Lineare Algebra / Analytische Geometrie
|
|
|
- Nelly Schubert
- vor 8 Jahren
- Abrufe
Transkript
1 Landesabitur 04 (Nachtermin) Lineare Algebra / Analytische Geometrie Aufgaben Die Kletterwand einer Schulsporthalle soll durch einen Überhang zum Hangeln erweitert werden. Die Halle ist 9 Meter hoch.. Zur Konstruktion des Überhangs wird zunächst in einer oberen Hallenecke die dreieckige Platte ABC montiert, deren Ränder an der Decke und an den Wänden komplett anliegen (Material ). Alle Eckpunkte der Platte sind 3 Meter vom Eckpunkt des Raumes entfernt.. Zeichnen Sie diese Situation in ein geeignetes Koordinatensystem ein. Der Ursprung soll in der Hallenecke am Boden unter dem Überhang sein und die Achsen sollen den Hallenkanten entsprechen. Geben Sie dann die Koordinaten der Eckpunkte an, wie sie sich aus der Beschreibung der Konstruktion ergeben.. Bestimmen Sie eine Parametergleichung und eine Koordinatengleichung der Ebene, in der die Platte liegt. [zur Kontrolle: Eine mögliche Ebenengleichung ist E: x + y z = 6.]. Eine weitere, weniger stark geneigte Platte soll den Übergang zum oberen Teil des Überhangs fließender gestalten (Material ). Diese zweite Platte ist ebenfalls dreieckig und beginnt in der vertikalen Hallenkante mit einem Eckpunkt 3 Meter über dem Boden. Die zweite Platte stößt an die erste Platte in 7 Meter Höhe über dem Boden waagerecht an. Die beiden anderen Kanten dieser Platte liegen auf ihrer gesamten Länge an den Hallenwänden an. Bestimmen Sie eine Gleichung der Geraden durch E und F, auf der die Stoßkante der beiden Platten liegt. [zur Kontrolle: x 0 r, r IR] 7 0 Seite von 4
2 Landesabitur 04 (Nachtermin) 3. Der von der Halle aus sichtbare obere viereckige Teil des Überhangs soll mit Spezialfarbe gestrichen werden. Diese Farbe gibt es in 500 ml-dosen für,50 und in 000 ml-dosen für 3,50. Der Verbrauch pro Quadratmeter ist auf den Dosen mit 370 ml angegeben. 3. Zeigen Sie, dass die Strecken BC und EF parallel zueinander sind. Bestätigen Sie, dass die Verbindungsstrecke der Mittelpunkte von BC und EF orthogonal zu beiden Strecken ist. 33 zur Kontrolle : M 9 und M 7 BC EF 3. Ermitteln Sie den günstigsten Preis für die benötigte Farbe. 4. Damit der Übergang von der unteren Platte zur oberen Platte beim Klettern als fließend erfahren wird, sollte der Winkel zwischen den Platten größer als 50 sein. Überprüfen Sie, ob diese Bedingung erfüllt ist. Seite 3 von 4
3 Landesabitur 04 (Nachtermin) Material Material Seite 4 von 4
4 I. Erläuterungen Landesabitur 04 (Nachtermin) Lösungs- und Bewertungshinweise Voraussetzungen gemäß Lehrplan und Erlass Hinweise zur Vorbereitung auf die schriftlichen Abiturprüfungen im Landesabitur 04 vom 0. Juni 0 Q Lineare Algebra / Analytische Geometrie Ebenengleichungen, Lagebeziehungen von Ebenen, Orthogonalität, Winkel zwischen Vektoren Nicht für den Prüfling bestimmt II. Lösungshinweise und Bewertungsraster In den nachfolgenden Lösungshinweisen sind alle wesentlichen Gesichtspunkte, die bei der Bearbeitung der einzelnen Aufgaben zu berücksichtigen sind, konkret genannt und diejenigen Lösungswege aufgezeigt, welche die Prüflinge erfahrungsgemäß einschlagen werden. Selbstverständlich sind jedoch Lösungswege, die von den vorgegebenen abweichen, aber als gleichwertig betrachtet werden können, ebenso zu akzeptieren. Aufg. erwartete Leistungen. Zeichnung: BE I II III Σ A(0 0 6), B(0 3 9), C(3 0 9) 3 4. Die Dreiecksebene durch die 3 Punkte hat die Vektorgleichung x 0 r 0 s Daraus gewinnt man die Koordinatengleichung wie folgt: Es gilt x = 3r und y = 3s und z = 6 + 3r + 3s = 6 + x + y. Also lautet die Ebenengleichung in der Koordinatenform E:x y z 6. 6 Seite von 3
5 Aufg. erwartete Leistungen Landesabitur 04 (Nachtermin) Lösungs- und Bewertungshinweise Die Stoßkante liegt in der Höhe 7 m über dem Hallenboden, also in der Ebene z = 7. Die Endpunkte der Strecke liegen auf den Hallenwänden, also den Ebenen x = 0 und y = 0. Für E ergibt sich so mit z = 7 und x = 0 aus der Koordinatengleichung die y-koordinate. Also ist E(0 7) und analog F( 0 7). Die Gleichung der Geraden durch E und F lautet g:x 0 r, r IR Die Gerade durch B und C hat den Richtungsvektor Daher sind die Strecken BC und EF parallel. 3 BC BE I II III Σ 4 6 Nicht für den Prüfling bestimmt 0 Der Mittelpunkt M von EF ergibt sich aus m zu 7 0 M 7 und der Mittelpunkt N von BC analog zu 33 N 9. Der Richtungsvektor der Mittelpunktsverbindungsstrecke ist MN. Da für die Skalarprodukte MN BC 0 und ebenso MN EF 0 gilt, ist die Orthogonalität nachgewiesen Das obere Viereck (FEBC) ist nach den Ergebnissen aus 3. ein Trapez mit der Höhe MN und den parallelen Seiten BC und EF. Also ist A (EF CB) MN ( 8) 6 6,93. Der Flächeninhalt von 6,93 m erfordert rund 564 ml Farbe. Daher sind 3 Dosen à 000 ml erforderlich, für die 70,50 bezahlt werden müssen. 4 4 Die Vektoren DM und MN liegen in einer Ebene, die senkrecht zu beiden Plattenebenen steht. Deshalb ist der Winkel zwischen DM und MN der kleinere der beiden Schnittwinkel zwischen den Plattenebenen. DM MN 9 arccos arccos 5, 4 und DM MN 6 6,5 8054,76 ist der gesuchte Winkel. Die Bedingung ist somit erfüllt. 4 Summe Seite von 3
Mögliche Lösung. Ebenen im Haus
Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung
1 lineare Gleichungssysteme
Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden
Zusammenfassung der Analytischen Geometrie
Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren
2016/2017 Abitur Sachsen - Grundkurs Mathematik
Schriftliche Abiturprüfung Grundkurs Mathematik Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe B 2...5 Lösungsvorschläge...7
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung
Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung
Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung Erfurt, 05.03.2015 Wolfgang Häfner Analytische Geometrie und Vektorrechnung Änderungen im Lehrplan
Aufgabe 5 - zum Themenbereich Analytische Geometrie
Freie Hansestadt Bremen chulnr: Kursbezeichnung: Die enatorin für Bildung und Wissenschaft Aufgabe 5 - zum Themenbereich Analytische Geometrie Kletterturm TR Bei einem Kletterturm kann man, abgesichert
Landesabitur 2007 Beispielaufgaben 2005_M-LK_A 7. Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 1.
I. Thema und Aufgabenstellung Lineare Algebra / Analytische Geometrie Aufgaben Eine quadratische Pyramide (Grundkante 4 und Höhe 6) steht neben einer Stufe. 3. Achse 2. Achse 1. Achse Die Sonne scheint
Ministerium für Schule und Weiterbildung NRW M LK 1NT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs
Seite von 9 Unterlagen für die Lehrkraft Abiturprüfung 00 Mathematik, Leistungskurs Aufgabenart Lineare Algebra/Geometrie ohne Alternative Aufgabenstellung siehe Prüfungsaufgabe 3 Materialgrundlage Fotografie
Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen
Aufgabe 5 - zum Themenbereich Analytische Geometrie
Abitur 0 - Grundkurs Mathematik Aufgabe 5 - zum Themenbereich Analytische Geometrie TR Viertausender um Zermatt Das Schweizer Bergdorf Zermatt Z wird umringt von einigen der höchsten Berge der Alpen. Das
Ministerium für Schule und Berufsbildung Schleswig-Holstein Kernfach Mathematik. Schriftliche Abiturprüfung 2015
Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 3: Analytische Geometrie Das Modell einer Gartenlaterne kann als Stumpf einer regelmäßigen quadratischen
Abitur Mathematik Baden-Württemberg 2012
Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)
Abiturprüfung Mathematik 03 Baden-Württemberg (ohne CAS) Wahlteil - Aufgaben Analytische Geometrie / Stochastik B Aufgabe B. In einem würfelförmigen Ausstellungsraum mit der Kantenlänge 8 Meter ist ein
Zusammenfassung Vektorrechnung und Komplexe Zahlen
Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der
Was kann ich? 1 Geometrie. Vierecke (Teil 1)
Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische
Prüfungsteil 2, Aufgabe 4 Analytische Geometrie
Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen
Analytische Geometrie
Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
7.6. Prüfungsaufgaben zu Normalenformen
7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen
1 Rund um die Kugel. a) Mathematische Beschreibung
Rund um die Kugel a) Mathematische Beschreibung Die Punkte der Oberfläche haben vom Mittelpunkt M alle die Entfernung r. Oder, mit den Mitteln der analytischen Geometrie: Für alle Punkte der Kugeloberfläche
Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 10. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs
Seite 1 von 10 Unterlagen für die Lehrkraft Abiturprüfung 2010 Mathematik, Leistungskurs 1. Aufgabenart Lineare Algebra/Geometrie ohne Alternative 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage
Zweidimensionale Vektorrechnung:
Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a
Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 26 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans [email protected] Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen
Grundwissen Abitur Geometrie 15. Juli 2012
Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht
Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1
Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 F Vektorrechnung F1 Verschiebungen durch Vektoren sowie Punkte im Raum durch Ortsvektoren und Vektorketten beschreiben und damit realitätsnahe
Algebra 3.
Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte
Aufgabenskript. Lineare Algebra
Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre
Abitur Mathematik Bayern G Musterlösung. Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. Geometrie II. a) ZEICHNUNG
Abitur Mathematik: Musterlösung Bayern 212 Aufgabe 1 a) ZEICHNUNG LAGE DER GRUNDFLÄCHE ABC Man kann anhand der gleichen x 1 -Koordinate 1 bei allen drei Punkten erkennen, dass die Grundfläche ABC parallel
Abschlussprüfung 2011 an den Realschulen in Bayern
Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das
Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK
Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke
Mathematik Analytische Geometrie
Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,
Lk Mathematik 12 Analytische Geometrie Arbeitsblatt A.1
Lk Mathematik 2 Analytische Geometrie Arbeitsblatt A.. Die Grundäche eines Spielplatzes liegt in der x - -Ebene. Auf ihm steht eine innen begehbare, senkrechte, quadratische Pyramide aus Holz mit den Eckpunkten
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Prüfungsteil 2, Aufgabe 4 Analytische Geometrie
Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über
Lehrskript Mathematik Q12 Analytische Geometrie
Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium
13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01
. Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:
ohne Anspruch auf Vollständigkeit
Abi-Crash-Kurs Analytische Geometrie (G Niveau) ohne Anspruch auf Vollständigkeit Inhalt 1 Punkte, Vektoren und Geraden im R³... 2 2 Rechnen mit Vektoren... 4 2.1 Skalarprodukt... 4 2.2 Vektorprodukt...
5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene
5 5. Gegenseitige Lage von Geraden und Ebenen 5. Gegenseitige Lage zweier Geraden (siehe Kap..) 5.: Schnittpunkt einer Geraden mit einer Ebene Beispiel: : x + y + 4z - 4 = g = P(6, -, )Q(, 6, 4) geometrisch:
Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.
Das lineare Gleichungssystem
26/27 Grundwissen Analytische Geometrie I m1 as lineare Gleichungssystem Man startet zuerst mit der Betrachtung eines linearen Gleichungssystem mit zwei Unbekannten.(Genaueres siehe Skript) Einführung
Das Skalarprodukt zweier Vektoren
Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften
Lernkarten. Analytische Geometrie. 6 Seiten
Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf
Lösungen der 1. Lektion
Lektionen der Vektorrechnung in Aufgaben Lösungen Schickt mir bei Entdeckung eines Fehlers oder Unklarheiten bitte eine e-mail! Lösungen der 1. Lektion Es ist hier unerheblich, wie Vektoren definiert werden.
Gruppenarbeit: Lagebeziehungen Gruppe A
Gruppe A Hier soll die Lage von Geraden im Koordinatensystem untersucht werden. Bearbeiten Sie folgende Fragen (am besten mit Hilfe von Skizzen): 1) Wie kann man überprüfen, ob eine gegebene Gerade durch
Geometrie. in 15 Minuten. Geometrie. Klasse
Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,
K2 - Klausur Nr. 1. Lage von Geraden und Ebenen zueinander. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.
K2 - Klausur Nr. 1 Lage von Geraden und Ebenen zueinander Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche
Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)
Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine
Analytische Geometrie II
Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor
Abiturprüfung 1998 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten
Abiturprüfung 1998 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - 0 GM1. INFINITESIMALRECHNUNG x
Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung
Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,
Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen
Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine
Aufgaben zur Übung der Anwendung von GeoGebra
Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,
KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT
KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur 2001 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt nach Empfehlung durch die Lehrkraft je eine Aufgabe aus den Gebieten G 1, G 2
K2 KLAUSUR Pflichtteil
K2 KLAUSUR 10.02.2012 MATHEMATIK Pflichtteil: Aufgabe 1 2 3 4 5 6 7 8 Punkte (max) 2 2 3 4 5 3 4 3 Punkte Wahlteil Analysis Aufgabe a b c Punkte (max) 9 5 4 Punkte Wahlteil Geometrie Aufgabe a b c Punkte
Ministerium für Schule und Weiterbildung NRW M GK HT 4 Seite 1 von 8. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs
Seite 1 von 8 Unterlagen für die Lehrkraft Abiturprüfung 2011 Mathematik, Grundkurs 1. Aufgabenart Lineare Algebra/Geometrie ohne Alternative 2. Aufgabenstellung 1 siehe Prüfungsaufgabe 3. Materialgrundlage
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:
Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten
Mathematik (Leistungskursniveau) Arbeitszeit: 300 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.
1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen
Lernzettel 2 für die Mathematikarbeit. 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten:
Die Ebenenformen 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten: P (4/7/3); Q(1/1/1); R(2/-2/) Ein Punkt dient als Stützvektor, die anderen beiden werden von diesem abgezogen und dienen
Analytische Geometrie I
Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend
Aufgaben für das Fach Mathematik
Niedersächsisches Kultusministerium Referat / Logistikstelle für zentrale Arbeiten November 06 Aufgaben für das Fach Mathematik Eingesetzte Abituraufgaben aus dem länderübergreifenden Abituraufgabenpool
Aufgaben Vektorrechnung
ufgaben Vektorrechnung Haus-ufgabe Prisma Turm Pramide ntennenmast Segeltuch Walmdach Vektorrechnung Haus-ufgabe H 9 0 9 Der irst des Walmdaches hat die Endpunkte (9 9) und H( 9) (in m). a) estimmen Sie
Verlauf Material LEK Glossar Lösungen. Walter Czech, Krumbach. Haben Sie schon einmal versucht, Ihre Schüler mit einem Spiel zu motivieren?
Reihe 7 S 1 Verlauf Material Die vektorielle Geometrie ein Spiel zur Vertiefung Walter Czech, Krumbach Haben Sie schon einmal versucht, Ihre Schüler mit einem Spiel zu motivieren? Wo denken Sie hin! Die
b 1 b 2 b 3 a 1 b 1 a 2 b 2 a 2 b 2 a b a b a 1 b 1 a 2 b 2 a 3 b 3
1. Rechnen mit Vektoren Skalarprodukt a b a b cos a 1 a 2 a 3 b 1 b 2 b 3 a 1 b 1 a 2 b 2 a 2 b 2 b a 1. Betrag Länge eines Vektors: a a a a 2 1 a 2 2 a 2 3 2. Winkel zwischen 2 Vektoren: cos a b a b a
Aufgabenpool zur Quereinstiegsvorbereitung Q1
Aufgabenpool zur Quereinstiegsvorbereitung Q Vereinfachen Sie nachfolgende Terme soweit wie möglich.. 6 a + 8b + 0c 4a + b c x y + z 7x + y z,8u +,4v 0,8w + 0,6u, v + w r + s t r + 6s + t. ( a + 7 + (9a
Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.
Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel
Analytische Geometrie
Analytische Geometrie Wiederholung (Klasse 0) zur Vektorrechnung Hausaufgabe ( Vorbereitung als Vortrag): C:\Users\Hagen\Documents\Dr. H. Fritsch\Eigene Dateien\Gymnasium-Muecheln\ Mathematik\Klasse \Kl--Wdhlg-Vektor.docx
Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig."
Stephan Peter Wirtschaftsingenieurwesen WS 15/16 Mathematik Serie 8 Vektorrechnung Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig." Aufgabe 1 Gegeben sind die Vektoren a = b = 1 graphisch
Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden
Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der
Ministerium für Schule und Weiterbildung NRW M LK HT 4 Seite 1 von 11. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs
Seite von Unterlagen für die Lehrkraft Abiturprüfung 0 Mathematik, Leistungskurs. Aufgabenart Lineare Algebra/Geometrie ohne Alternative. Aufgabenstellung siehe Prüfungsaufgabe 3. Materialgrundlage entfällt
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten
Mathematik (Grundkursniveau) Arbeitszeit: 210 Minuten Es sind die drei Pflichtaufgaben und eine Wahlpflichtaufgabe zu lösen. Der Prüfling entscheidet sich für eine Wahlpflichtaufgabe. Die zur Bewertung
HTW MST Mathematik 1. Vektorrechnung. Zu Aufgabe 1. Zu Aufgabe Lösungen zu Übungsblatt 5. Lösung: Lösung: = 39
Vektorrechnung Zu Aufgabe 1 Berechnen Sie den Flächeninhalt des Dreiecks, das durch die Vektoren 1 a =, b =, 3 1 c = 6 1 aufgespannt wird! Zu Aufgabe Berechnen Sie das Volumen des durch folgende 3 Vektoren
Klausur Nr. 2. Ebenen und Geraden untersuchen. keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.
Klausur Nr. 2 Ebenen und Geraden untersuchen Göttge-Piller, Höger Pflichtteil keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche
Erfolg im Mathe-Abi 2010
Gruber I Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Das vorliegende Übungsbuch ist speziell auf die grundlegenden
d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1
2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach
Formelsammlung Analytische Geometrie
Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..
Abiturprüfung an den allgemein bildenden Gymnasien. Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2. = 0. (2 VP) e
MINISTERIUM FÜR KULTUS, JUGEND UND SPORT Abiturprüfung an den allgemein bildenden Gymnasien Prüfungsfach: M a t h e m a t i k Musteraufgaben 2017 Hilfsmittelfreier Teil Seite 1-2 1. Bilden Sie die erste
Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel
Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.
Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017
Hauscurriculum Q2 Lineare Algebra/Analytische Geometrie Grundkurs März 2017 Übersicht: Q2.3 im Raum Q2.4 Matrizen zur Beschreibung von Q2.6 Vertiefung der Analytischen Geometrie (nur Grundkurs) verbindlich:
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
Abiturprüfung. Analytische Geometrie. Trainingsaufgaben zum Thema. Gebäude berechnen
Abiturprüfung Analytische Geometrie Trainingsaufgaben zum Thema Gebäude berechnen Mit sehr, sehr ausführlichen Lösungen und Erklärung von Hintergrundwissen Datei Nr. 72241 Stand 13. August 2014 FRIEDRICH
Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene
Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander
Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV
Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -
Analytische Geometrie mit dem Voyage 1
Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor
1 + λ 0, die Geraden h : x =
Amnalytische Geometrie. In einem kartesischen Koordinatensystem des R sind die Gerade g : x 7 + λ, die Geraden h : x 8 5 + µ, λ, µ, a R sowie die Ebene E durch die Punkte A 5, und gegeben. B 6 C 5 a) K
SCHRIFTLICHE ABITURPRÜFUNG Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten
Mathematik (Leistungskurs) Arbeitszeit: 300 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten L 1, L 2 und L 3 zur Bearbeitung aus. Gewählte Aufgaben (Die drei zur Bewertung vorgesehenen Aufgaben
Klausur unter abiturähnlichen Bedingungen Grundkursfach Mathematik. - Ersttermin - Material für die Teilnehmerin. Allgemeine Arbeitshinweise
Christian-Gottfried-Ehrenberg Gymnasium - Delitzsch Schuljahr 9/1 Klausur unter abiturähnlichen Bedingungen Grundkursfach Mathematik - Ersttermin - Material für die Teilnehmerin Allgemeine Arbeitshinweise
Lineare Funktionen und Funktionenscharen
. Erkläre folgende Begriffe: a) Ursprungsgerade b) Steigung bzw. Steigungsdreieck c) Steigende u. fallende Gerade d) Geradenbüschel, Parallelenschar e) y- Achsenabschnitt f) Lineare Funktion g) Normalform
Abiturprüfung 2000 LK Mathematik Baden-Württemberg
Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen
