Analytische Geometrie
|
|
|
- Günther Böhm
- vor 8 Jahren
- Abrufe
Transkript
1 Analytische Geometrie Wiederholung (Klasse 0) zur Vektorrechnung Hausaufgabe ( Vorbereitung als Vortrag): C:\Users\Hagen\Documents\Dr. H. Fritsch\Eigene Dateien\Gymnasium-Muecheln\ Mathematik\Klasse \Kl--Wdhlg-Vektor.docx analytische Geometrie beschreibt und berechnet Körper und Flächen mit Hilfe von Punkten, Geraden (oder Strecken) und Ebenen (oder geradlinig begrenzten, ebenen Flächen). Geraden in der Ebene ( ) Ausgangspunkt ist die Funktionsgleichung + einer Geraden als Bild einer linearen Funktion. Dabei ist die Gerade durch zwei Punkte und eindeutig bestimmt. Der Anstieg der Geraden lässt sich über das Anstiegsdreieck berechnen durch. Der Achsenabschnitt lässt sich alternativ mit einem der beiden Punkte berechnen:. Durch das Einsetzen der beiden Punkte und in die Funktionsgleichung + ergibt sich ein lineares x-gleichungssystem für und. Beispiel: Gegeben sind die Punkte 4 und 5 4. Einsetzen in + liefert das lineare Gleichungssystem: mit der Lösung 4 4 Funktionsgleichung: und! 6. 4 Koordinatengleichung: #: % + & ' mit dem Normalenvektor ((() * % & +, d.h. ((() ^ #
2 Beispiel: Funktionsgleichung Koordinatengleichung: + 6 Normalenvektor: () * + Dividiert man die Koordinatengleichung durch ', so erhält man die Achsenabschnittsgleichung:, + - mit den Achsenschnittpunkten. / 0 und. 0 Beispiel: Koordinatengleichung: mit den Achsenschnittpunkten. 0 und. 0 6 Übung: LB KL., S. 88, Nr..(a) Vektorielle Parametergleichung: 6% ((((() + 8 (() : Punktrichtungsgleichung () 6% ((((() + F6& ((((() 6% ((((()G : Zweipunktegleichung mit dem Stützvektor 6% ((((() und dem Richtungsvektor 8 (() bzw. %& ((((() und mit dem reellen Parameter y g A OM L MN B P X x Beispiel: Gegeben sind die Punkte % 4 und & 5 4. vektorielle Parametergleichung: () * * * * Umformung der vektoriellen Gleichung in die Koordinaten- bzw. Funktionsgleichung:
3 Unter Beachtung von () * + erhält man ein lineares Gleichungssystem, dessen I. Gleichung nach dem Parameter aufgelöst wird und der so erhaltene Term in die II. Gleichung eingesetzt wird Funktionsgleichung: + 6 Koordinatengleichung: % ((((() + 8 (() Spezialfälle: Mittels der Geradengleichung () 6% ((((() + F6& ((((() 6% ((((()G lassen sich auch spezielle Teilmengen einer Geraden beschreiben: Gerade: < S < + Strahl: T S < + Strecke: T S V y g 6 5 A 4 B x HA: LB Kl., S. 88, Nr..(c), S. 89, Nr., S. 90, Nr..(c)
4 . Geraden im Raum ( ) Wie in der Ebene so kann auch im dreidimensionalen Raum eine Gerade durch die Angabe eines Geradenpunkts % ( Stützvektor) und der Richtung der Geraden ( Richtungsvektor) 8 (() eindeutig beschrieben werden. vektorielle Parametergleichung: 6% ((((() + 8 (() : Punktrichtungsgleichung () 6% ((((() + %& ((((() : Zweipunktegleichung mit dem Stützvektor ((((() OA und dem Richtungsvektor (() v bzw. ((((() AB und mit dem reellen Geradenparameter t Beispiel: Gegeben sind zwei Punkte % ) und &( ). vektorielle Parametergleichung: markante Punkte der Gerade: 0 : Punkt %( ) : Punkt &( ) 0,5 : 0,5 : () [ \ + [ ( )\ [ \ + [ \ 4 Mittelpunkt ^(,5 0,5 ) der Strecke %& Teilungspunkt `(,5,5 ) der Strecke %& im Verhältnis : Punktprobe (d.h. Test, ob ein gegebener Punkt auf der Gerade # liegt): 0 (0 5 ) : [ 5\ [ \ + [ \ 4 4 g(4 5) : [ \ [ \ + [ \ 5 4 j( 8 9) : [ 8\ [ \ + [ \ 9 4 c # c " " g # Übung: S. 9, Nr.,.(a-b), S. 9, Nr. 9.(a-c), S. 94, Nr..(a-b) c " " j # 4
5 . Lagebeziehungen von Geraden im Raum ( ) Die möglichen vier Fälle der Lagebeziehungen von zwei Geraden im Raum lassen sich zeichnerisch im Schrägbild nur sehr schwer nachprüfen. Deshalb ist eine rechnerische Überprüfung an Hand der Geradengleichungen notwendig. Geradengleichungen: Untersuchungsschema: #: () 6% ((((() 8 (() und l: () 6& ((((() m n (((() ja Sind g und h parallel? (8 o n ) nein ja Gilt g h? (Punktprobe: A h B g) nein ja Schneiden sich g und h? (Lösung des LGS: g h) nein g und h sind identisch (g h). g und h sind echt parallel (g h, g i h). g und h schneiden sich (g h {S}). g und h sind windschief. Beispiel : (identische Geraden) Geradengleichungen: # l? [ 0\ o [ 0\ 5 Punktprobe (% l?): [ \ [ \ m [ 0\ Fazit: # und l sind identische Geraden. Beispiel : (echt parallele Geraden) Geradengleichungen: 5 #: () [ \ [ 0\ und l: () [ \ m [ 0\ o 0,5 o beliebig c " " o 0,5 m n. %. m # l c " " % l 5 #: () [ \ [ 0\ und l: () [ \ m [ 0\ 5
6 # h? [ 0\ o [ 0\ 5 Punktprobe (% h?): [ \ [ \ + [ 0\ Fazit: # und h sind echt parallele Geraden. Beispiel : (sich schneidende Geraden) o 0,5 o beliebig c " " o 0,5 # h m s. %. c " " % h m 5 Geradengleichungen: #: () [ \ + [ \ und h: () [ 9\ + m [ 0\ o 0,5 # h? [ \ o [ 0\ kein o c " " # G h o 0,5 Gleichungssystem (# h): 5 [ \ + [ \ [ 9\ + m [ 0\ m m Probe mit : + + n. %. 9 Schnittpunktberechnung: 6. ((((() [ \ + [ \ [ 9\ Fazit: # und h sind sich schneidende Geraden. mit dem Schnittpunkt. 9 9 ). Beispiel 4: (windschiefe Geraden) 5 m 9 + m 5 Geradengleichungen: #: () [ \ + [ \ und h: () [ \ + m [ 0\ o 0,5 # h? [ \ o [ 0\ kein o c " " # G h o 0,5 Gleichungssystem (# h): 5 [ \ + [ \ [ \ + m [ 0\ m + m + + * + 5 m m 4 Probe mit : + * + + * Fazit: # und h sind windschiefe Geraden. s. %. d.h. # h HA: LB KL., S. 9, Nr..(a-d) (für bis zu 4 Vorträge in der nächsten Stunde) 6
7 Schnittwinkel von zwei Geraden: Schneiden sich zwei Geraden # und l mit den Richtungsvektoren 8 (() und n (((() in der Ebene bzw. im Raum, dann gilt für ihren Schnittwinkel (u, v) (L(((), w (((()) xyzz{ * L BEACHTE: (((() ((((() w L (((() w ((((() +. Der Betrag des Skalarprodukts im Zähler sichert, dass als Schnittwinkel zweier Geraden immer ein Winkel zwischen 0 und 90 genommen wird. zu Beispiel : (Winkel zwischen sich schneidenden Geraden) 5 Geradengleichungen: #: () [ \ + [ \ und h: () [ 9\ + m [ 0\ Richtungsvektoren: 8 (() [ \ und n (((() [ 0\ #, h 8 ((), n (((() /~ m * (((() ((((() (((() /~ m * + 90, d.h. # ^ h. ((((() + /~ m ƒ () () ˆ Übung: LB Kl., S. 6, Nr.,
8 4. Spurpunkte von Geraden Spurpunkte: Schnittpunkte.,.,. einer Geraden # mit den Koordinatenebenen Š, Š, Š Beispiel 5: (Spurpunkte einer Geraden) gegebene Gerade #: () [ \ + [ \, 5 Spurpunkt mit der x-y-ebene Š : 0 und ((((((((((() [ \ + 5 [ \ [ 6\. ( Spurpunkt mit der x-z-ebene Š : 0 und + (((((((((() 6. [ \ [ \ [ 0\ Spurpunkt mit der y-z-ebene Š : 0 und 0 (((((((((() 6. [ \ + [ \ [ \. 0 5 Beispiel 6: (Spurpunkte einer Geraden) gegebene Gerade #: 5 () [ 9\ + [ 0\, Spurpunkt mit der x-y-ebene Š : 0 und +, ((((((((((() [ 9\,5 [ 0\ [ 9\ Spurpunkt mit der x-z-ebene Š : 0 und 9 Widerspruch, d.h. kein Schnittpunkt mit der x-z-ebene (Gerade # ist echt parallel zur x-z-ebene) Spurpunkt mit der y-z-ebene Š : 0 und 5,5 5 0 (((((((((() 6. [ 9\ +,5 [ 0\ [ 9\. 0 9 HA: LB Kl., S. 0, Nr. allgemeine Übungen zu Geraden: LB KL., S. 08-0, Nr., 5, 8
5. Wie bringt man einen Vektor auf eine gewünschte Länge? Zuerst bringt man ihn auf die Länge 1, dann multipliziert man mit der gewünschten Länge.
1. Definition von drei Vektoren sind l.u. 2. Wie überprüft man 3 Vektoren mit Hilfe eines LGS auf lineare Unabhängigkeit? 3. Definition von Basis?... wenn sich der Nullvektor nur als triviale LK darstellen
13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01
. Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:
Mathematik Analytische Geometrie
Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,
Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel
Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.
d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1
2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass
V. Geradengleichungen in Parameterform 5. Definition ---------------------------------------------------------------------------------------------------------------- x 3 v a x x x Definition und Satz :
Zusammenfassung Vektorrechnung und Komplexe Zahlen
Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................
r a t u Parametergleichung der Geraden durch den Punkt A mit dem Richtungsvektor u t R heisst Parameter
8 3. Darstellung der Geraden im Raum 3.. Parametergleichung der Geraden Die naheliegende Vermutung, dass eine Gerade des Raumes durch eine Gleichung der Form ax + by + cz +d = 0 beschrieben werden kann
Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung
Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung Erfurt, 05.03.2015 Wolfgang Häfner Analytische Geometrie und Vektorrechnung Änderungen im Lehrplan
Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform
Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analytischen Geometrie (). Dezember 0 Inhalt: Die Lagebeziehungen zwischen
5 Geraden im R Die Geradengleichung. Übungsmaterial 1
Übungsmaterial 5 Geraden im R 5. Die Geradengleichung Eine Gerade ist eindeutig festgelegt durch zwei Punkte oder durch einen Punkt und eine Richtung. Beispiel: Die Gerade g durch die Punkte A(-//) und
Analytische Geometrie II
Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe
Zusammenfassung der Analytischen Geometrie
Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren
Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden
Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der
Lehrskript Mathematik Q12 Analytische Geometrie
Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium
Verlauf Material LEK Glossar Lösungen. Flugerlaubnis erteilt! Die gegenseitige Lage von Geraden im Raum. Dr. Rebecca Roy, Reutlingen VORANSICHT
Reihe 4 S 1 Verlauf Material Flugerlaubnis erteilt! Die gegenseitige Lage von Geraden im Raum Dr. Rebecca Roy, Reutlingen Die Flugerlaubnis wird erst erteilt, wenn die Luft rein ist. Klasse 12 (im G 8:
Mögliche Lösung. Ebenen im Haus
Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung
1.1. Geradengleichung aus Steigung und y-achsenabschnitt
Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:
Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)
fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische
Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren
Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier
Formelsammlung Analytische Geometrie
Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..
Lernzettel 2 für die Mathematikarbeit. 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten:
Die Ebenenformen 1. Erstellen einer Parametergleichung mit Hilfe von 3 Punkten: P (4/7/3); Q(1/1/1); R(2/-2/) Ein Punkt dient als Stützvektor, die anderen beiden werden von diesem abgezogen und dienen
Linearkombinationen in der Physik
Linearkombinationen in der Physik Für die Überlagerung von Bewegungen gilt das Superpositionsprinzip. Es lautet: Führt ein Körper gleichzeitig mehrere Teilbewegungen aus, so überlagern sich diese Teilbewegungen
Lösungen der 1. Lektion
Lektionen der Vektorrechnung in Aufgaben Lösungen Schickt mir bei Entdeckung eines Fehlers oder Unklarheiten bitte eine e-mail! Lösungen der 1. Lektion Es ist hier unerheblich, wie Vektoren definiert werden.
Analytische Geometrie Aufgaben und Lösungen
Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans [email protected] Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung
Basistext Geraden und Ebenen
Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird
Analytische Geometrie des Raumes
Analytische Geometrie des Raumes Als Begründer der analytischen Geometrie gilt René Descartes (Discours de la méthode). Seine grundliegende Idee bestand darin, geometrische Gebilde (Gerade, Kreis, Ellipse
Inhaltsverzeichnis Bausteine Analytische Geometrie
Graf-Zeppelin-Gmnasium Bausteine Analtische Geometrie Inhaltsvereichnis Bausteine Analtische Geometrie Umgang mit Vektoren1 Länge von Vektoren1 Winkel φ wischen wei Vektoren1 Normale u wei (linear unabhängigen)
Prüfungsteil 2, Aufgabe 5 Analytische Geometrie
Abitur Mathematik Nordrhein-Westfalen 1GK Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 GK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1. SCHRITT:
Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen
Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:
Lineare Algebra in der Oberstufe
Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. April 2016 Stefan Ruzika 1: Schulstoff 11. April 2016 1 / 21 Übersicht Ziel dieses Kapitels
Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen
Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der
Lineare Algebra und analytische Geometrie
TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus
Pflichtteil - Exponentialfunktion
Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()
einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt.
6 4. Darstellung der Ebene 4. Die Parametergleichung der Ebene einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 0 2 r uuur
Abitur Mathematik Baden-Württemberg 2012
Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 14 Wahlteil B www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 14 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung
Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte
Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte März 2008 Zusammenfassung IB 1. Lagebeziehungen zwischen geometrischen Objekten 1.1 Punkt-Gerade Ein Punkt kann entweder auf einer gegebenen
Mathematik - Arbeitsblatt Lineare Funktionen
Mathematik - Arbeitsblatt Lineare Funktionen 1.(a) Welche der drei roten Graphen gehört zur Funktion == +5? Wie lautet die Funktionsgleichung des blauen Graphen? Bestimme rechnerisch die Nullstelle des
Vektorrechnung Raumgeometrie
Vektorrechnung Raumgeometrie Sofja Kowalewskaja (*1850, 1891) Hypatia of Alexandria (ca. *360, 415) Maria Gaetana Agnesi (*1718, 1799) Emmy Noether (*1882 1935) Émilie du Châtelet (*1706, 1749) Cathleen
Das Wichtigste ûber Geraden. Ganz einfache Erklärung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr
Vektorgeometrie ganz einfach Teil Das Wichtigste ûber Geraden Ganz einfache Erklärung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr. 6100 Stand:. Februar 016 Demo-Text für INTERNETBIBLIOTHEK
Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte
Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,
Kapitel 13 Geometrie mit Geraden und Ebenen
13. Geometrie mit Geraden und Ebenen 13.1 Geraden- und Ebenengleichungen 13.1 Geradengleichungen Ist A ein Punkt des Anschauungsraumes mit Ortsvektor, dann ist eine Gerade g durch diesen Punkt bestimmt
Das Skalarprodukt zweier Vektoren
Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften
4. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen
Prüfungsteil 2, Aufgabe 4 Analytische Geometrie
Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 LK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über
Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?
Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade
Lektionen zur Vektorrechnung
Die Homepage von Joachim Mohr Start Mathematik Lektionen zur Vektorrechnung in Aufgaben Diese Datei kann auch als PDF-Datei heruntergeladen werden. Download... Es handelt sich um " Basisaufgaben " der
Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Geometrie II 2 Lösungen
1 Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Geometrie II 2 Lösungen [email protected] www.elearning-freiburg.de 2 Aufgabe II 2 In einem Koordinatensystem beschreibt
Theorie 1 1 / 2 Grundbegriffe
Theorie 1 1 / 2 Grundbegriffe Was ist ein Vektor? Wie lassen sich Vektoren darstellen? Theorie 1 2 / 2 Grundbegriffe Antwort : Ein Vektor ist die Menge aller gleichlangen, gleichgerichteten und gleichorientierten
Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.
Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung
Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion
Das lineare Gleichungssystem
26/27 Grundwissen Analytische Geometrie I m1 as lineare Gleichungssystem Man startet zuerst mit der Betrachtung eines linearen Gleichungssystem mit zwei Unbekannten.(Genaueres siehe Skript) Einführung
Gruppenarbeit: Lagebeziehungen Gruppe A
Gruppe A Hier soll die Lage von Geraden im Koordinatensystem untersucht werden. Bearbeiten Sie folgende Fragen (am besten mit Hilfe von Skizzen): 1) Wie kann man überprüfen, ob eine gegebene Gerade durch
9. ANALYTISCHE GEOMETRIE MIT EBENEN
ANALYTISCHE GEOMETRIE MIT EBENEN 9. ANALYTISCHE GEOMETRIE MIT EBENEN Die Bilder zeigen: Verschiebt man ein Geradenstück parallel entlang eines anderen Geradenstücks, so entsteht ein ebenes Flächenstück.
Mathematik Zusammenfassung JII.1 #1
Mathematik Zusammenfassung JII.1 #1 Ableiten Definition Eine Ableitung zeigt die Steigung einer Funktion an einer bestimmten Stelle x an. Hier sind die Funktion und ihre Ableitung dargestellt. Möchte ich
Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1
Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 F Vektorrechnung F1 Verschiebungen durch Vektoren sowie Punkte im Raum durch Ortsvektoren und Vektorketten beschreiben und damit realitätsnahe
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Niedersachsen. Übungsbuch für den Grundkurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Niedersachsen Übungsbuch für den Grundkurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der Gleichung zur Kurve... 9 Aufstellen
2010 B I Angabe. sind der. 2 1 Geben Sie die Koordinaten der beiden Eckpunkte A und C sowie der Spitze S an.
B I Angabe Vor dem Louvre, dem berühmten Pariser Kunstmuseum, wurde im Jahr 989 eine Glaspyramide erbaut, welche den unterirdisch liegenden Haupteingang beherbergt. Diese Pyramide wurde der Cheops-Pyramide
Korrigendum Lambacher Schweizer 9/10, 1. Auflage 2011
Korrigendum Lambacher Schweizer 9/,. Auflage Klett und Balmer Verlag, Baar. April. Seite, Aufgabe Tipp: Suche dir Punkte auf dem Kreis, die du zur Bestimmung heranziehen kannst Bestimme das Streckzentrum
Formelsammlung Mathematik Grundkurs Inhalt
Formelsammlung Mathematik Grundkurs Inhalt Inhalt...1 Trigonometrie Grundlagen... Vektoren...3 Skalarprodukt...4 Geraden...5 Abstandsberechnungen...6 Ebenen...7 Lineare Gleichungssysteme (LGS)...8 Gauß'sches
Analytische Geometrie I
Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend
Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:
Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:
Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen
. Da Symmetrieebene ist, ist auch die Ebene durch, und Symmetrieebene. Der Mittelpunkt liegt in der -Ebene auf einer Geraden durch den Ursprung und.
Abitur BW 2 Aufgabe Lösungslogik a) Gleichschenkliges Dreieck : Zwei Dreiecksseiten müssen gleich lang sein. Koordinaten des Punktes : Berechnung der Koordinaten von über Vektoraddition. Innenwinkel der
Analytische Geometrie mit dem Voyage 1
Analytische Geometrie mit dem Voyage. Vektoren Vektoren lassen sich definieren in eckigen Klammern. Setzt man ein Semikolon zwischen die einzelnen Komponenten, so ergibt sich ein Spaltenvektor. Ein Spaltenvektor
Inhaltsverzeichnis Band 2b Analytische Geometrie. 1. Vektoralgebra
Inhaltsverzeichnis Band b Analytische Geometrie Auf der beigefügten CD befinden sich zwei Verzeichnisse: Inhalt_Mathcad und Inhalt_pdf In diesen Verzeichnissen sind alle Mathcad-Dateien (***.xmcd) und
Mathe GK, Henß. Kreis in der Ebene
in der Ebene Einen in der Ebene kann man vektoriell einfach beschreiben, denn er ist dadurch festgelegt, dass seine Punkte zum ittelpunkt denselben Abstand r haben. Statt müsste genauer linie gesagt werden.
7.6. Prüfungsaufgaben zu Normalenformen
7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen
Aufgabe 5 - zum Themenbereich Analytische Geometrie
Abitur 0 - Grundkurs Mathematik Aufgabe 5 - zum Themenbereich Analytische Geometrie TR Viertausender um Zermatt Das Schweizer Bergdorf Zermatt Z wird umringt von einigen der höchsten Berge der Alpen. Das
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?
Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
3. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen
K2 MATHEMATIK KLAUSUR 3
K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der
MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte
(c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3
Lineare Funktion. Wolfgang Kippels 21. März 2011
Lineare Funktion Wolfgang Kippels. März 0 Inhaltsverzeichnis Grundlegende Zusammenhänge. Aufbau der Linearen Funktion......................... Nullstellenbestimmung............................. Schnittpunktbestimmung............................
Ministerium für Schule und Weiterbildung NRW M LK 1NT 4 Seite 1 von 9. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Leistungskurs
Seite von 9 Unterlagen für die Lehrkraft Abiturprüfung 00 Mathematik, Leistungskurs Aufgabenart Lineare Algebra/Geometrie ohne Alternative Aufgabenstellung siehe Prüfungsaufgabe 3 Materialgrundlage Fotografie
Mathematische Formeln für das Studium an Fachhochschulen
Mathematische Formeln für das Studium an Fachhochschulen von Richard Mohr. Auflage Hanser München 0 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 446 455 4 Zu Inhaltsverzeichnis schnell und portofrei
Analytische Geometrie
Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),
Abiturprüfung Mathematik 2014 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen
Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen [email protected] www.elearning-freiburg.de Pflichtteil Aufgabe : Bilden Sie die Ableitung der Funktion f
Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben
Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Funktionen an der Berufsschule: Übungsaufgaben Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Übungsaufgaben:
Geometrie Q11 und Q12
Skripten für die Oberstufe Geometrie Q und Q. E: x + 3x 4 = 0 A 3 H. Drothler 0 www.drothler.net Geometrie Oberstufe Seite Inhalt 0. Das räumliche Koordinatensystem... 0. Vektoren...3 03. Vektorketten...4
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.
Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel
Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 2008
Nachhilfe-Kurs Mathematik Klasse 13 Freie Waldorfschule Mitte April 8 Zusammenfassung IC Il Corso Advanzato I. Besondere Punkte, Geraden und Ebenen 1. Besondere Ebenen Koordinatenebenen: Wie in dem konkretes
www.mathe-aufgaben.com
Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )
2.5. Geraden und Ebenen
.5. Geraden und Ebenen Parameterdarstellungen von Geraden und Ebenen gewinnt man, indem man einen Ortsvektor (mit Spitze auf der Geraden oder Ebene und einen bzw. zwei Richtungsvektoren wählt, welche die
Vorkurs Mathematik Teil III. Lineare Algebra
Vorkurs Mathematik Teil III. Lineare Algebra Inhalt 0. Inhalt 1. Lineare Gleichungssysteme und Gauß-Verfahren. Vektorrechnung 3. Lagebestimmungen von Punkt, Geraden und Ebenen 4. Skalarprodukt, Längen
Markus' Formelsammlung für die Vektorgeometrie
Markus' Formelsammlung für die Vektorgeometrie Markus Dangl.4. Zusammenfassung Dieses Dokument soll eine Übersicht über die Vektorgeometrie für die Oberstufe am Gymnasium geben. Ich versuche hier möglichst
Pflichtteil Pflichtteil Pflichtteil Abiturprüfung Mathematik 2013 Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen
Abiturprüfung Mathematik Baden-Württemberg Allgemeinbildende Gymnasien Pflichtteil Lösungen Pflichtteil Aufgabe : Bilden Sie die erste Ableitung der Funktion mit +5 ( VP) Verwende Produkt- und Kettenregel
Wahlteil: Analytische Geometrie II 1
Abitur Mathematik: Wahlteil: Analytische Geometrie II Baden-Württemberg 202 Aufgabe II a). SCHRITT: AUFSTELLEN DER KOORDINATENGLEICHUNG FÜR E Die Verbindungsvektoren AB und AP von je zwei der drei vorgegebenen
Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer".
Was ist ein Vektor? Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer". Vektoren sind Listen von Zahlen. Man kann einen Vektor darstellen, indem man seine Komponenten
Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.
LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)
