Linearkombinationen in der Physik
|
|
|
- Agnes Egger
- vor 9 Jahren
- Abrufe
Transkript
1 Linearkombinationen in der Physik Für die Überlagerung von Bewegungen gilt das Superpositionsprinzip. Es lautet: Führt ein Körper gleichzeitig mehrere Teilbewegungen aus, so überlagern sich diese Teilbewegungen unabhängig voneinander zu einer resultierenden Gesamtbewegung. Mathematisch gesprochen: die resultierende Gesamtbewegung wird als Linearkombination aller Teilbewegungen dargestellt. Untersuche diesen Fall am Beispiel des waagrechten Wurfs Ein Gegenstand wird mit einer Geschwindigkeit v 0 = m weg geschossen. Aufgrund der s Gravitation wird der Gegenstand mit der Beschleunigung g nach unten beschleunigt. Bestimme die Vektoren v 0, v F und v. Wie schnell ist der Gegenstand nach 3s, s und 10s?
2 Lösungen Linearkombinationen in der Physik resultierender Vektor v als Linearkombination von v 0 und v F : v=v 0 v F mit v F = 0 => v= 0 0 g t g t = mit g=10 m s 2 g t und v 0= 0 nach 3s: v 1 s = 30 nach s: v 3 s = 0 nach 10s: v s = 100 v 1 s =2900=92 m s v 3 s =2200=22 m s v s =210000=1002 m s
3 Linearkombinationen in der Geometrie Vektoren können als Summe von mehreren Vektoren und dessen Vielfachen dargestellt werden. Man bezeichnet diese Darstellung als Linearkombination. z.b. c als Linearkombination von a und b Drücke die Vektoren BC,BD und CD, die durch die dreiseitige Pyramide ABCD gegeben ist, als Linearkombination der Vektoren b, c und d aus. Im nebenstehenden Quader sind die Punkte M 1, M 2 und M 3 die Mittelpunkte der vorderen, rechten und hinteren Seitenfläche. a) Stelle die Vektoren AM 1, AM 2 und AM 3 als Linearkombination der Vektoren a, b und c dar. b) Der Quader soll nun durch ein Koordinatensystem beschrieben werden. Die Koordinatenachse x 1 sei parallel zu b, x2 parallel zu a und x 3 parallel zu c. Der Punkt A habe die Koordinaten (2 1 1), a sei 2, b sei 3 und c sei 4. Bestimme die Koordinaten von M 1, M 2 und M 3.
4 Lösungen Linearkombinationen in der Geometrie BC= bc, BD= b d, CD= c d AM 1 = 1 2 a 1 2 c AM 2 =a 1 2 b 1 2 c AM 3 = 1 2 a b 1 2 c Da das Koordinatensystem parallel zu den Vektoren a, b und c ist und x 1 parallel zu b, x2 parallel zu a und x 3 parallel zu c sind, können die Vektoren a, b und c, wie folgt in algebraischer Form beschrieben werden: a= b=, und c= 0 Die Punkte M 1, M 2 und M 3 können als Linearkombination des Ortsvektors x A und der Vektoren AM 1, AM 2 und AM 3 dargestellt werden. Also ist = 2 x M 1 =x A AM = 2 = 2 1 1, 3, x M 2 =x A AM = 3 2 = x M 3 =x A AM = 2 3
5 Gleichungen von Geraden im Raum Die Punkte einer Gerade im Raum werden allgemein durch einen Ortsvektor x beschrieben. Dieser wird als Summe eines Stützvektors p und dem Vielfachen eines Richtungsvektor u dargestellt: g :x=pk u Gib mindestens zwei verschiedene Geradengleichungen an, welche durch die Punkte A und B gehen. a) A(7-3 -), B(2 0 3) b) A(0 7 0), B(-7 0-7) Gegeben sind die Punkte A(9 0 0), B(0 4, 0) und C(0 0 4,). Begründe, dass die Punkte A,B und C nicht auf einer gemeinsamen Geraden liegen. Aufgabe 3: Überprüfe, ob der Punkt P auf der Geraden g liegt a) P(2 3-1), g :x= t 3 b) P(2-1 -1), g :x= t 3
6 Lösungen Gleichungen von Geraden im Raum a) zum Beispiel mit A als Geradenpunkt und Vektor AB als Richtungsvektor von g, dann ist g :x= 7 3 r 3 8 wenn B der Geradenpunkt ist und BA Richtungsvektor, dann wird g folgendermaßen dargestellt: g :x= s 3 8 weitere Geradengleichungen für g sind möglich. b) zum Beispiel A mit A als Geradenpunkt und Vektor AB Richtungsvektor von g, dann ist g :x= r 7 wenn B der Geradenpunkt ist und BA Richtungsvektor, dann wird g folgendermaßen dargestellt: g :x= s 7 weitere Geradengleichungen für g sind möglich. 7 Wähle zum Beispiel eine Gerade g durch A und B und überprüfe, ob C auf einer Geraden liegt. Mit A als Geradenpunkt und Richtungsvektor AB hat die Gerade g die Form g :x= r 4, 0 C kann nicht auf der Geraden g liegen, da alle Punkte auf g die Null als x 3 -Koordinate haben. Alternativ kann man auch durch Punktprobe feststellen, dass C nicht auf der Geraden g liegt.
7 Aufgabe 3: a) 4 t g :x= Punktprobe: = 0 3 Betrachten der Koordinaten liefert ein Gleichungssystem (GLS): x 1 : 2=7t t= 1 x 2 : 3= 3t t= 1 x 3 : 1=4t t= 1 Das GLS liefert für jede Koordinate den gleichen Wert für t, deshalb liegt der Punkt P auf der Geraden g. b) g :x= t 3 ; P(2-1 -1) 2 Punktprobe: 1 1 = t 3 Betrachten der Koordinaten liefert ein Gleichungssystem (GLS): x 1 : 2=1t t=1 x 2 : 1=3t t= 1 3 x 3 : 1=13t t= 2 3 Das Gleichungssystem liefert keinen einheitlichen Wert für t, daher kann P nicht auf g liegen. Ohne t explizit auszurechnen kann man argumentieren, dass 3t und 1+3t nicht beide -1 sein können, und daher P nicht auf g liegt.
8 Schneiden von Geraden im Raum Wenn sich zwei Geraden schneiden, dann gibt es einen Punkt, der sowohl auf g als auch auf h liegt. Deshalb findet man diesen Punkt, wenn man die allgemeinen Ortsvektoren von g und h gleichsetzt. Zuvor ist es allerdings hilfreich sich zu vergewissern, ob die beiden Geraden nicht parallel zueinander sind. Dadurch kann man sich viel Arbeit sparen :-) Überprüfe, ob sich die Geraden g und h schneiden Überprüfe die Lage der Geraden g und h und bestimme gegebenenfalls die Koordinaten des Schnittpunktes : g :x= r 2 h:x= und s 6 21 Aufgabe 3: Die Gerade g geht durch den Punkt A(3 8 0) und hat den Richtungsvektor 2 0. Die Gerade h geht durch den Punkt B(-2 3 1) und hat den Stützvektor Überprüfe, ob sich die Geraden g und h schneiden, Berechne gegebenenfalls die Koordinaten des Schnittpunktes
9 Schneiden von Geraden im Raum Lösungen Gerade g mit Geradenpunkt A und Richtungsvektor AB 2 g :x=x A rab also x=2 2 0r 2 2 Gerade h mit Geradenpunkt D und Richtungsvektor DC 1 h:x=x D rdc also x= s 2 g h: Betrachten der Koordinaten ergibt ein Gleichungssystem: x 1 : 2 2r=s x 2 : 22r=13s x 3 : 2r=2 2s I : 2 2r s=0. II : 22r 3s=0 I II III : 22r2s=0 I III I : 2 2r s=0 II ' : 30 4s=0 III ' : 00s=0 Gleichung II' ergibt für s= 3 4 eine wahre Aussage, da 3 4 s 4s=3 s= 3 4 Gleichung III' ergibt für s=0 eine wahre Aussage. Dies ist ein Widerspruch, da s laut Geradengleichung einen einheitlichen Wert haben muss. => Die beiden Geraden g und h schneiden sich nicht. Der Richtungsvektor von h ist ein Vielfaches des Richtungsvektors von g, da d.h. g und h sind zueinander parallel = Wegen = 2 sind daher identisch liegt der Stützvektor der Geraden h auch auf g. Die beiden Geraden
10 Aufgabe 3: 0. x= , 8 r g : x=x A r 2 h: x= s x B 1. x= s Wenn sich die beiden Geraden g und h schneiden würden, dann müsste die x 3 -Koordinate des Schnittpunktes 0 sein, da sämtliche Punkte auf g Null als x 3 -Koordinate haben. 3 0 Also muss s=0 sein. Als einzig möglicher Schnittpunkt von h kommt nur der Stützvektor 1 in Frage. Punktprobe mit g: = 8 r Betrachten der Koordinaten liefert ein GLS: x 1 : 3=32r r=0 x 2 : 1=8r r= 7 x 3 : 0=0.. Das Gleichungssystem liefert keinen einheitlichen Wert für r, daher kann der Stützvektor nicht auf g liegen, d.h. die Geraden g und h schneiden sich nicht.
Mathe GK, Henß Klausur No. IV Thema: Geraden und Ebenen
Matheklausur No. IV Geraden und benen Geradengleichung Um eine Gerade zeichnen zu können, braucht man mindestens Punkte (Ortsvektoren), durch die die Gerade geht. Zur Bestimmung aller anderen Punkte auf
Analytische Geometrie
Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe
1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt
Lösungsskizzen Klassische Aufgaben Lösung zu Abi - PTV Punktprobe: = + t aus allen Zeilen folgt t =, also liegt A auf g. Richtungsvektor von g: u = ; Normalenvektor von E: n = Da die n und u Vielfache
5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren
5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination
Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand
Abituraufgaben bis 8 Baden-Württemberg Geraden, Ebenen, Abstand allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 8 Aufgabe : (Abiturprüfung 8) Gegeben sind die Ebenen E: xx x
E : y=0. g : x= ) +s ( 1 1. d = 17. Partnerquiz Punkte, Geraden und Ebenen im Raum Ausschneidebogen
Partnerquiz Aufgabe A Partnerquiz Aufgabe B Gib eine Ebenengleichung in Parameterform für die xz-ebene an. Gib eine Ebenengleichung in Koordinatenform für die xz-ebene an. E : y= E : x=r +s Partnerquiz
Gleichungen von Geraden
Gleichungen von Geraden Die Flugbahn eines Flugzeugs kann durch eine Gerade g, die durch einen Punkt A und eine Richtung u! festgelegt ist, beschrieben werden (siehe Skizze). Für jeden weiteren Punkt X
Aufgabe A7/08 Die Ebene geht durch die Punkte 1,5 0 0,!0 3 0 und " Untersuchen
Aufgabe A6/08 Gegeben sind die zwei parallelen Gerade und durch 2 3 1 6 : 9 4, : 2 8;, 4 1 5 2 Bestimmen Sie den Abstand der beiden Geraden. (Quelle Abitur BW 2008 Aufgabe 6) Aufgabe A7/08 Die Ebene geht
Abituraufgaben Analytische Geometrie (Pflichtteil) Lösung A6/08 Lösungslogik (einfach) Klausuraufschrieb (einfach)
Lösung A6/08 (einfach) Der Abstand zweier Geraden im Raum errechnet sich über Richtungsvektor der ersten Geraden, als Aufpunkt der ersten und als Aufpunkt der zweiten Geraden. (einfach) 3 12 1 297 1 5
(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW)
Aufgabe M01 Lösen Sie das lineare Gleichungssystem 7 2 2 3 5 4 4 7 Aufgabe M02 14 Stellen Sie den Vektor 5 als Linearkombination der drei Vektoren 7 0 1 5 1, 3 und 2 dar. 3 7 2 Aufgabe M03 0 2 Gegeben
Algebra 4.
Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen
5 Geraden im R Die Geradengleichung. Übungsmaterial 1
Übungsmaterial 5 Geraden im R 5. Die Geradengleichung Eine Gerade ist eindeutig festgelegt durch zwei Punkte oder durch einen Punkt und eine Richtung. Beispiel: Die Gerade g durch die Punkte A(-//) und
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung
Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen)
Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen) 1) a) Ein Flugzeug fliegt von A(4; 2; 5) nach B(12; 6; 10). In S(10; 10; 4,75) befindet sich die Spitze eines Berges. Wie weit fliegt das Flugzeug
Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel
Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.
Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen
Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der
Prüfungsteil 2, Aufgabe 5 Analytische Geometrie
Abitur Mathematik Nordrhein-Westfalen 1GK Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 GK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1. SCHRITT:
Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt
Drei Flugzeuge unterwegs
Anwendungsaufgaben: R. 3. 1 Drei Flugzeuge unterwegs Um die Bewegungen dreier Flugzeuge zu analysieren, wird ein räumliches kartesisches Koordinatensystem gewählt, das an die Navigation auf bzw. über der
Lagebeziehung von Ebenen
M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um
7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen
7.. Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen. Bestimme von den nachfolgenden Funktionsgleichungen zunächst die Schnittpunkte mit den Achsen; stelle sie danach im Koordinatensystem dar.
1 0,5 beschrieben. Sein Kurs wird durch den Vektor =
1.) Ein rotes U-Boot ist auf Expedition im Ozean unterwegs. Es will ein Schiffswrack untersuchen. Seine Position lässt sich in einem Koordinatensystem mithilfe der Koordinaten U r ( 2-1,5-1 ) beschreiben.
Analytische Geometrie
Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),
Ermitteln Sie die Koordinaten des Schnittpunktes dieser beiden Geraden und erklären Sie Ihre Vorgehensweise!
Aufgabe 2 Lagebeziehungen von Geraden im Raum Gegeben sind zwei Geraden g und h in 3. =( 3 Die Gerade g ist durch eine Parameterdarstellung X 4 2 Die Gerade h verläuft durch die Punkte A = (0 8 0 und B
Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene
Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene. Im sind die Punkte A(/-4/7), B(-/4/-), die Ebene E:x x +x 5 sowie die Geradenschar (Abitur BI) gegeben.. Die Gerade h AB schneidet die Ebene E
Basistext Geraden und Ebenen
Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird
Algebra 3.
Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte
BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel
ELEMENTE DER MATHEMATIK BADEN-WÜRTTEMBERG Vektoren Geraden im Raum Lösungen Herausgegeben von Heinz Griesel Helmut Postel Friedrich Suhr Schroedel Vektoren Geraden im Raum. Kartesisches Koordinatensystem
Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1
Übersicht Analytische Geometrie Grundkurs bis zur 4 Klausur Q1 F Vektorrechnung F1 Verschiebungen durch Vektoren sowie Punkte im Raum durch Ortsvektoren und Vektorketten beschreiben und damit realitätsnahe
Gruppenarbeit: Lagebeziehungen Gruppe A
Gruppe A Hier soll die Lage von Geraden im Koordinatensystem untersucht werden. Bearbeiten Sie folgende Fragen (am besten mit Hilfe von Skizzen): 1) Wie kann man überprüfen, ob eine gegebene Gerade durch
Abitur 2010 Mathematik LK Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden
MATHEMATIK G10. (1) Bestimme die Gleichung der Geraden durch die beiden Punkte
(c) A( 1 1 ) geht. 1 MATHEMATIK G10 GERADEN (1) Bestimme die Gleichung der Geraden durch die beiden Punkte P und Q: a) P ( 5), Q(4 7) b) P (3 11), Q(3, 1) c) P (3 5), Q( 1 7) d) P ( 0), Q(0 3) e) P (3
Analytische Geometrie
Analytische Geometrie Wiederholung (Klasse 0) zur Vektorrechnung Hausaufgabe ( Vorbereitung als Vortrag): C:\Users\Hagen\Documents\Dr. H. Fritsch\Eigene Dateien\Gymnasium-Muecheln\ Mathematik\Klasse \Kl--Wdhlg-Vektor.docx
Mathematischer Vorkurs Lösungen zum Übungsblatt 5
Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 [email protected] Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und
Skript Lineare Algebra
Skript Lineare Algebra sehr einfach Erstellt: 2018/19 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Vektoren... 3 2. Geraden... 6 3. Ebenen... 8 4. Lagebeziehungen... 10 a) Punkt - Gerade...
Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14
Aufgabe A6/ Gegeben sind die Ebene 4 : Abituraufgaben Analytische Geometrie (Pflichtteil) ab und : 8. Bestimmen Sie eine Gleichung der Schnittgeraden. (Quelle Abitur BW Aufgabe 6) Aufgabe A7/ Gegeben sind
Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1
Geometrie 3 Lagebeziehung zwischen geometrischen Objekten Mathe-Squad GbR 28. Oktober 2016 Lagebeziehung zwischen geometrischen Objekten 1 Lage zweier Geraden Geraden g : #» X = #» A + λ #» u mit λ R h
V.01 Grundlagen (Kurzform)
Punkte, Geraden, Ebenen V.0 Grundlagen (Kurzform) V.0.0 Zeichnen im D Koordinatensystem ( ) Ein D Koordinatensystem hat natürlich drei Achsen. Die Achsen heißen Koordinatenachsen. Die erste Achse heißt
Das Wichtigste ûber Geraden. Ganz einfache Erklärung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr
Vektorgeometrie ganz einfach Teil Das Wichtigste ûber Geraden Ganz einfache Erklärung der Grundlagen: Die wichtigsten Aufgabenstellungen und Methoden- Datei Nr. 6100 Stand:. Februar 016 Demo-Text für INTERNETBIBLIOTHEK
Mathematik Name: Nr.5 K2 Punkte: /30 Note: Schnitt:
Pflichtteil (etwa min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden dürfen.) Aufgabe 1: [P] Bestimmen
Mathematik LK 12 M1, 2. Kursarbeit LA I / An. Geometrie Lösung
Mathematik LK M,. Kursarbeit LA I / An. Geometrie Lösung..7 Aufgabe : Rechnen mit Vektoren Berechne... und vereinfache das Ergebnis so weit wie möglich. Falls der Term keinen gültigen Ausdruck darstellt,
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
Philipp Melanchthon - Gymnasium Bautzen Lk Mathematik Kl. 11 Übungsblatt Thema: Klausurübung Klausur 4 Aufgaben aus dem HMF Teil
Übungsblatt Thema: Klausurübung Klausur 4 Aufgaben aus dem HMF Teil 1!" Gegeben sind die Gerade g : x!" h a : x= a 8 6 +s a+3 1+a ( s R, a R). = -1-3 + t 5-1 ( t #) und die Geraden.1 Bestimmen Sie denjenigen
Zusammenfassung der Analytischen Geometrie
Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans [email protected] Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen
Hauptprüfung Fachhochschulreife Baden-Württemberg
Hauptprüfung Fachhochschulreife 05 Baden-Württemberg Aufgabe 4 Analytische Geometrie Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 05 Ein Papierflieger
HTW MST Mathematik 1. Vektorrechnung. Zu Aufgabe 1. Zu Aufgabe Lösungen zu Übungsblatt 5. Lösung: Lösung: = 39
Vektorrechnung Zu Aufgabe 1 Berechnen Sie den Flächeninhalt des Dreiecks, das durch die Vektoren 1 a =, b =, 3 1 c = 6 1 aufgespannt wird! Zu Aufgabe Berechnen Sie das Volumen des durch folgende 3 Vektoren
A Vektorrechnung. B Geraden und Ebenen
A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit
Geometrie Strecke, Gerade, Halbgerade
Für einige Aufgaben wird ein beschriftetes Gitternetz folgender Größe benötigt: Rechtsachse (x- Achse): 8 LE Hochachse (y- Achse): 8 LE 1 LE 1 cm 1. Zeichne ohne Gitternetz: a) Die Gerade g ist senkrecht
Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.
LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform
Abitur 2016 Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen
Lösungen zu der Stationsarbeit: Parametergleichungen von Geraden/Lagebeziehung von Geraden
Lösungen zu der Stationsarbeit: Parametergleichungen von Geraden/Lagebeziehung von Geraden Lösung zur Pflichtaufgabe a) b) Würfel: A( ), B( ), C( ), D( ), E( ), F( ), G( ), H( ) Pyramide: A( ), B( ), C(
Aufgabe 5: Analytische Geometrie (WTR)
Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0
Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.
Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten
FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II
Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B( 3) und C( 3) gegeben.. Die Punkte A und B bestimmen die Gerade g. Die Ebene E enthält den Punkt C und steht senkrecht auf
FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I
FOS 994, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B(3 ) und C( ) gegeben, sowie die Punkte D a (a a a + ) mit a R..
Aufgaben zu Kapitel 9
9 9 a) b) Ist oder, so ist offenbar Sind und kollinear, also eta λ, so ist λ λ λ λ λ λ λ λ λ Sei umgekehrt und sei Dann ist mindestens eine Komponente on, eta ungleich Aus folgt: ------ ------ und ferner
Abitur 2017 Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur 7 Mathematik Geometrie VI Gegeben sind die beiden bezüglich der x x 3 -Ebene symmetrisch liegenden Punkte A( 3 ) und B( 3 ) sowie der Punkt C( ). Teilaufgabe
Wiederholung Vektoren/Geraden
Wiederholung Vektoren/Geraden S. 55 Nr. 4a Stelle eine Vektorgleichung auf: x a + y b + z c = d. Bilde daraus ein LGS: x + 3y z = 1 x + y + z = 1 x + y + 5z = 3 1 3 1 1 oder in Matrixschreibweise: 1 1
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analysis... 7 Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analytische Geometrie... 9 Wahlteil Analytische Geometrie... 008 Pflichtteil Lösungen zur Prüfung 008: Pflichtteil
Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten
Abituraufgaben Analytische Geometrie (Pflichtteil) ab Lösung A6/ Wir stellen die gegebene Normalengleichung von in die Koordinatengleichung um und bilden. Im Gleichungssystem mit drei Unbekannten und zwei
Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Geometrie II 2 Lösungen
1 Abiturprüfung Mathematik 2012 Baden-Württemberg Allgemeinbildende Gymnasien Wahlteil Geometrie II 2 Lösungen [email protected] www.elearning-freiburg.de 2 Aufgabe II 2 In einem Koordinatensystem beschreibt
Abituraufgaben Analytische Geometrie (Pflichtteil)
Lösung A6/04 Abituraufgaben Analytische Geometrie (Pflichtteil) 2004-2007 1 2 : 1 1; : 4 2 4 11. 0 2 Punktprobe mit 3 0 2 auf. Normalenvektor von muss ein Vielfaches des Richtungsvektors von sein. Wegen
1 lineare Gleichungssysteme
Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x
Mögliche Lösung. Ebenen im Haus
Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung
Geometrie / Lineare Algebra
6 Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail: [email protected],
Zeichnen Sie die Geraden mit den Gleichungen: a) y = 4 x + 1; b) 2y + 3x = 7; c) f(x) = 1 x 3 ; d) x -2 x + 3
Zusättzlliiche Übungen zu lliinearren Funkttiionen Aufgabe Zeichnen Sie die Geraden mit den Gleichungen: a) y = x + ; b) y + x = ; c) f(x) = x ; d) x - x + e) + =. Was fällt bei der Gerade e) auf? Aufgabe
Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.
Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die
Analytische Geometrie
Analytische Geometrie Allg. Gymnasien: Ab J / Q Berufliche Gymnasien: Ab Klasse Alexander Schwarz August 08 Aufgabe : Bestimme den Abstand des Punktes R(4/0/7) von der Ebene E:xx 6x E mit Hilfe einer Lotgeraden.
Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen
Vektorrechnung: Anwendungsaufgaben zu Graden und Ebenen ) Ein Flugzeug fliegt auf geradem Weg von A(; 4; ) nach B(5; ; ) und benötigt dafür eine Minute. Die Koordinaten wurden in km angegeben. Es fliegt
Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.
Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel
MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte
MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen
Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren
Vektoren Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail:
Schnitt zweier Ebenen
Schnitt zweier Ebenen. Gegeben sind die beiden Ebenen: E : ( 3 4 x = E : ( 3 x 6 = Bestimme die Schnittgerade. Der Richtungsvektor der Schnittgeraden zweier Ebenen steht senkrecht auf den Normalenvektoren
1.12 Einführung in die Vektorrechung
. Einführung in die Vektorrechung Inhaltsverzeichnis Definition des Vektors Skalare Multiplikation und Kehrvektor 3 3 Addition und Subtraktion von Vektoren 3 3. Addition von zwei Vektoren..................................
Fit in Mathe. Januar Klassenstufe 12 Ebenen
Thema Musterlösungen Ebenen Das Foto zeigt einen Eimerkettenbagger im Braunkohletagebau. Beim Schürfen bewegt sich der Bagger in Richtung des Vektors u und die Eimerkette wird in Richtung des Vektors v
2010 B I Angabe. sind der. 2 1 Geben Sie die Koordinaten der beiden Eckpunkte A und C sowie der Spitze S an.
B I Angabe Vor dem Louvre, dem berühmten Pariser Kunstmuseum, wurde im Jahr 989 eine Glaspyramide erbaut, welche den unterirdisch liegenden Haupteingang beherbergt. Diese Pyramide wurde der Cheops-Pyramide
1 Gegeben sind die Ebene E: x= 1 0
8..003 Klausur Kurs 3 Ma 3 Mathematik Lk Lösung Gegeben sind die Ebene E: x= 0 und die Geradenschar g a : x= t a Bei allen Aufgabenteilen müssen die Rechnungen oder die Überlegungen klar erkennbar dokumentiert
Aufgabe 4: Analytische Geometrie (WTR)
Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 4 a) (1) SEITENLÄNGEN BERECHNEN Die Seitenlängen sind die Abstände der Eckpunkte voneinander:, 31 30 1 12 10 2 14 16 2 1 4 4 9 3, 31 32 1 12 11 1 14
Abitur 2013 Mathematik Geometrie V
Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Parameter Das Buch Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung
Das Buch: Dieses Kapitel ist Teil eines Buches. Das vollständige Buch können Sie unter www.mathe-laden.de bestellen (falls Sie das möchten). Sie werden in diesem Buch ein paar Sachen finden, die nicht
Prüfungsteil 2, Aufgabe 4 Analytische Geometrie
Abitur Mathematik: Prüfungsteil, Aufgabe 4 Analytische Geometrie Nordrhein-Westfalen 0 GK Aufgabe a (). SCHRITT: MITTELPUNKT DER GRUNDFLÄCHE BERECHNEN Die Spitze befindet sich einen Meter senkrecht über
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analysis 3... 5 Wahlteil Analytische Geometrie... Wahlteil Analytische Geometrie... Lösungen: 00 Pflichtteil Lösungen zur Prüfung 00: Pflichtteil
Analytische Geometrie - Lagebeziehungen Gerade / Gerade. Teil 1 Allgemeines / Parameterform R 2
Analytische Geometrie - Lagebeziehungen Gerade / Gerade Lage zweier Geraden zueinander In R 2 sind möglich (1) parallel, (2) identisch, (3) die Geraden schneiden sich. In R 3 kommt noch dazu Teil 1 Allgemeines
6. Analytische Geometrie : Geraden in der Ebene
M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters
3.6 Einführung in die Vektorrechnung
3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................
Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. V = 1 G h, wobei G die Fläche des quadratischen Bodens und h die Höhe V = = 384 [VE]
Abitur Mathematik: Bayern 2 Aufgabe a). SCHRITT: KOORDINATEN DES PUNKTS B ANGEBEN 2 2 OB = OA + AB = OA + DC = ( ) + ( 2) = ( 2) B(2 2 ) 2. SCHRITT: VOLUMEN BERECHNEN V = G h, wobei G die Fläche des quadratischen
m und schneidet die y-achse im Punkt P(0/3).
Aufgabe (Pflichtbereich 999) Eine Parabel hat die Gleichung y x 6x, 75. Bestimme rechnerisch die Koordinaten ihres Scheitelpunktes. Berechne die Entfernung des Scheitelpunktes vom Ursprung des Koordinatensystems.
Geraden in R 2 Lösungsblatt Aufgabe 17.16
Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:
Grundwissen Abitur Geometrie 15. Juli 2012
Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht
Aufgabe 5 - zum Themenbereich Analytische Geometrie
Freie Hansestadt Bremen chulnr: Kursbezeichnung: Die enatorin für Bildung und Wissenschaft Aufgabe 5 - zum Themenbereich Analytische Geometrie Kletterturm TR Bei einem Kletterturm kann man, abgesichert
Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor!
Grundwissen 1.Aufstellen eines Vektors: Merkregel: Spitze minus Fuß! 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! 3.Aufstellen von Ebenengleichungen
