysik WS12/ November 2012

Vorlesung Kern- und Teilchenphysik WS12/ November 2012 Vorlesung Kern- und Teilchenphysik WS12/13 30. November 2012 0 Vorlesung Übersicht Film: CERN-Experimente CMS und LHCb Grundlagen Kernphysik 1. Historische Entwicklung 2. Aufbau und Eigenschaften von Kernen

Mehr

Wiederholung: Spaltung und Fusion

Wiederholung: Spaltung und Fusion Wiederholung: Spaltung und Fusion Tröpfchenmodell: Stabilste Kerne liegen im Bereich A~60 Große Energiemenge kann bei der Spaltung eines schweren Kernes in zwei mittelschwere Kerne und bei der Fusion von

Mehr

Zusammenfassung: Kern und Teilchenphysik

Zusammenfassung: Kern und Teilchenphysik Zusammenfassung: Kern und Teilchenphysik Inhaltsverzeichnis 1 Kernphysik 1 1.1 Das Tröpfchenmodell....................................... 1 1.2 Nachweis von Teilchen......................................

Mehr

Wintersemester 2011/2012. Radioaktivität und Radiochemie. Kernphysik Udo Gerstmann

Wintersemester 2011/2012. Radioaktivität und Radiochemie. Kernphysik Udo Gerstmann Wintersemester 2011/2012 Radioaktivität und Radiochemie Kernphysik 27.10.2011 Udo Gerstmann Bundesamt für Strahlenschutz ugerstmann@bfs.de & gerstmann@gmx.de 089-31603-2430 Der Atomkern besteht aus Protonen

Mehr

15 Kernphysik Physik für E-Techniker. 15 Kernphysik

15 Kernphysik Physik für E-Techniker. 15 Kernphysik 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion 15. Kernphysik 15.

Mehr

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne

15 Kernphysik Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne Inhalt 15 Kernphysik 15.1 Der Atomkern 15.2 Kernspin 15.3 Radioaktivität 15.4 Zerfallsgesetz radioaktiver Kerne 15.5 Kernprozesse 15.5.1 Kernfusion 15.5.2 Kernspaltung 15.5.3 Kettenreaktion Der Atomkern

Mehr

Struktur der Materie II (L), Kern und Teilchenphysik

Struktur der Materie II (L), Kern und Teilchenphysik Struktur der Materie II (L), Kern und Teilchenphysik Dr. Martin zur Nedden, Humboldt Universität zu Berlin Vorlesung für das Lehramt Physik, Folien zur Vorlesung Berlin, Wintersemester 2002/2003 Struktur

Mehr

β + Vergleich der Grundzustände und Anregungen niedriger Energie von 11

β + Vergleich der Grundzustände und Anregungen niedriger Energie von 11 3 Schalenstruktur der Atomkerne Über die Kerne Einer der wichtigsten Fakten ist die Gleichheit der Wechselwirkung zwischen den Protonen und Neutronen, starke Wechselwirkung genannt, die die Atomkerne bilden.

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #47 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #47 am 0.07.007 Vladimir Dyakonov Kernphysik 1 Zusammensetzung von Kernen Atomkerne bestehen

Mehr

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit

Kernreaktionen. d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke /s mit keV Deuteronen Energieabhängigkeit Kernreaktionen d + 2 H 3 He + n, Q= 3.26MeV d + 3 H 4 He + n, Q= 17.6MeV Quellstärke 10 10 /s mit 100-300keV Deuteronen Energieabhängigkeit 4 E n = E d + 2 (2 E d E n ) 1/2 cos(θ) + 3Q E d = 300 kev Emission

Mehr

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers

Notizen zur Kern-Teilchenphysik II (SS 2004): 2. Erhaltungsgrößen. Prof. Dr. R. Santo Dr. K. Reygers Notizen zur Kern-Teilchenphysik II (SS 4):. Erhaltungsgrößen Prof. Dr. R. Santo Dr. K. Reygers http://www.uni-muenster.de/physik/kp/lehre/kt-ss4/ Kern- Teilchenphysik II - SS 4 1 Parität (1) Paritätsoperator:

Mehr

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare

Massive Sterne: Gravitationskollaps-Supernovae, Neutronensterne & Pulsare Massive Sterne: Gravitationskollaps-, & Uni Mainz Vortrag in Astroteilchenphysik im WS 10/11 18. Januar 2011 Überblick 1 Gravitationskollaps- und Entstehung von n 2 Eigenschaften von n 3 Was ist ein Pulsar?

Mehr

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht

Proseminar: Theoretische Physik. und Astroteilchenphysik. Fermi- und Bose Gase. Thermodynamisches Gleichgewicht Proseminar: Theoretische Physik und Astroteilchenphysik Thermodynamisches Gleichgewicht Fermi- und Bose Gase Inhalt 1. Entropie 2. 2ter Hauptsatz der Thermodynamik 3. Verteilungsfunktion 1. Bosonen und

Mehr

Kernphysik I. Kernmodelle: Fermigas-Modell Neutronenstern

Kernphysik I. Kernmodelle: Fermigas-Modell Neutronenstern Kernhysik I Kernmodelle: ermigas-modell Neutronenstern ermigas-modell Kerne im Grundzustand können als entartetes ermigassysteme aus Nukleonen, mit hoher Dichte (,1 Nukleonen/fm ) betrachtet werden. Die

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie

Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie Energie aus Kernkraft Seminar Uni Potsdam, Institut für Physik und Astronomie 21.04.2011, Regenstein, Gebert, Schmidt, Wüsthoff, Guber, Polster 1 physikalische Grundlagen der Kernenergietechnik 21.04.2011,

Mehr

Produktion superschwerer Elemente

Produktion superschwerer Elemente Produktion superschwerer Elemente Schlüsselexperimente der Teilchenphysik Mathias Wegner 25.06.2010 Mathias Wegner Produktion superschwerer Elemente 1/ 39 Schaubild: Das Periodensystem Mathias Wegner Produktion

Mehr

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI)

Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Moderne Experimentalphysik III: Kerne und Teilchen (Physik VI) Günter Quast, Roger Wolf, Pablo Goldenzweig 06. Juni 2017 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University

Mehr

Die Erzeugung superschwerer Elemente. Zusammenfassung des Vortrags von Michael Weiss ( )

Die Erzeugung superschwerer Elemente. Zusammenfassung des Vortrags von Michael Weiss ( ) Die Erzeugung superschwerer Elemente Zusammenfassung des Vortrags von Michael Weiss (27.06.2006) 1. Einleitung Die Nuklidkarte In der Nuklidkarte sind alle stabilen Nuklide und die bekannten radioaktiven

Mehr

Einführung in die Kern- und Elementarteilchenphysik

Einführung in die Kern- und Elementarteilchenphysik Hartmut Machner Einführung in die Kern- und Elementarteilchenphysik WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort XIII 1 Historische Anfänge 1 1.1 Aufgaben 4 2 Experimentelle Methoden

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität

Lernziele zu Radioaktivität 1. Radioaktive Strahlung. Entdeckung der Radioaktivität. Entdeckung der Radioaktivität Radioaktive Strahlung Entstehung Nutzen Gefahren du weisst, Lernziele zu Radioaktivität 1 dass Elementarteilchen nur bedingt «elementar» sind. welche unterschiedlichen Arten von radioaktiven Strahlungen

Mehr

Maria Goeppert-Mayer Kernmodelle und die magischen Zahlen. Nobelpreis 1963

Maria Goeppert-Mayer Kernmodelle und die magischen Zahlen. Nobelpreis 1963 Maria Goeppert-Mayer Kernmodelle und die magischen Zahlen Nobelpreis 1963 Justus-Liebig-Universität Giessen Dr. Frank Morherr Inhalt Tröpfchenmodell Bethe-Weizsäcker-Formel Thomas-Fermi-Modell des Atomkerns

Mehr

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Einführung in die Neutronenstreuung Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Literatur Sehr empfehlenswert: Neutron scattering: A Primer by Roger Pynn Los Alamos Science

Mehr

9. Kernphysik 9.1. Zusammensetzung der Atomkerne

9. Kernphysik 9.1. Zusammensetzung der Atomkerne Prof. Dieter Suter Physik B2 SS 01 9. Kernphysik 9.1. Zusammensetzung der Atomkerne 9.1.1. Nukelonen Die Atomkerne bestehen aus Protonen und Neutronen. Die Zahl der Nukleonen wird durch die Massenzahl

Mehr

Man nimmt an, dass sich der Kernspin zusammensetzt aus der Vektorsumme der Nukleonenspins und der Bahndrehimpulse der Nukleonen

Man nimmt an, dass sich der Kernspin zusammensetzt aus der Vektorsumme der Nukleonenspins und der Bahndrehimpulse der Nukleonen 2.5.1 Spin und magnetische Momente Proton und Neutron sind Spin-½ Teilchen (Fermionen) Aus Hyperfeinstruktur der Energieniveaus vieler Atomkerne kann man schließen, dass Atomkerne ein magnetisches Moment

Mehr

Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die die Elektronen eines Atoms einnehmen?

Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die die Elektronen eines Atoms einnehmen? phys4.021 Page 1 12. Mehrelektronenatome Fragestellung: Betrachte Atome mit mehreren Elektronen. Welche Prinzipien bestimmen die quantenmechanischen Zustände, beschrieben durch ihre Quantenzahlen, die

Mehr

"Einführung in die Festkörperphysik" Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons

Einführung in die Festkörperphysik Inhalt der Vorlesung. 5.7 Messung von Bandstrukturen, Zustandsdichte. 5.2 Das Modell des fast freien Elektrons Inhalt der Vorlesung "Einführung in die Festkörperphysik" für Dezember 2009 ist geplant: 5. Energiebänder 5.1 Motivation 5.2 Das Modell des fast freien Elektrons 5.3 Das stark gebundene Elektron 5.4 Das

Mehr

Bausteine der Materie

Bausteine der Materie Bausteine der Materie Die wundersame Welt der Elementarteilchen B. Krusche, Department für Physik, U. Basel? 2 Collaboration Eine uralte Frage:.. Was halt sie zusammen? Woraus ist die Welt gemacht? Erster

Mehr

Moderne Experimente der Kernphysik

Moderne Experimente der Kernphysik Moderne Experimente der Kernphysik Wintersemester 2011/12 Vorlesung 21 06.02.2012 Moderne Experimente der Kernphysik Prof. Thorsten Kröll Vorlesung 21 06.02.2012 1 Superschwere Elemente (SHE) Strutinsky-

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e Rutherford Streuung Historisch: Allgemein: Streuung von α-teilchen an Metallfolien Ernest Rutherford, 96 Streuung geladener Teilchen an anderen geladenen Teilchen unter der Wirkung der Coulomb-Kraft. F

Mehr

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges

Mehr

Springer-Lehrbuch. Teilchen und Kerne. Eine Einführung in die physikalischen Konzepte. von Bogdan Povh, Klaus Rith, Christoph Scholz, Frank Zetsche

Springer-Lehrbuch. Teilchen und Kerne. Eine Einführung in die physikalischen Konzepte. von Bogdan Povh, Klaus Rith, Christoph Scholz, Frank Zetsche Springer-Lehrbuch Teilchen und Kerne Eine Einführung in die physikalischen Konzepte von Bogdan Povh, Klaus Rith, Christoph Scholz, Frank Zetsche Neuausgabe Teilchen und Kerne Povh / Rith / Scholz / et

Mehr

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik

Fortgeschrittene Experimentalphysik für Lehramtsstudierende. Teil II: Kern- und Teilchenphysik Fortgeschrittene Experimentalphysik für Lehramtsstudierende Markus Schumacher 30.5.2013 Teil II: Kern- und Teilchenphysik Prof. Markus Schumacher Sommersemester 2013 Kapitel1: Einleitung und Grundbegriffe

Mehr

Superschwere Elemente

Superschwere Elemente Superschwere Elemente Die Reise zur Insel der Stabilität Steffen Therre Fakultät für Physik und Astronomie, Ruprecht-Karls-Universität Heidelberg 13. Juni 2014 Präzisionsexperimente der Teilchenphysik

Mehr

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick)

Masse etwa 1 u = e-27 kg = MeV/c^2. Neutron (Entdeckung 1932 James Chadwick) Masse etwa 1 u = 1.6605e-27 kg = 931.5 MeV/c^2 Neutron (Entdeckung 1932 James Chadwick) Kraft Reichweite (cm) Stärke bei 10 13 cm im Vergleich zu starker Kraft Gravitation unendlich 10 38 elektrische Kraft

Mehr

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind:

Elektronen, Protonen und Neutronen haben folgende Eigenschaften, die in Tabelle 2.1 wiedergegeben sind: Aufbau der Atome.1 Elektronen, Protonen, Neutronen, Isotope Atome bestehen aus Elektronen, die die Atomhülle bilden, sowie den im Kern vereinigten Protonen und Neutronen. Die elektromagnetischen Wechselwirkungen

Mehr

Kern- und Teilchenphysik. Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor

Kern- und Teilchenphysik. Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor Kern- und Teilchenphysik Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor Formfaktor des Nukleons Tiefinelastische Elektron-Nukleon Streuung Substruktur des Nukleons Folien und

Mehr

Radioaktivität. den 7 Oktober Dr. Emőke Bódis

Radioaktivität. den 7 Oktober Dr. Emőke Bódis Radioaktivität den 7 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Eigenschaften und Entstehung der radioaktiver Strahlungen: Alpha- Beta- und Gamma- Strahlungen. Aktivität. Zerfallgesetz. Halbwertzeit.

Mehr

C N Z. m c Z m c C A C A C Z 2. Seite 1 von 10 2 C A

C N Z. m c Z m c C A C A C Z 2. Seite 1 von 10 2 C A ) Um neue radioaktive Substanzen zu erzeugen, bestrahlten Otto Hahn und Fritz Straßmann 98 Uran mit Neutronen. Sie ummantelten die Neutronenquelle mit einem dicken Paraffinblock, auf den sie 5g Uran in

Mehr

Historisches Präludium

Historisches Präludium Historisches Präludium Sir saac Newton (1642-1727) "Now the smallest particles of matter may cohere by the strongest attractions, and compose bigger particles of weaker virtue... There are therefore agents

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

Li 4. Aufbau und Eigenschaften der Atomkerne

Li 4. Aufbau und Eigenschaften der Atomkerne A1 Aufbau und Eigenschaften der Atomkerne Atomkerne sind aus Protonen und Neutronen zusammengesetzt, die durch sehr starke Kräfte (Kernkräfte) zusammengehalten werden. Es gibt stabile Kerne und instabile

Mehr

Was haben wir letztes Mal gelernt?!

Was haben wir letztes Mal gelernt?! Kapitel 17: Kernmodelle Was haben wir letztes Mal gelernt?! Tröpfchenmodell: Fermigasmodell: 17. Schalenmodell! Experimentelle Anzeichen für ein Schalenmodell des Kerns: Magische Zahlen N, Z=2, 8, 20,

Mehr

Vorlesung Kern- und Teilchenphysik WS12/ Dezember 2012

Vorlesung Kern- und Teilchenphysik WS12/ Dezember 2012 Vorlesung Kern- und Teilchenphysik WS12/13 14. Dezember 2012 0 Vorlesung Übersicht Ergänzung: Herstellung von Antimaterie Kernmodelle Wiederholung: Tröpfchenmodell, Fermigas Hyperkerne Schalenmodell Angeregte

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

Experimentalphysik Modul PH-EP4 / PH-DP-EP4

Experimentalphysik Modul PH-EP4 / PH-DP-EP4 10 Kernphysik Universität Leipzig, Fakultät für Physik und Geowissenschaften Experimentalphysik Modul PH-EP4 / PH-DP-EP4 Script für Vorlesung 29. Juni 2009 Nachdem in den vorangegangenen Kapiteln die Moleküle

Mehr

4.1. Eigenschaften von Atomkernen

4.1. Eigenschaften von Atomkernen 4.1. Eigenschaften von Atomkernen 4.1.1. Historisches 1895 Entdeckung der Röntgenstrahlen 1896 Entdeckung der Radioaktivität durch Becquerel 1897 Entdeckung des Elektrons durch J.J. Thomson 1898 Isolierung

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

Nanoplasma. Nano(cluster)plasmen

Nanoplasma. Nano(cluster)plasmen Nano(cluster)plasmen Nanoplasma Neben der Rumpfniveauspektroskopie an Clustern bietet FLASH die Möglichkeit Cluster unter extremen Bedingungen im Feld eines intensiven Röntgenpulses zu studieren (Nano)Plasmaphysik

Mehr

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie 03. Kernstruktur Page 1 Kapitel 3: Kernstruktur des Atoms Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie Elektronen erzeugt im Kathodenstrahlrohr wechselwirken mit Gasatomen im Rohr. Elektronen

Mehr

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen,

umwandlungen Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Wiederholung der letzten Vorlesungsstunde: Atommodelle, Rutherford-Experiment, Atomaufbau, Elektronen, Protonen, Neutronen, Element, Ordnungszahl Thema heute: Aufbau von Atomkernen, Kern- umwandlungen

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Kern- und Teilchenphysik Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor Formfaktor des Nukleons Tiefinelastische Elektron-Nukleon Streuung Substruktur des Nukleons Folien und

Mehr

Standardmodell der Materie und Wechselwirkungen:

Standardmodell der Materie und Wechselwirkungen: Standardmodell der Materie und en: (Quelle: Wikipedia) 1.1. im Standardmodell: sind die kleinsten bekannten Bausteine der Materie. Die meisten Autoren bezeichnen die Teilchen des Standardmodells der Teilchenphysik

Mehr

Der Ursprung der Masse

Der Ursprung der Masse Der Ursprung der Masse Dieter Zeppenfeld Institut für Theoretische Physik Universität Karlsruhe Dieter Zeppenfeld, Karlsruhe, 24. Juni 2006 p.1 Typischen Massenskalen bekanntes Universum Sonne Erde Elefant

Mehr

1.3 Historischer Kurzüberblick

1.3 Historischer Kurzüberblick 1.3 Historischer Kurzüberblick (zur Motivation des Standard-Modells; unvollständig) Frühphase: 1897,,Entdeckung des Elektrons (J.J. Thomson) 1905 Photon als Teilchen (Einstein) 1911 Entdeckung des Atomkerns

Mehr

Einführung in die. Quantengeometrie. der Atomkerne

Einführung in die. Quantengeometrie. der Atomkerne Einführung in die Quantengeometrie der Atomkerne Uwe Kraeft 2014 Berichte aus der Physik Uwe Kraeft Einführung in die Quantengeometrie der Atomkerne Shaker Verlag Aachen 2014 Bibliografische Information

Mehr

Inhaltsverzeichnis. 1 Der Atomkern Entdeckung des Atomkerns Streuversuche... 5

Inhaltsverzeichnis. 1 Der Atomkern Entdeckung des Atomkerns Streuversuche... 5 Inhaltsverzeichnis 1 Der Atomkern 3 1.1 Entdeckung des Atomkerns............................ 3 1.2 Streuversuche................................... 5 2 Eigenschaften der Kerne 9 2.1 Neutronenzahl und Ordnungszahl........................

Mehr

Experimentelle Untersuchungen zur Struktur des Nukleons

Experimentelle Untersuchungen zur Struktur des Nukleons Experimentelle Untersuchungen zur Struktur des Nukleons 1. Einleitung 2. Der elektrische Formfaktor des Protons 3. Ergebnisse, die auf eine Abweichung einer sphärischen Ladungsverteilung beim Proton bzw.

Mehr

Physikalische. Grundlagen. L. Kölling, Fw Minden

Physikalische. Grundlagen. L. Kölling, Fw Minden Physikalische Grundlagen L. Kölling, Fw Minden Radioaktivität kann man weder sehen, hören, fühlen, riechen oder schmecken. Daher muss sie der FA (SB) zumindest verstehen, um im Einsatzfall die erforderlichen

Mehr

Nukleosynthese in der Nuklearen Astrophysik

Nukleosynthese in der Nuklearen Astrophysik Nukleosynthese in der Nuklearen Astrophysik Freitag 11 Uhr c.t. - 13:00 Raum NB /170 Tobias Stockmanns und Marius Mertens t.stockmanns@fz-juelich.de m.mertens@fz-juelich.de http://www.ep1.rub.de/lehre/veranstaltungen/ws113/nucsyn/

Mehr

Kernphysik I. Kernmodelle: Beschreibung deformierter Kerne Kollektive Anregungen γ-zerfälle

Kernphysik I. Kernmodelle: Beschreibung deformierter Kerne Kollektive Anregungen γ-zerfälle Kernphysik I Kernmodelle: Beschreibung deformierter Kerne Kollektive Anregungen γ-zerfälle Wiederholung: Erfolge des Schalenmodells Mit dem Schalenmodell können die "magischen" Zahlen erklärt werden. Kernspin

Mehr

Kerne und Teilchen. Moderne Physik III

Kerne und Teilchen. Moderne Physik III Kerne und Teilchen Moderne Physik III Vorlesung # 08 3. Instabile Kerne - ß-Zerfall: Grundlagen - Neutrinos: Hypothese & Nachweis - Klassifizierung von ß-Zerfällen: ß +, EC, ß - Zerfälle - Fermi s Goldene

Mehr

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung

2 Elektrostatik. 2.1 Coulomb-Kraft und elektrische Ladung. 2.1 Coulomb-Kraft und elektrische Ladung 2.1 Coulomb-Kraft und elektrische Ladung 2 Elektrostatik 2.1 Coulomb-Kraft und elektrische Ladung Abb. 2.1 Durch Reiben verschiedener Stoffe aneinander verbleiben Elektronen der Atomhüllen überwiegend

Mehr

RELATIVITÄT und QUANTEN

RELATIVITÄT und QUANTEN FAKULTÄT FÜR PHYSIK PHYSIK AM SAMSTAG RELATIVITÄT und QUANTEN Konzepte der Teilchenphysik J. H. KÜHN http://www-ttp.physik.uni-karlsruhe.de/slides PHYSIK Reduktion der Beobachtungen auf einfache Naturgesetze

Mehr

Eine Waage für einzelne Atome

Eine Waage für einzelne Atome Eine Waage für einzelne Atome Jens Ketelaer, Johannes Gutenberg-Universität Mainz 07. März 2007 3,4 cm GSI Wissenschaft für alle Inhalt des Vortrags Wie sind Atome aufgebaut? Warum interessiert man sich

Mehr

Frühes Universum. Katharina Müller Universität Zürich

Frühes Universum. Katharina Müller Universität Zürich Frühes Universum Katharina Müller Universität Zürich kmueller@physik.unizh.ch 28. Juni 2002 Inhaltsverzeichnis 0.1 Bigbang Modell................................. 2 Katharina Müller 1 Frühes Universum

Mehr

Tief inelastische Streuung

Tief inelastische Streuung Kerne un Teilchen Moerne Experimentalphysik III Vorlesung 7 MICHAEL EINDT INSTITUT ÜR EXPERIMENTELLE KERNPHYSIK Tief inelastische Streuung KIT Universität es Lanes Baen-Württemberg un nationales orschungszentrum

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr