Altersgruppe Klasse 5
|
|
|
- Johann Giese
- vor 8 Jahren
- Abrufe
Transkript
1 Altersgruppe Klasse 5 Von einer Baustelle soll Schutt abgefahren werden. Der Lkw einer Firma fährt jeweils zweimal am Tag. a) Am ersten Tag transportierte er insgesamt 9500 kg. Bei der ersten Fahrt waren es 500 kg weniger als bei der zweiten Fahrt. Wie schwer war die Ladung bei jeder Fahrt? b) Am zweiten Tag transportierte er insgesamt 9600 kg. Die Ladung der ersten Fahrt war diesmal doppelt so schwer wie bei der zweiten Fahrt. Wie viel Kilogramm Schutt hatte der Lkw jeweils geladen? c) Insgesamt sind 100 t Schutt abzufahren. Am wievielten Arbeitstag ist der ganze Schutt abtransportiert, wenn täglich etwa 9600 kg Schutt abtransportiert werden? Man kann zwei beliebig große Kreise so zeichnen, dass sie sich in genau einem Punkt berühren (siehe Abbildung). a) Zeichne drei beliebige Kreise so, dass jeder der drei Kreise die beiden anderen berührt. Hinweis: Zeichne in allen Aufgabenteilen die Kreise mit dem Zirkel. b) Vier Kreise kann man so anordnen, dass jeder Kreis genau zwei andere berührt. Zeichne eine solche Situation. c) Man kann aber auch vier Kreise so anordnen, dass jeder der Kreise alle anderen berührt. Finde für diese Situation zwei mögliche Lösungen und zeichne sie. Laras Mitschüler Andreas, Benedikt, Christian und Daniel sind unterschiedlich groß. Lara macht dazu folgende vier Aussagen: (1) Christian ist der Zweitgrößte. (2) Andreas ist nicht der Größte. (3) Der Junge links von Daniel ist größer als Daniel. (4) Daniel ist kleiner als Andreas. a) Zeige, dass man aus diesen Aussagen eindeutig die Reihenfolge der vier Jungen nach ihrer Größe herausfinden kann. Gib diese Reihenfolge an. Beginne dabei mit dem größten Jungen. b) Eine der vier Aussagen ist sogar überflüssig. Welche ist das? Begründe, dass diese überflüssig ist.
2 Altersgruppe Klasse 6 auch erklären, wie du zu Ergebnissen und Teilergebnissen gelangt bist. a) Die 30 Schüler der Klasse 6a laufen 15 Minuten lang Runden auf dem kleinen Sportplatz der Schule. Ein Zehntel der Schüler der Klasse schafft in dieser Zeit jeweils 15 Runden. Ein Fünftel der Schüler läuft je 12 Runden. Ein Drittel schafft je 10 Runden, und die restlichen Schüler laufen jeweils 8 Runden auf dem Sportplatz. Wie viele Runden sind von allen Schülern zusammen insgesamt gelaufen worden? b) In der Klasse 6b läuft die Hälfte der Schüler jeweils 10 Runden, ein Achtel der Schüler je 9 Runden, ein Viertel schafft je 8 Runden und die restlichen drei Schüler laufen jeweils 14 Runden. Wie viele Schüler hat die Klasse 6b und wie viele Runden sind die Schüler dieser Klasse insgesamt gelaufen? Lena zeichnet Muster in Koordinatensysteme. In der 1. Stufe zeichnet sie zwei Strecken vom Punkt (0 1) zum Punkt (2 0) und vom Punkt (0 2) zum Punkt (1 0). Die zwei Strecken schneiden sich in genau einem Punkt. In der 2. Stufe zeichnet Lena drei Strecken von (0 1) zu (3 0), von (0 2) zu (2 0) und von (0 3) zu (1 0). Diese drei Strecken schneiden sich in genau drei Punkten. In der 3. Stufe werden vier Strecken gezeichnet und so weiter (siehe Abbildungen der Stufen 1 3). Hinweis: Niemals verlaufen drei Strecken im Muster einer Stufe durch denselben Punkt. a) Zeichne die Strecken der Stufen 4, 5 und 6 in verschiedene Koordinatensysteme. b) Wie viele Schnittpunkte haben die Strecken in den Stufen 3, 4, 5 und 6 jeweils? c) Berechne ohne zu zeichnen die Anzahl der Schnittpunkte der Strecken in der 20. Stufe. Gegeben sind folgende sieben Karten, drei Zahlenkarten und vier Zeichenkarten: Diese sieben Karten kann man jetzt zu mathematisch sinnvollen Termen anordnen, z. B. 7+(8 9) oder (9+8) 7. Es sollen immer alle sieben Karten verwendet werden. a) Bei welcher Anordnung der sieben Karten erhältst du das größte Ergebnis? Welche Anordnung führt zum kleinsten Ergebnis? b) Daniel möchte eine Anordnung der sieben Karten finden, die als Ergebnis 120 hat. Er stellt fest: Mit den vorhandenen Karten geht es nicht. Wenn ich aber nur eine Zahlenkarte gegen eine neue Karte mit einer anderen einstelligen, noch nicht vorhandenen Zahl austausche, dann geht es. Zeige, dass Daniel mit beiden Aussagen Recht hat. c) Daniel möchte nun aus den vier Zeichenkarten und drei beliebigen Zahlenkarten mit einstelligen Zahlen das Ergebnis 111 erhalten. Begründe, warum er für dieses Ergebnis keine Lösung finden kann. Hinweis: Da Addition und Multiplikation kommutativ sind, sollen Anordnungen nicht als verschieden angesehen werden, wenn sie nur durch Vertauschung zweier Summanden oder Faktoren entstehen, wie es z.b. bei 7+(8 9), 7+(9 8), (8 9)+7 und (9 8)+7 der Fall ist.
3 Altersgruppe Klasse 7 Simon hat begonnen, Karten eines Sammelkartenspiels zu sammeln. Die Karten, die er schon hat, gehören zu vier Typen: Die Hälfte seiner Karten sind Heldenkarten. Von den übrigen Karten sind zwei Drittel Energiekarten. Drei Viertel der Karten, die weder Heldenkarten noch Energiekarten sind, sind Monsterkarten. Die letzte Karte ist eine Verzauberungskarte. Berechne, wie viele Karten Simon insgesamt bereits gesammelt hat. Im Baumarkt kauft Milena vier Bretter, die gleich viel kosten. An der Kasse bezahlt sie die Bretter mit einem 10- Euro-Schein und erhält 6 Münzen als Rückgeld: eine 50-Cent-Münze, eine 20-Cent-Münze, eine 10-Cent-Münze, eine 5-Cent-Münze, eine 2-Cent-Münze und eine 1-Cent-Münze. Milena, die sich den Preis eines einzelnen Brettes gemerkt hat, stellt sofort fest, dass das Rückgeld nicht stimmt. Und tatsächlich: Der Kassierer hat Milena eine Münze zu viel herausgegeben. Welche Münze muss Milena zurückgeben? Begründe auch, warum nur diese Münze die zu viel herausgegebene Münze sein kann, und berechne, wie viel jedes der Bretter kostet. Lena zeichnet Muster in Koordinatensysteme. In der 1. Stufe zeichnet sie zwei Strecken vom Punkt (0 1) zum Punkt (2 0) und vom Punkt (0 2) zum Punkt (1 0). Die zwei Strecken schneiden sich in genau einem Punkt. In der 2. Stufe zeichnet Lena drei Strecken von (0 1) zu (3 0), von (0 2) zu (2 0) und von (0 3) zu (1 0). Diese drei Strecken schneiden sich in genau drei Punkten. In der 3. Stufe werden vier Strecken gezeichnet und so weiter (siehe Abbildungen der Stufen 1 3). Hinweis: Niemals verlaufen drei Strecken im Muster einer Stufe durch denselben Punkt. a) Zeichne die Strecken der Stufen 4, 5 und 6 in verschiedene Koordinatensysteme. b) Wie viele Schnittpunkte haben die Strecken in den Stufen 3, 4, 5 und 6 jeweils? c) Berechne ohne zu zeichnen die Anzahl der Schnittpunkte der Strecken in der 20. Stufe.
4 Altersgruppe Klasse 8 Das Sommerheft einer Schülerzeitung gab es für 1,20 Euro zu kaufen. Für das Herbstheft wurde der Preis gesenkt. Es wurden dreimal so viele Herbsthefte verkauft wie Sommerhefte, und trotz des gesenkten Preises haben sich die Einnahmen verdoppelt. a) Wie viel kostet das Herbstheft dieser Schülerzeitung? b) Ein Schüler behauptet: Wir können den Preis für die Winterhefte im Vergleich zu den Herbstheften derart verringern, dass wir beim Verkauf von viermal so vielen Winter- wie Sommerheften eine Verdreifachung der Einnahmen im Vergleich zum Sommerheft erzielen. Untersuche, ob die Behauptung des Schülers stimmt. In einer Chronik aus dem Jahre 1685 fand man die folgende kaufmännische Abrechnung: Gulden Kreuzer Pfennig Summe a) Gib an, wie viel Pfennig ein Kreuzer und wie viel Kreuzer ein Gulden nach dieser Abrechnung wert gewesen sein könnten. b) Zeige, dass dein Ergebnis den Angaben in der Tabelle entspricht. c) Erläutere, wie du dein Ergebnis ermittelt hast. In einem Viereck sind die Seiten und parallel zueinander. Die Seite ist genau so lang wie die Seite. Die Seite ist dreimal so lang wie die Seite. Die Größe des Winkels beträgt 120. Ermittle die Größe des Winkels. Hinweis: Alle gesuchten Größen sind mit geometrischen Argumenten exakt zu bestimmen. Messungen mit Lineal oder Geodreieck sind dafür nicht zulässig, da diese niemals exakt sind.
5 Altersgruppe Klasse 9 Bernd und Inge spielen folgendes Spiel: Zu Beginn liegt ein Stapel Karten auf dem Tisch, der mindestens drei Karten enthält. Die beiden sind abwechselnd am Zug. Im ersten Zug teilt Bernd den Stapel in zwei kleinere Stapel auf. Es sind nur Stapel mit mindestens einer Karte zugelassen. Jeder folgende Zug besteht aus zwei Teilen. Zunächst ist ein Stapel zu entfernen. Danach ist der andere in zwei kleinere Stapel zu zerlegen. Am Ende eines Zuges liegen also stets genau zwei Stapel auf dem Tisch. Damit ein Zug möglich ist, muss wenigstens einer der Stapel auf dem Tisch mehr als eine Karte aufweisen. Gewonnen hat, wer den letzten (möglichen bzw. gültigen) Zug machen konnte. a) Der (Start-)Stapel enthält genau vier Karten. Wie kann Bernd gewinnen? Besteht die Möglichkeit, dass Inge gewinnt? b) Für welche Größen des Startstapels (bzw. für welche Anzahl der Karten im Startstapel) kann Bernd den Gewinn erzwingen, für welche Größen gelingt dies Inge? Für ganze Zahlen und gelte ( + ) ( 1) = 240. Bestimmen Sie unter Beachtung aller Lösungsmöglichkeiten den kleinsten und den größten Wert der Differenz. In einem Viereck sind die Seiten und parallel zueinander. Die Seite ist genau so lang wie die Seite. Die Seite ist dreimal so lang wie die Seite. Die Größe des Winkels beträgt 120. Ermittle die Größe des Winkels. Hinweis: Alle gesuchten Größen sind mit geometrischen Argumenten exakt zu bestimmen. Messungen mit Lineal oder Geodreieck sind dafür nicht zulässig, da diese niemals exakt sind.
6 Altersgruppe Klasse 10 und Einführungsphase Bernd und Inge spielen folgendes Spiel: Zu Beginn liegt ein Stapel Karten auf dem Tisch, der mindestens drei Karten enthält. Die beiden sind abwechselnd am Zug. Im ersten Zug teilt Bernd den Stapel in zwei kleinere Stapel auf. Es sind nur Stapel mit mindestens einer Karte zugelassen. Jeder folgende Zug besteht aus zwei Teilen. Zunächst ist ein Stapel zu entfernen. Danach ist der andere in zwei kleinere Stapel zu zerlegen. Am Ende eines Zuges liegen also stets genau zwei Stapel auf dem Tisch. Damit ein Zug möglich ist, muss wenigstens einer der Stapel auf dem Tisch mehr als eine Karte aufweisen. Gewonnen hat, wer den letzten (möglichen bzw. gültigen) Zug machen konnte. a) Der (Start-)Stapel enthält genau vier Karten. Wie kann Bernd gewinnen? Besteht die Möglichkeit, dass Inge gewinnt? b) Für welche Größen des Startstapels (bzw. für welche Anzahl der Karten im Startstapel) kann Bernd den Gewinn erzwingen, für welche Größen gelingt dies Inge? Für ganze Zahlen und gelte ( + ) ( 1) = 240. Bestimmen Sie unter Beachtung aller Lösungsmöglichkeiten den kleinsten und den größten Wert der Differenz. Gegeben sei ein (nicht überschlagenes) Viereck mit, = = und = =. Bestimmen Sie die Größen der Innenwinkel dieses Vierecks.
7 Altersgruppe Qualifikationsphase Bestimmen Sie alle reellen Zahlen x, y, die das Gleichungssystem erfüllen. (1) = 11 (2) + = 2193 Die Ecken eines fünfzackigen Sterns liegen so auf den Seiten eines Quadrates mit der Seitenlänge 1, dass zwei Ecken des Sterns mit den Eckpunkten und übereinstimmen und im Inneren der Kanten, und jeweils ein weiterer Eckpunkt des Sterns liegt, siehe Abbildung. Der Flächeninhalt des mittleren Fünfecks beträgt. Berechnen Sie die Summe der Flächeninhalte der grau gefärbten Dreiecke. In einem Quadrat mit der Seitenlänge 2017 liegen Punkte. a) Beweisen Sie, dass es einen Kreis mit dem Durchmesser 100 gibt, in dessen Innerem mindestens 12 dieser Punkte liegen. b) Beweisen Sie, dass es sogar einen Kreis mit dem Durchmesser 100 gibt, in dessen Innerem mindestens 15 der Punkte liegen.
Altersgruppe Klasse 5
Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und
Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung).
Grundwissen 5 - Aufgaben 22.01.2016 Seite 1 1. Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). a) Gib an, welche dieser drei Figuren den größten und welche den kleinsten
29. Essener Mathematikwettbewerb 2013/2014
Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und nicht nur berühren;
Inhaltsverzeichnis. Inhaltsverzeichnis
Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................
Aufgaben Klassenstufe 5
Aufgaben Klassenstufe 5 Oma Streifstrumpf strickt für Peppi neue Socken. Peppi hat drei Lieblingsfarben und zwar rot, gelb und blau, die alle in den drei Streifen vorkommen sollen. a) Die Oma hat Wolle
Altersgruppe Klasse 5
Altersgruppe Klasse 5 In einem Vieleck nennt man die Verbindungsstrecken benachbarter Eckpunkte Seiten, die Verbindungsstrecken nicht benachbarter Eckpunkte Diagonalen. Bestimme die Anzahl der Diagonalen
Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg
Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480
Tafelbild zum Einstieg
Tafelbild zum Einstieg 69 Name: Symbol: Stammgruppenfarbe: Definition: Kissing Number Das Kissing Number Problem Figur / Körper Kreise Quadrate gleichseitige Dreiecke Kugeln Kissing Number Skizze der Anordnung
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK
TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =
Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse
1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 8 Saison 1961/1962 Aufgaben und Lösungen
. Mathematik Olympiade. Stufe (Schulolympiade) Saison 96/96 Aufgaben und Lösungen OJM. Mathematik-Olympiade. Stufe (Schulolympiade) Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen
30. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1990/1991 Aufgaben und Lösungen 1 OJM 30. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass
55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben
55. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 8 Aufgaben c 2015 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg
Mathematik-Olympiade Schulrunde 2012
Aufgaben Klassenstufe 5 Zeichne zwei Kreise und zwei Geraden so, dass die jeweilige Figur a) genau neun Schnittpunkte aufweist, b) genau zehn Schnittpunkte aufweist, c) genau elf Schnittpunkte aufweist.
LEMAMOP. Lerngelegenheiten für Mathematisches Argumentieren, Modellieren und Problem lösen. Kompetenztraining Mathematisch argumentieren.
LEMAMOP Lerngelegenheiten für Mathematisches Argumentieren, Modellieren und Problem lösen Kompetenztraining Mathematisch argumentieren Jahrgang 8 Schülermaterial Klasse Argumente vereinbaren Blatt: 1 Datum:
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6
Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke
Landeswettbewerb Mathematik Baden-Württemberg. Runde 1
2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme
Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94
Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen
1. Runde 8. Klasse 1999
1. Runde 8. Klasse 1999 Es gilt: 1 = 2 (2 2) : (2 + 2) 2 = (22 : 22) 2 3 = 2 + 22 : 22 Stelle die Zahlen 4, 5, 6 und 7 ebenfalls mit Hilfe von genau fünf Zweiern dar. Verwende dabei nur die Rechenzeichen
DOWNLOAD. Geometrie 7./8. Klasse: Das Viereck. Mathetraining in 3 Kompetenzstufen. Brigitte Penzenstadler. Downloadauszug aus dem Originaltitel:
DOWNLOAD Brigitte Penzenstadler 7./8. Klasse: Das Viereck Mathetraining in 3 Kompetenzstufen Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht.
Symmetrien und Winkel
Symmetrien und Winkel 20 1 13 Symmetrien Zeichnungen und Konstruktionen zur Symmetrie 401 A Wähle das erste oder das zweite Bild von Vasarely im mathbuch 1 auf Seite 65. Beschreibe es. B Zeichne das Bild
Zum Einstieg. Mittelsenkrechte
Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch
21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen
21. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1981/1982 Aufgaben und Lösungen 1 OJM 21. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg
Graph der linearen Funktion
Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)
Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.
6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich
18. Essener Mathematikwettbewerb 2002/2003. Aufgaben der zweiten Runde. Klasse 5
Klasse 5 Aus zwei Karten kann man den Anfang eines Kartenhauses bauen (siehe Abbildung 1). Um ein zweistockiges Kartenhaus zu bauen, benotigt man sieben Karten (siehe Abbildung 2). Abb. 1 Abb. 2 1. Wie
MATHEMATIK-STAFFEL Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500
MATHEMATIK-STAFFEL 2013 60 Minuten Zeit für 20 Aufgaben. Die Gesamtzahl der zu erreichenden Punkte ist 500 1 (20 Punkte) Eine lange Zahl Es werden die Jahreszahlen von 1 bis 2013 hintereinander (ohne Leerzeichen,
z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².
Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne
JAHRGANGSSTUFENARBEIT AN DER MITTELSCHULE. MATHEMATIK Jahrgangsstufe 6
JAHRGANGSSTUFENARBEIT AN DER MITTELSCHULE MATHEMATIK Jahrgangsstufe 6 2. Oktober 2014 Arbeitszeit: 45 Minuten; innerhalb der ersten beiden Unterrichtsstunden Benötigtes Arbeitsmaterial: Stift, Bleistift,
Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51)
Fachbereich Mathematik Tag der Mathematik 9. November 2013 Klassenstufen 9, 10 Beispiel einer Zerlegung in vier Schritten (Zerlegungszahl n = 51) Aufgabe 1 (6+4+4+3+3 Punkte). In dieser Aufgabe geht es
Vergleichsarbeit Mathematik
Senatsverwaltung für Bildung, Jugend und Sport Vergleichsarbeit Mathematik 3. Mai 005 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene Hilfsmittel: - beiliegende Formelübersicht (eine Doppelseite)
Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.
6 Flächen Wie heißen die Figuren? Dreiecke Viereck d) Quadrat b) Kreis Quadrate Dreiecke Rechteck c) Rechtecke f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. Nimm vier gleich lange Stäbe.
Aufgaben für die Klassenstufen 9/10
Aufgaben für die Klassenstufen 9/10 Einzelwettbewerb Gruppenwettbewerb Speedwettbewerb Aufgaben ME1, ME2, ME3 Aufgaben MG1, MG2, MG3, MG4 Aufgaben MS1, MS2, MS3, MS4, MS5, MS6, MS7, MS8 Aufgabe ME1: Aus
Jahresarbeitsplan denkstark 1 ( )
Jahresarbeitsplan denkstark 1 (978-3-507-84815-3) Schulwoche Zeitraum Leitidee Projekte und Inhalt denkstark 1 (978-3-507-84815-3) Kompetenzen Denkstark 1 1-2 2 Wochen Raum und Form Projekt: Kunst und
12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen
12. Mathematik Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Saison 1972/1973 Aufgaben und Lösungen 1 OJM 12. Mathematik-Olympiade 3. Stufe (Bezirksolympiade) Klasse 7 Aufgaben Hinweis: Der Lösungsweg
Übertrittsprüfung 2014
Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2014 Aufgaben Prüfung an die 3. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des Schülers... Prüfende Schule...
Kompetenztest. Testheft
Kompetenztest Testheft Klassenstufe 8 Gymnasium Schuljahr 2009/2010 Fach Mathematik ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben
Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.
1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.
Name: Klasse: Gesamt. von 5 P. von 5 P. von 5 P. von 7 P. von 7 P. von 5 P. von 8 P. von 42 P.
Name: Klasse:. 1 2 3 4 5 6 7 Gesamt von 5 P. von 5 P. von 5 P. von 7 P. von 7 P. von 5 P. von 8 P. von 42 P. Mathematik-Olympiade in Niedersachsen Schuljahr 2010/2011 3. Stufe (Landesrunde) Schuljahrgang
MATHEMATIK WETTBEWERB RHEINLAND-PFALZ
. Runde 015 Die Lösungswege müssen mathematisch begründet und übersichtlich dargestellt werden. Nachmessen oder Nachrechnen einiger Beispiele genügt als Lösung nicht. Aufgabe 1: Auf einer Boule-Kugel mit
1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2
1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................
Institut zur Qualitätsentwicklung im Bildungswesen. Name, Vorname: Klasse: Schule:
Institut zur Qualitätsentwicklung im Bildungswesen Name, Vorname: Klasse: Schule: ANWEISUNGEN In diesem Aufgabenheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz,
Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)
(Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen
31. Mathematik Olympiade 1. Stufe (Schulrunde) Klasse 7 Saison 1991/1992 Aufgaben und Lösungen 1 OJM 31. Mathematik-Olympiade 1. Stufe (Schulrunde) Klasse 7 Aufgaben Hinweis: er Lösungsweg mit Begründungen
P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.
Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion
Teil I (Richtzeit: 30 Minuten)
Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2012 Kurzgymnasium (Anschluss 2. Sekundarklasse, NLM) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil
Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I
Arbeitsblätter zum Thema Falten regelmäßiger Vielecke für den Unterricht ab der Sekundarstufe I Robert Geretschläger Graz, Österreich, 2010 Hinweis: Die Blätter 1, 2, 3 und 4 sind für Schüler und Schülerinnen
Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)
Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier
Math-Champ M7 Klasse: Datum: Name:
Math-Champ M7 Klasse: Datum: Name: 1) Die Abbildung zeigt den unvollständigen Schrägriss eines Würfels. Vervollständige die Figur richtig. Verwende dein Geo-Dreieck. 2) In der Grafik ist der Grundriss
Sicheres Wissen und Können zu Vierecken und Vielecken 1
Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler
Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)
Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)
Tag der Mathematik 2007
Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind
Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag
Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen
Repetition Mathematik 6. Klasse (Zahlenbuch 6)
Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von
Knobelaufgaben ============================================================================== Aufgabe 1 :
Knobelaufgaben ============================================================================== Aufgabe 1 : Untersuche, ob man die Zahl 1 000 000 000 in ein Produkt aus zwei natürlichen Zahlen zerlegen kann,
Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:
GRUNDWISSENTEST 06 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen
50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben
50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben c 2010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den Text der
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Punkte mit besonderen Koordinaten 1
MEXBOX Geraden und Vielecke 2. Punkte mit besonderen Koordinaten 1 Du brauchst: Koordinatensystem (0-20) 1 Dose Stöpsel Gummis Protokollblatt 7.7 Schreibe Dir bei allen Aufgaben die Punkte mit ihren Koordinaten
Aufgabe 1 ( Punkte). Ihr kennt vermutlich schon Dreieckszahlen:
Fachbereich Mathematik Tag der Mathematik 10. November 01 Klassenstufen 7, 8 Aufgabe 1 (4+4+6+4+ Punkte). Ihr kennt vermutlich schon Dreieckszahlen: n+1 n D 1 = 1 D = 3 D 3 = 6 D 4 = 10 D n = n (n+1) Wir
Kopfübungen für die Oberstufe
Serie A Alle Kopfübungen der Serie A beinhalten die folgenden Themen in der angegebenen Reihenfolge. Tragen die Schülerinnen und Schüler ihre Antworten in eine Antwortmatrix ein, so kann nach Abschluss
Lisa und ihre Freundin haben in den Ferien einen Kochkurs besucht. Nun versuchen sie eine Torte nach einem Rezept im Internet zu backen.
Muster 1 131. Setze die fehlende Malrechnung so ein, dass die Waage im Gleichgewicht ist. 4 9 3 8 8 5 8 5 151. Für welche Zahl steht das Smily am Schluss? 40 - = 32 + =. 3 = : 6 = Für das Smily steht die
Lösung 10 Punkte Teil a) Auch bei Fortsetzung der Folge der Quadratzahlen liefert die zweite Differenzenfolge
0 Mathematik-Olympiade Stufe (Schulstufe) Klasse 9 0 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden ev wwwmathematik-olympiadende Alle Rechte vorbehalten 00 Lösung 0 Punkte Teil a) Auch bei
1. Schularbeit R
1. Schularbeit 23.10.1997... 3R 1a) Stelle die Rechnung 5-3 auf der Zahlengerade durch Pfeile dar! Gibt es mehrere Möglichkeiten der Darstellung? Wenn ja, zeichne alle diese auf! 1b) Ergänze die Tabelle:
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen
M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?
M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen
30. Essener Mathematikwettbewerb 2014/2015
Klasse 5 In den folgenden Aufgaben sollen jeweils vier Kreise gezeichnet werden, die eine vorgegebene Anzahl von Schnittpunkten miteinander haben. Zeichne sauber und benutze immer einen Zirkel! a) Zeichne
33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1993/1994 Aufgaben und Lösungen
33. Mathematik Olympiade 3. Stufe (Landesrunde) Klasse 6 Saison 1993/1994 Aufgaben und Lösungen 1 OJM 33. Mathematik-Olympiade 3. Stufe (Landesrunde) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
MATHEMATIK-WETTBEWERB 2001/2002 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 00/00 DES LANDES HESSEN AUFGABEN DER GRUPPE A PFLICHTAUFGABEN P. Von 40 Schülern fahren 44 mit öffentlichen Verkehrsmitteln zur Schule. Wie viel Prozent sind das? P. Nach einer Preiserhöhung
Kompetenztest. Wiederholung aus der 2. Klasse. Das ist Mathematik. Kompetenztest. Testen und Fördern. Wiederholung aus der 2.
Name: Klasse: Datum: 1) Ordne richtig zu. Verkauf Einnahmen Arbeiter für die Arbeit benötigte Zeit direkte Proportionalität Anzahl der Kühe Platz im Stall pro Kuh Anzahl der Pferde Zeit die der Futtervorrat
Stoffverteilungsplan Mathematik Klasse 5
Stoffverteilungsplan Mathematik Klasse 5 Lehrwerk: Mathematik heute; Schroedel Zeitraum Themen/Inhalte Begriffe/Bemerkungen Lehrbuch/KA Leitidee/Kompetenzen Weitere Hinweise 6 Wochen Natürliche Zahlen
Übungsheft Hauptschulabschluss Mathematik. Korrekturanweisung. Zentrale Abschlussarbeit 2013
Ministerium für Bildung und Wissenschaft des Landes Schleswig-Holstein Zentrale Abschlussarbeit 2013 Übungsheft Hauptschulabschluss Mathematik Korrekturanweisung Herausgeber Ministerium für Bildung und
Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h)
Serie 1 Klasse 9 RS 1. 1 1 2. -15 (- + 5) 4. 4% von 600 4.,5 h = min 5. 5³ 6. Runde auf Tausender. 56608 7. Vergleiche (). 1 und 1 4 8. Stelle die Formel nach der Größe in der Klammer um. V = A
Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 5
Funktionen 1 Natürliche Zahlen Lesen Informationen aus Text, Bild, Tabelle mit eigenen Worten wiedergeben Problemlösen Lösen Näherungswerte für erwartete Ergebnisse durch Schätzen und Überschlagen ermitteln
Achsensymmetrie. Konstruktionen M 7.1
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
Achsensymmetrie. Grundkonstruktionen
M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke
MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN
MATHEMATIK-WETTBEWERB 1999/2000 DES LANDES HESSEN Hinweis : Von jeder Schülerin / jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet, so werden die mit der besten Punktzahl
Fach Mathematik. (Schuljahr 2007/2008) Name: Klasse: Schülercode:
Kompetenztest für Schülerinnen und Schüler der Klassenstufe 6 an Regelschulen, Gymnasien, Gesamtschulen und Förderzentren mit dem Bildungsgang der Regelschule Fach Mathematik (Schuljahr 2007/2008) Name:
Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges
Download Marco Bettner, Erik Dinges Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang
Bielefelder Mathe-Check SINUS.NRW. Jahrgangsstufe 5. Name: Klasse: Datum:
Bielefelder Mathe-Check SINUS.NRW Jahrgangsstufe 5 Name: Klasse: Datum: 2 Anleitung In diesem Testheft findest du Aufgaben aus dem Bereich Mathematik. Im Test gibt es zwei verschiedene Aufgabenarten: (A1)
Mathematik-Arbeitsblatt Klasse: Aufgabe 1 (5Z e) H2:I1:K Setze < oder > ein! a) c) e)
Mathematik-Arbeitsblatt Klasse: 29.10.2015 Aufgabe 1 (5Z1.11-004-e) H2:I1:K1 0 1 2 Setze < oder > ein! a) 397 3397 c) 456 655 e) 2345 2435 1 b) 67 890 67 980 d) 632 432 f) 10 001 1001 Aufgabe 2 (5Z1.11-013-m)
Schriftliche Abschlussprüfung Mathematik
Sächsisches Staatsministerium für Kultus Schuljahr 1999/ Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Mathematik Realschulabschluss
Hinweis.
Hinweis Diese Datei darf nur an Ausrichtende dieser 1. Runde der Mathematik- Olympiade weitergeleitet werden. Aufgaben und Lösungen sind bis zu den Wettbewerbsterminen geheim zu halten. Wegen möglicher
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Mathematik I Prüfung für den Übertritt aus der 9. Klasse
Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle
Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt
1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:
Mathematik-Arbeitsblatt Klasse:
Mathematik-Arbeitsblatt Klasse: 23.10.2012 Aufgabe 1 (5A1.01-031-m) Martin, Michael und Max möchten für die Mama zu Weihnachten gemeinsam ein Buch als Geschenk kaufen. Es kostet 27. Jeder der drei hat
Tag der Mathematik 2013
Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende
Tag der Mathematik 2016
Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16
Lösungen Crashkurs 7. Jahrgangsstufe
Lösungen Crashkurs 7. Jahrgangsstufe I. Symmetrie und Grundkonstruktionen 1. 2. Jede Raute hat die Eigenschaften: a, b, d, e, g. 3. Der gesuchte Treffpunkt befindet sich dort, wo die Mittelsenkrechte der
Fingerterme. Welche. passen?
Zahlenkarten, Heft Welche 28 Fingerterme passen? Zwischen Marisa und Felix liegen Zahlenkarten. Felix zeigt Marisa eine Karte. Felix weiß nicht, welche Zahl auf der Karte steht. Marisa zeigt Felix mit
Math-Champ M8 Klasse: Datum: Name:
Math-Champ M8 Klasse: Datum: Name: 1) Britta erzählt ihrer Freundin: ist keine rationale, sondern eine irrationale Zahl. Ihre Freundin möchte nun wissen, warum keine rationale Zahl ist. Welche der folgenden
JAHRGANGSSTUFENTEST 2015 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) b)9096 : 758
JAHRGANGSSTUFENTEST 205 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) LÖSUNGSMUSTER Berechne. a) 000 0 :0 0 0 0 b)9096 : 758 /2 900 2 2 MIT SYMBOLISCHEN,
Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium
Notwendiges Grundwissen am Ende der Klasse 4 für den Übergang ans Gymnasium Für einen effektiven Mathematikunterricht ist es unerlässlich, dass Schüler auf grundlegende Kenntnisse und Fertigkeiten zurückgreifen
Mathematik B-Tag Freitag, 20. November, 8:00 15:00 Uhr. Um die Ecke. Mathematik B-Tag Seite 1 von 9 -
Mathematik B-Tag 2015 Freitag, 20. November, 8:00 15:00 Uhr Um die Ecke Mathematik B-Tag 2015 - Seite 1 von 9 - Erkundung 1 (Klavier) Ein Klavier soll durch einen 1 m breiten Gang um die Ecke (rechter
Rechendreiecke Ich erkenne einfache Formen aus der Umwelt, beschreibe und benenne sie: Rechteck, Dreieck, Kreis, Quadrat
Mathematik 1. Klasse EBENE UND RAUM Gegenstandsmengen zählen, vergleichen und Ich orientiere und positioniere mich im Raum (links, rechts, oben, unten) und bewege mich zielorientiert. Zahlenraum 20/30
