BIOPHYSIK 6. Vorlesung
|
|
|
- Jürgen Lange
- vor 8 Jahren
- Abrufe
Transkript
1 BIOPHYSIK 6. Vorlesung Wellenoptik, Beugung, Interferenz, Polarization Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Photoeffekt) Licht besteht aus Teilchen (Quanten) Exakt: Quantenfeldtheorie Annäherungsmöglichkeiten (Modelle): Wellenmodell ( Wellenoptik) Quantenmodell (Quantenoptik, Photonentheorie) (Dualismus von Welle und Korpuskel) Licht als Welle 1 2 u t u max sin t periodische Bewegungen: Schwingung und Welle Schwingungsbewegung, nur zeitliche Periodizität Auslenkung Amplitude Phase Kreisfrequenz u max t t 2 /T zeitliche Periode, Periodenzeit, Schwingungsdauer, T Kehrwert: 1/T=f, Frequenz u t u max sin t 3 T Zeit 4
2 Wellenbewegung Amplitude und Phase u x, tumaxsinφ x, t Ausbreitung eines Schwingungszustandes in einem schwingungsfähigen Medium. Räumlich und zeitlich periodischer Vorgang. u max Amplitude transversale Welle: Schwingungsrichtung sehnkrecht zur Ausbreitungsrichtung longitudinale Welle: Schwingungsrichtung parallel zur Ausbreitungsrichtung φ x, t t 2 T (Wellen-)Phase t kx x Wellengleichung t u 2 T x x, tumaxsin 2 vts ct f c Interferenz: Überlagerung von Wellen Prinzip der ungestörten Superposition: Die Ampiltude des resultierenden Wellenfeldes ergibt sich and jeder Stelle zu jeder Zeit durch die vektorielle Addition der Einzelamplituden Licht: elektormagnetische Welle, transversale Welle u(x,t): E (elektrische Feldstärke) und Fortpflanzungsgeschwindigkeit mal die zeitliche Periode gibt die örtliche Periode B (magnetische Feldstärke/ Induktion) Prinzip von Huygens-Fresnel: Jeder Punkt einer Wellenfläche ist der Ausgangspunkt einer Elementarwelle. Die äussere Einhüllende solcher Elementarwellen bildet wieder eine neue Wellenfläche der vom primären Erregungszentrum ausgehenden Welle. 7 8
3 räumlicher Punkt fixiert Zeitliche und räumliche Periodizität zeitlicher Punkt fixiert positive (konstruktive) Verstärkung negative (destruktive) Auslöschen E oder B Amplitude T Zeit E oder B Amplitude x A B A+B A B A+B Interferenz: Überlagerung von Wellen Um eine dauernde Interferenz zu erhalten, müssen die Wellen dieselbe Phase (Beziehung) zueinander behalten Kohärenz =0,, 2, 3... = =k*= 2k*(/2)wo k=0, 1, 2, 3,...) =, 3, 5... = = (2k+1)*(/2)wo k=0, 1, 2, 3,...) 9 10 Interferenzmuster von Wasserwellen, die von zwei Quellen ausgehen Interferenz bei zwei punktförmiger Quellen Abstand der Quellen ist fixiert, Wellenlänge verändert sich dicke Linie: Wellenberg dünne Linie: Wellental 11 12
4 Beugung (=Diffraktion) Ablenkung des Lichtes an Objekten im Wellenfeld, die die komplexe Amplitude örtlich ändern, aufgrund des Huygenschen Prinzips Beugung an einer Öffnung Spaltbreite = d Huygens (-Fresnel) Jeder Punkt einer Wellenfront ist der Ausgangspunkt einer neuen Elementarwelle. Die neue Wellenfront der Welle wird durch Überlagerung aller elementarwellen gebildet. schwache Beugung: d/>>1 Beugung am Einzelspalt Beugung am Doppelspalt Beugung am Dreierspalt Wellenlänge = starke Beugung: d/ >= Beugung am Gitter Amplitudengitter Unter einem optischen Gitter versteht man ein Objekt, in dem sich die Bedingungen der Lichtausbreitung periodisch ändern. Interferenz am Gitter Die zu den Werten k = 0, 1, 2,... gehörenden Maxima werden als Diffraktionsbilder oder Seitenmaxima nullter, erster, zweiter... Ordnung bezeichnet, das von nullter Ordnung wird auch Hauptmaximum genannt. Das gesamte Beugungsbild ist symmetrisch zum Hauptmaximum. d sin k k d sin k k 15 16
5 Biologische Anwendung Biologische Anwendung 2 Muschelschale Scanning tunneling microscop Pfauenfeder Scanning tunneling microscope (STM) Biologische Anwendung 3 Biologische Anwendung 4 Schmetterlinge und Schuppe Photos Edelweiss schützt sich gegen UV Strahlung Blumenblatthaar STM Aufnahmen K. Kertész et al, Gleaming and dull surface textures from photoniccrystal-type nanostructures in the butterfly Cyanophrys remus. Physical ReviewE74 (2006) Transmission l 19 20
6 Auflösungsvermögen des Mikroskops Abbe Theorie Bild entsteht im Mikroskop, wenn in der Fokalebene des Objektivs außer dem Hauptmaximum wenigstens auch die Seitenmaxima erster Ordnung entstehen. k sink sin d k sink sin d sin n sin A 0,61 nsin k=1, d = die kleinste auflösbare Entfernung =n: Wellenlänge im Medium : Wellenlänge im Vakuum, A: numerische Apertur Auflösunsgrenze des Mikroskops (die kleinste auflösbare Entfernung) : Halböffnungswinkel des Objektivs f 1 Auflösungsvermögen des Mikroskops e << Licht Elektronenmikroskopie: kleinere Auflösungsgrenze, grösseres Auflösungsvermögen Die Transversalität der Lichtwelle andere Diffraktionsmethoden/Beugungsmethoden: Röntgendiffraktion, Elektronendiffraktion, Neutronendiffraktion Rtg, e, n << Licht Untersuchungsmöglichkeit von submikroskopische Strukturen normales (unpolarisiertes) Licht: der elektrische Feldvektor ändert seine Orientierung und Länge regellos elektrischer (E) und magnetischer (B) Feldvektor schwingen immer senkrecht zur Ausbreitungsrichtung polarisiertes Licht: der elektrische Feldvektor ändert seine Orientierung und Länge regelmässig 23 24
7 Ergänzungsmaterial: Polarisationsmikroskopie Möglichkeit der Polarisationsmikroskopie andere Polarisationszustände: zirkular polarisiertes Licht elliptisch polarisiertes Licht Polarisationsmikroskopische Aufnahmen Vanilinkristall Supermolekül aus amphiphilen Copolymern Kartoffelstärke rotes Blutlaugensalz Ascorbinsäure 27 28
8 Zusammenfassung Wellenoptik, nterferenz, Beugung, Polarization Awendungen: Polarisationsmikroskop Nützliche youtube videos: Wie ändert ein Chamäleon seine Farbe? Von Schminke, Seifenblasen und Schmetterlingen - Matthias Knorr im Famelab-Deutschlandfinale Fragen, Bemerkungen, Kommentare? 30
Wellenoptik. Licht als Welle. Experimente (z. B. Brechung) Licht verhält sich wie eine Welle
Experimente (z. B. Brechung) Licht verhält sich wie eine Welle Experimente (z. B. Photoeffekt) Licht besteht aus Teilchen (Quanten) Exakt: Quantenfeldtheorie Wellenoptik Annäherungsmöglichkeiten (Modelle):
Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik
Wellenoptik Beugung an Linsenöffnungen Wellenoptik Typische bmessungen D der abbildenden System (Blenden, Linsen) sind klein gegen die Wellenlänge des Lichts Wellencharakter des Lichts führt zu Erscheinungen
m s km v 713 h Tsunamiwelle Ausbreitungsgeschwindigkeit: g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter
Wellen Tsunami Tsunamiwelle Ausbreitungsgeschwindigkeit: v g h g=9,81m/s 2,Gravitationskonstante h=tiefe des Meeresbodens in Meter Berechnungsbeispiel: h=4000 m v 9,81 4000 198 km v 713 h m s Räumliche
Wellenoptik. Beugung an Linsenöffnungen. Kohärenz. Das Huygensche Prinzip
Wellenopti Beugung an Linsenöffnungen Wellenopti Typische Abmessungen Dder abbildenden System (Blenden, Linsen) sind lein gegen die Wellenlänge des Lichts Wellencharater des Lichts führt zu Erscheinungen
[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.
Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator
III. Gekoppelte Schwingungen und Wellen 1. Komplexe Schwingungen 1.1. Review: harmonischer Oszillator Hooksches Gesetz Harmonisches Potential allgemeine Lösung Federpendel Fadenpendel Feder mit Federkonstante
Wellen als Naturerscheinung
Wellen als Naturerscheinung Mechanische Wellen Definition: Eine (mechanische) Welle ist die Ausbreitung einer (mechanischen) Schwingung im Raum, wobei Energie und Impuls transportiert wird, aber kein Stoff.
HARMONISCHE SCHWINGUNGEN
HARMONISCHE SCHWINGUNGEN Begriffe für Schwingungen: Die Elongation γ ist die momentane Auslenkung. Die Amplitude r ist die maximale Auslenkung aus der Gleichgewichtslage (r >0). Die Schwingungsdauer T
PeP Physik erfahren im ForschungsPraktikum
Physik erfahren im ForschungsPraktikum Vom Kerzenlicht zum Laser Kurs für die. Klasse, Gymnasium, Mainz.2004 Daniel Klein, Klaus Wendt Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz
Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus
7. Wellen Ausbreitung von Schwingungen -> Wellen Bei gekoppelten Pendeln breitet sich die Schwingung von einem zum nächsten aus Welle entsteht durch lokale Anregung oder Störung eine Mediums, die sich
12. Vorlesung. I Mechanik
12. Vorlesung I Mechanik 7. Schwingungen 8. Wellen transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen 9. Schallwellen, Akustik Versuche: Wellenwanne: ebene
2. Wellenoptik Interferenz
. Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher
Abbildungsgleichung der Konvexlinse. B/G = b/g
Abbildungsgleichung der Konvexlinse Die Entfernung des Gegenstandes vom Linsenmittelpunkt auf der vorderen Seite der Linse heißt 'Gegenstandsweite' g, seine Größe 'Gegenstandsgröße' G; die Entfernung des
wir-sind-klasse.jimdo.com
1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige
Wellenlehre. Theorieschub
Wellenlehre Theorieschub Gliederung 1. Lehrbuchanalyse 2. Schulbuchanalyse 3. Kinematik vs. Dynamik 4. Zusammenfassend Theorie von Wellen 5. Offene ungeklärte Fragen 6.??? Lehrbuchanalyse Pohl: Einführung
V. Optik. V.2 Wellenoptik. Physik für Mediziner 1
V. Optik V. Wellenoptik Physik für Mediziner 1 Beschreibungen des Lichts Geometrische Optik charakteristische Längen >> Wellenlänge (μm) Licht als Strahl Licht Quantenoptik mikroskopische Wechselwirkung
Wo sind die Grenzen der geometrischen Optik??
In der Strahlen- oder geometrischen Optik wird die Lichtausbreitung in guter Näherung durch Lichtstrahlen beschrieben. Wo sind die Grenzen der geometrischen Optik?? Lichtbündel Lichtstrahl Lichtstrahl=
Einführung in die Physik
Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags
Beugung am Gitter mit Laser ******
5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild
Wellen. Experimentalphysik. B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5
Experimentalphysik Wellen B. Baumann Physik für Ingenieure Bachelor Basics Kapitel 5 Pendelkette www.berndbaumann.de [email protected] page 2 Elongation Amplitude Wellenzahl Nullphase Kreisfrequenz
Überlagern sich zwei Schwingungen, so gilt für die Amplitude, also für die maximale Auslenkung:
(C) 2015 - SchulLV 1 von 12 Einführung Egal ob im Alltag oder im Urlaub, Wellen begegnen uns immer wieder in Form von Wasser, Licht, Schall,... Eine einfache Welle besteht aus einem Maximum und einem Minimum.
EPI WS 2007/08 Dünnweber/Faessler
11. Vorlesung EP I Mechanik 7. Schwingungen Wiederholung: Resonanz 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Glas zersingen
Vorlesung Physik für Pharmazeuten und Biologen
Vorlesung Physik für Pharmazeuten und Biologen Schwingungen Mechanische Wellen Akustik Freier harmonischer Oszillator Beispiel: Das mathematische Pendel Bewegungsgleichung : d s mg sinϕ = m dt Näherung
Physik III im Studiengang Elektrotechnik
Physik III im Studiengang Elektrotechnik - Interferenz & Wellenfelder - Prof. Dr. Ulrich Hahn WS 2016/17 Interferenz von Wellen mehrere Anregungszentren speisen Wellen ins Medium ein: Wellen breiten sich
Intensitätsverteilung der Beugung am Spalt ******
5.10.801 ****** 1 Motivation Beugung am Spalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). 2 Experiment Abbildung 1: Experimenteller Aufbau
9 Periodische Bewegungen
Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum
Experimentalphysik II
Experimentalphysik II Wellenlehre und Optik: Wellen und Wellengleichung, Welle-Teilchen-Dualismus, Licht als Welle (Huygenssches Prinzip, Reflexion, Brechung und Beugung), Optik 3.1. Wellen und Wellengleichung
Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt
5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen
SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen
Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:
EPI WS 2008/09 Dünnweber/Faessler
11. Vorlesung EP I Mechanik 7. Schwingungen gekoppelte Pendel 8. Wellen (transversale und longitudinale Wellen, Phasengeschwindigkeit, Dopplereffekt Superposition von Wellen) Versuche: Schwebung gekoppelte
Interferenz von Kreiswellen
5.2.14 Interferenz von Kreiswellen In einer Wellenwanne werden mit einem geradlinigen Erreger Wellen mit geraden Wellenfronten erzeugt. Treffen diese auf ein Hindernis mit einem kleinen Spalt, so bilden
4. Elektromagnetische Wellen
4. Elektromagnetische Wellen 4.1. elektrische Schwingkreise Wir haben gesehen, dass zeitlich veränderliche Magnetfelder elektrische Felder machen und zeitlich veränderliche elektrische Felder Magnetfelder.
III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen
21. Vorlesung EP III. Elektrizität und Magnetismus Anhang zu 21. Wechselstrom: Hochspannungsleitung 22. Elektromagnetische Wellen IV Optik 22. Fortsetzung: Licht = sichtbare elektromagnetische Wellen 23.
1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.
Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten
Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes
PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.
Physik für Mediziner im 1. Fachsemester
Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov [email protected] Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter
Doppelspaltexperiment. Katarzyna Huzar Angela Streit
Doppelspaltexperiment Katarzyna Huzar Angela Streit Überblick Thomas Young Wellen-Teilchen-Dualismus Doppelspalt mit Maschinengewehr Beugung und Interferenz Doppelspalt mit Licht Vergleich klassische Physik
Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves
Vorlesung Messtechnik 2. Hälfte des Semesters Dr. H. Chaves 1. Einleitung 2. Optische Grundbegriffe 3. Optische Meßverfahren 3.1 Grundlagen dρ 3.2 Interferometrie, ρ(x,y), dx (x,y) 3.3 Laser-Doppler-Velozimetrie
Überlagerung monochromatischer Wellen/Interferenz
Überlagerung monochromatischer Wellen/Interferenz Zwei ebene monochromatische Wellen mit gleicher Frequenz, gleicher Polarisation, überlagern sich mit einem sehr kleinen Relativwinkel ε auf einem Schirm
7. Periodische Bewegungen Physik für E-Techniker. 7.2 Wellen Harmonische Welle Wellenpakete. Doris Samm FH Aachen
7. Periodische Bewegungen 7.2 Wellen 7.2.1 Harmonische Welle 7.2.2 Interferenz von Wellen 7.2.3 Wellenpakete 723 7.2.3 Stehende Wellen 7.2 Wellen Störung y breitet sich in Raum x und Zeit t aus. y = f(t)
9. Periodische Bewegungen
9.2 Wellen Inhalt 9.2 Wellen 9.2.1 Harmonische Welle 9.2.2 Interferenz von Wellen 9.2.3 Wellenpakete 9.2.3 Stehende Wellen 9.2 Wellen 9.2 Wellen 9.2 Wellen Störung y breitet sich in Raum x und Zeit t aus.
9.10 Beugung Beugung
9.0 Beugung Abb. 9. Aufbau des Original Michelson-Morley Experiments von 887 mit einer massiven Granitplatte in einem Quecksilberbad (Wikipedia). 9.0 Beugung Bisher sind wir von der Idealisierung ebener
Optik. Wellenoptik ABER: Gliederung. Definition und Kenngrößen. Dispersion
Gliederung Optik Wellenoptik Dispersion Definition und Kenngrößen der Welle Huygens sches Prinzip Welleneigenschaften Interferenz Kohärenz Streuung Polarisation Dispersion Strahlengang durch ein Prisma
Protokoll zum Versuch: Interferenz und Beugung
Protokoll zum Versuch: Interferenz und Beugung Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 30.11.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1
6.2.2 Mikrowellen. M.Brennscheidt
6.2.2 Mikrowellen Im vorangegangen Kapitel wurde die Erzeugung von elektromagnetischen Wellen, wie sie im Rundfunk verwendet werden, mit Hilfe eines Hertzschen Dipols erklärt. Da Radiowellen eine relativ
Beugung, Idealer Doppelspalt
Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt
Sonne. Sonne. Δ t A 1. Δ t. Heliozentrisches Weltbild. Die Keplerschen Gesetze
Seite 1 von 6 Astronomische Weltbilder und Keplersche Gesetze Heliozentrisches Weltbild Die Sonne steht im Mittelpunkt unseres Sonnensystems, die Planeten umkreisen sie. Viele Planeten werden von Monden
Mechanische Schwingungen
Eine mechanische Schwingung ist eine zeitlich periodische Bewegung eines Körpers um eine Ruhelage. Mechanische Schwingungen Mechanische Schwingungen können erwünscht oder unerwünscht sein. erwünschte Schwingungen
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik
Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, [email protected] Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed [email protected] 1 WS 2015/16
OPTIK. Miles V. Klein Thomas E. Furtak. Übersetzt von A. Dorsel und T. Hellmuth. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo
Miles V. Klein Thomas E. Furtak OPTIK Übersetzt von A. Dorsel und T. Hellmuth Mit 421 Abbildungen und 10 Tabellen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Inhaltsverzeichnis 1. Die
Beugung von Ultraschallwellen
M5 Beugung von Ultraschallwellen Die Beugungsbilder von Ultraschall nach Einzel- und Mehrfachspalten werden aufgenommen und ausgewertet. 1. Theoretische Grundlagen 1.1 Beugung (Diffraktion) Alle fortschreitenden
8. GV: Interferenz und Beugung
Protokoll zum Physik Praktikum I: WS 2005/06 8. GV: Interferenz und Beugung Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Maik Stuke Versuchstag Dienstag, 31.01.2006 Interferenz und Beugung 1
Einführung in die Gitterbeugung
Einführung in die Gitterbeugung Methoden der Physik SS2006 Prof. Szymanski Seibold Elisabeth Leitner Andreas Krieger Tobias EINLEITUNG 3 DAS HUYGENSSCHE PRINZIP 3 DIE BEUGUNG 3 BEUGUNG AM EINZELSPALT 3
Mechanische Schwingungen und Wellen
Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende
7. Elektromagnetische Wellen (im Vakuum)
7. Elektromagnetische Wellen (im Vakuum) Wir betrachten das elektromagnetische Feld bei Abwesenheit von Ladungen und Strömen und untersuchen die Lösungen der Maxwellschen Gleichungen. 7.1 Wellengleichungen
Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!
Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten
Mechanische Schwingungen und Wellen
Begriff mechanische Welle Mechanische Schwingungen und Wellen Teil II - Wellen Definition: Eine mech. Welle ist die Ausbreitung einer mech. Schwingung im Raum, bei der Energie übertragen jedoch kein Stoff
Othmar Marti Experimentelle Physik Universität Ulm
Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm [email protected] Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002
Interferenz und Beugung
Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben
22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)
22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche
Überlagerung von Wellen Interferenz
5.2.13 Überlagerung von Wellen Interferenz Breiten sich in einem Medium zwei oder mehrere mechanische Wellen aus, so können diese Wellen, wenn sie aufeinander treffen miteinander wechselwirken. Man spricht
7.7 Auflösungsvermögen optischer Geräte und des Auges
7.7 Auflösungsvermögen optischer Geräte und des Auges Beim morgendlichen Zeitung lesen kann ein gesundes menschliche Auge die Buchstaben des Textes einer Zeitung in 50cm Entfernung klar und deutlich wahrnehmen
Wellenoptik I Interferenz und Beugung
Physik A VL40 (9.01.013) Interferenz und Beugung g Strahlenoptik vs. Wellenoptik Interferenz Kohärenz Zweistrahlinterferenz Interferometer als Messinstrumente Beugung Nahfeld und Fernfeld Fraunhofer-Beugung
0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip
1 05.04.2006 0.1 76. Hausaufgabe 0.1.1 Exzerpt von B. S. 134: HUYGENSsches Prinzip Trifft eine Welle auf Barriere, die idealisiert nur in einem einzigen Punkt durchlässig ist, bildet sich im Öffnungspunkt
Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.
Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse
Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für
Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/
Einführung. Interferenz. Interferenz gleichlaufender Wellen
kript Mechanische Wellen Interferenz C) 2014 - SchulLV 1 von 5 Einführung Hast du schon einmal etwas von Monsterwellen gehört? Wellen die so hoch sind, wie ein Mehrfamilienhaus? Diese Wellen sind zwar
Beugung am Spalt und Gitter
Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: [email protected] Gruppe: 4 Durchgeführt
23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)
23. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche
13. Mechanische Wellen Darstellung harmonischer Wellen Überlagerung von Wellen, Interferenz und Beugung. 13.
13. Mechanische Wellen 13.1 Darstellung harmonischer Wellen 13.2 Überlagerung von Wellen, Interferenz und Beugung 13.33 Stehende Wellen 13.4 Schallwellen 13.5 Wellen bei bewegten Quellen Schematische Darstellung
Ferienkurs Experimentalphysik III
Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten
Elektrische Schwingungen und Wellen
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007
Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung
u(z, t 0 ) u(z, t 0 + t) z = c t Harmonische Welle
u(z, t) l u(z, t + t) z Welle: Form der Auslenkung (Wellenlänge l) läuft fort; Teilchen schwingen um Ruhelage (Frequenz f = 1/T) Einheit der Frequenz : Hertz (Hz) : 1 Hz = 1/s Geschwindigkeit Wellenlänge
Verwandte Begriffe Huygens-Prinzip, Interferenz, Fraunhofer- und Fresnel-Beugung, Kohärenz, Laser.
Verwandte Begriffe Huygens-Prinzip, Interferenz, Fraunhofer- und Fresnel-Beugung, Kohärenz, Laser. Prinzip Ein Einfachspalt, Mehrfachspalte mit gleicher Breite und gleichem Abstand zueinander sowie Gitter
Geozentrisches und heliozentrisches Weltbild. Das 1. Gesetz von Kepler. Das 2. Gesetz von Kepler. Das 3. Gesetz von Kepler.
Geozentrisches und heliozentrisches Weltbild Geozentrisches Weltbild: Vertreter Aristoteles, Ptolemäus, Kirche (im Mittelalter) Heliozentrisches Weltbild: Vertreter Aristarch von Samos, Kopernikus, Galilei
Wellenwanne für Projektion DW401-2W. Versuchsanleitung
Wellenwanne für Projektion DW401-2W Versuchsanleitung INHALTSVERZEICHNIS AKD 7.09 AKD 7.07 AKD 7.08 AKD 7.02 AKD 7.01 AKD 7.03 AKD 7.05 AKD 7.06 AKD 7.04 Dopplereffekt Reflexion Spiegel hohl Brechung
Das Hook sche Gesetz
Das Hook sche Gesetz Bei einer Feder sind Ausdehnung und Kraft, die an der Feder zieht (z.b. Gewichtskraft einer Masse), proportional Wenn man eine Messung durchführt und die beiden Größen gegeneinander
Curriculum Fach: Klasse: Hölderlin-Gymnasium Nürtingen. Physik
Kursstufe (4-stündig) Curriculum Fach: Klasse: Physik Kerncurriculum Standard Inhalte Zeit Methoden Bemerkungen (Bildungsstandards nach S. 191, BP 2004) Das elektrische Feld (Elektrostatik) elektrische
Gruppe: Arbnor, Clemens, Dustin & Henrik
PHYSIK Musterlösung [Wellen] Gruppe: Arbnor, Clemens, Dustin & Henrik 02.03.2015 INHALTSVERZEICHNIS 1. Abituraufgabe: Gitter... 2 Aufgabe 1.1... 2 Aufgabe 1.2... 3 Aufgabe 2.1... 4 Aufgabe 2.2... 6 Aufgabe
Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016
Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer
Grundlagen der Lichtmikroskopie
Lehrerfortbildung Nanobiotechnologie Grundlagen der Lichtmikroskopie Juliane Ißle 03.04.03 Universität des Saarlandes Fachrichtung Experimentalphysik Inhalt Prinzipieller Mikroskopaufbau Köhler sche Beleuchtung
Physikalisches Praktikum 4. Semester
Torsten Leddig 04.Mai 2005 Mathias Arbeiter Betreuer: Dr. Enenkel Physikalisches Praktikum 4. Semester - Beugung an Spalten - 1 Ziel: Kennen lernen von Beugungsphänomenen. Aufgaben: 1. Bestimmen Sie die
2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)
2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender
Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker. Versuch: Optische Kohärenz-Tomographie (OCT)
Versuchsanleitung: Fortgeschrittenenpraktikum der Physik für Biophysiker Versuch: Optische Kohärenz-Tomographie (OCT) Grundlagen der Optischen Kohärenz-Tomographie (OCT) Bei der Optischen Kohärenz-Tomographie
Optik. Grundlagen und Anwendungen. von Dietrich Kühlke. überarbeitet
Optik Grundlagen und Anwendungen von Dietrich Kühlke überarbeitet Optik Kühlke schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Harri Deutsch 2004 Verlag C.H. Beck im Internet: www.beck.de
konstruktive Interferenz: Phasendifferenz (der Einzelwellen) ist 0 oder ein ganzzahliges vielfaches von 2π.
Theorie Licht zeigt sich in vielen Experimenten als elektromagnetische Welle. Die Vektoren von elektrischer und magnetischer Feldstärke stehen senkrecht aufeinander und auf der Ausbreitungsrichtung. Die
Optik Licht als elektromagnetische Welle
Optik Licht als elektromagnetische Welle k kx kx ky 0 k z 0 k x r k k y k r k z r y Die Welle ist monochromatisch. Die Wellenfronten (Punkte gleicher Wellenphase) stehen senkrecht auf dem Wellenvektor
Ferienkurs Teil III Elektrodynamik
Ferienkurs Teil III Elektrodynamik Michael Mittermair 27. August 2013 1 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 3 1.1 Wiederholung des Schwingkreises................ 3 1.2 der Hertz sche Dipol.......................
Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht
Praktikum II PO: Doppelbrechung und eliptisch polatisiertes Licht Betreuer: Norbert Lages Hanno Rein [email protected] Florian Jessen [email protected] 26. April 2004 Made
13.1 Bestimmung der Lichtgeschwindigkeit
13 Ausbreitung des Lichts Hofer 1 13.1 Bestimmung der Lichtgeschwindigkeit 13.1.1 Bestimmung durch astronomische Beobachtung Olaf Römer führte 1676 die erste Berechung zur Bestimmung der Lichtgeschwindigkeit
Didaktische FWU-DVD. Wellenoptik
46 11037 Didaktische FWU-DVD Wellenoptik Zur Bedienung Mit den Pfeiltasten der Fernbedienung (DVD-Player) oder der Maus (Computer) können Sie Menüpunkte und Buttons ansteuern und mit der OK-Taste bzw.
