Analytische Geometrie
|
|
|
- Edmund Meyer
- vor 6 Jahren
- Abrufe
Transkript
1 Analytische Geometrie Allg. Gymnasien: Ab J / Q Berufliche Gymnasien: Ab Klasse Alexander Schwarz August 08
2 Aufgabe : Bestimme den Abstand des Punktes R(4/0/7) von der Ebene E:xx 6x E mit Hilfe einer Lotgeraden. Aufgabe : Wandle die folgenden Gleichungen in eine Hesse'sche Normalenform um: a) E: x b) E: xx x c) E: 0 x 5 r 6 s 0 7 Aufgabe : Eine Ebene E hat den Normalenvektor 0,5 n und geht durch den Punkt P(6/4/-). Berechne den Abstand des Ursprungs von der Ebene. Aufgabe 4: Gib den Abstand des Punktes P(-/4/) von den einzelnen Koordinatenebenen an. Aufgabe 5: a) Berechne den Abstand des Punktes A(7/4/) von der Ebene 8 E: x b) Berechne den Abstand des Punktes P(/-/5) von der Ebene E: 4xx 0. Aufgabe 6: 0 Weise nach, dass die Gerade g: x r 4 parallel zur Ebene E: 4x0,5x x ist. Berechne den Abstand der Gerade g von der Ebene E. Aufgabe 7: Bestimme den Abstand der parallelen Ebenen E: xx x und F: 4x4x x 0. Aufgabe 8: Bestimme die beiden Ebenen F und G, die von der Ebene E: 6xx x den Abstand d = 6 LE haben.
3 Aufgabe : Welche Punkte der Geraden g: x r 0 4 E: x 4 0 den Abstand d = 5? 7 haben von der Ebene Aufgabe 0: Gegeben sind die Punkte A(4//), B(4/6/4), C(/4/6) und D(//). a) Weise nach, dass die 4 Punkte ein Rechteck bilden. b) Zeige, dass das Rechteck in der Ebene E: xx x 8 liegt. c) Vom Punkt S(4//8) aus wird das Lot auf die Ebene E gefällt. Berechne die Koordinaten des Fußpunktes F. d) Berechne das Volumen der Pyramide ABCDS. e) Zeige, dass der Fußpunkt nicht mit dem Mittelpunkt des Rechtecks übereinstimmt, die Pyramide also nicht gerade ist. f) Es gibt zwei gerade Pyramiden ABCDT und ABCDT, die dasselbe Volumen wie ABCDS haben. Berechne die Koordinaten der Spitzen T und T.
4 Lösungen Aufgabe : Die Lotgerade g steht senkrecht auf E und geht durch den Punkt R. 4 g: x 0 s 7 6 Schnittpunkt von E mit g: (4s) (0s) 6(76s) 84ss46s4s4s Einsetzen von s = - in die Geradengleichung ergibt Lotfußpunkt F(/-/). Abstand von R zu E: FR Aufgabe : a) Ansatz Koordinatengleichung von E: x6x x d Einsetzen von P(//6) in E: 66dd 76 Koordinatengleichung von E: x6x x 76 x6x x 76 x6x x 76 Hesse'sche Normalenform von E: xx x xx x b) Hesse'sche Normalenform von E: c) Umwandlung der Parametergleichung in eine Koordinatengleichung: 0 8 n bzw. vereinfacht n Ansatz Koordinatengleichung von E: xx x d Einsetzen von P(/5/7) in E: 54dd Koordinatengleichung von E: xx x xx x xx x Hesse'sche Normalenform von E:
5 Aufgabe : Ansatz für die Koordinatengleichung von E: 0,5x x x d Einsetzen von P(6/4/-): 0,56 4 ( ) dd Koordinatengleichung von E: 0,5x x x 0,5x x x 0,5x x x Hesse'sche Normalenform von E: 0 0 0,5,5 Abstand von O(0/0/0) zu E: Aufgabe 4: d 0,5000 4,5 Der Abstand von P zu den Koordinatenebenen kann man direkt an den Koordinaten von P ablesen: Abstand von der xx-ebene (ablesbar am x-wert von P) = Abstand von der xx-ebene (ablesbar am x-wert von P) = 4 Abstand von der xx-ebene (ablesbar am x-wert von P) = Aufgabe 5: a) Ansatz für die Koordinatengleichung von E: 8x4x 8x d Einsetzen von P(/0/-): 808dd 0 Koordinatengleichung von E: 8x4x 8x 0 8x4x 8x 8x4x 8x Hesse'sche Normalenform von E: Abstand von A(7/4/) zu E: 5667 d 4xx 0 4xx 0 b) Hesse'sche Normalenform von E: Abstand von P(/-/5) zu E: d Aufgabe 6: Berechnung des Schnittpunktes von g und E: 4(0r) 0,5( 4r) ( r) 404r,5 r46r 4,5 Aufgrund des entstehenden Widerspruchs existiert kein Schnittpunkt. Daher ist g zu E parallel. 5
6 Zur Berechnung des Abstandes wird ein Punkt A(0/-/-) von g ausgewählt und der Abstand von A zur Ebene E berechnet. 4x0,5x x 4x0,5x x Hesse'sche Normalenform von E: ,5 4 4,5 Abstand von A(0/-/-) zu E: 40,5 4 d 4,5 Die Gerade g hat von der Ebene E den Abstand. Aufgabe 7: Die Ebenen sind parallel, da die Normalenvektoren der Ebenen E und F Vielfache zueinander sind. Wir wählen einen beliebigen Punkt der Ebene F, z.b. A(0/0/5). Der Abstand der beiden parallelen Ebenen entspricht dem Abstand des Punktes A von der Ebene E. xx x xx x Hesse'sche Normalenform von E: Abstand von A(0/0/5) zu E: d Der Abstand der beiden Ebenen beträgt. Aufgabe 8: 6xx x 6xx x Hesse'sche Normalenform von E: xx x Gleichung der Ebene F: 6 6x x x xx x Gleichung der Ebene G: 66xx x 0 7 Aufgabe : Ein allgemeiner Punkt der Geraden g hat die Koordinaten P( r / r /r). Gesucht sind die Werte von r, so dass gilt: d(p,e) 5 Ansatz für Koordinatengleichung von E: 4x4x 7x d Einsetzen des Ebenenpunktes A(//): 487dd Koordinatengleichung von E: 4x4x 7x 6
7 4x4x 7x Hesse sche Normalenform von E: 0 4( r) 4(r) 7r d(p,e) 5 5r5 5.Fall: 5r 5 55r 545r 4 also P(/6/4).Fall: 5r 5 55r545r also P(-7/0/-) Aufgabe 0: a) Zunächst wird gezeigt, dass es sich bei dem Viereck ABCD um ein Parallelogramm handelt: 0 AB und 0 DC Da ABDC ist, handelt es sich um ein Parallelogramm. Nun wird gezeigt, dass das Viereck einen rechten Winkel besitzt: 0 8 ABAD 0660 Somit existiert im Punkt A einen rechten Winkel. Damit ist das Viereck ABCD ein Rechteck. b) Einsetzen der 4 Punkte ABCD in die Ebenengleichung: A(4//) einsetzen: wahre Aussage B(4/6/4) einsetzen: wahre Aussage C(/4/6) einsetzen: wahre Aussage D(//) einsetzen: wahre Aussage Die Punkte A,B,C,D und damit das Rechteck liegt in der Ebene E. Rechteck in der Ebene E: xx x 8 liegt. 7
8 c) Aufstellen einer Hilfsgerade h durch S orthogonal zu E. h: 4 x s 8 Schnittpunkt der Ebene E mit der Geraden h ergibt F: 4s( s) (8s) 8 4s4s64s 8 s8s Einsetzen von s = in die Gerade h ergibt F(6/5/4). d) Volumenformel der Pyramide: V ARechteck SF V G h Es gilt ARechteck AB AD Es gilt SFSF Volumen der Pyramide: V 66 7 Gegeben sind die Punkte A(4//), B(4/6/4), C(/4/6) und D(//). e) Der Mittelpunkt des Rechtecks entspricht dem Mittelpunkt der Strecke BD Koordinaten von M: also M(8/,5/,5). Damit stimmt M nicht mit F überein. 4 8 OM OBOD 6,5 4,5 f) Damit die Pyramiden volumengleich sind, müssen sie die gleiche Höhe haben wie die Pyramide ABCDS, also die Höhe h FS. Damit die Pyramide gerade ist, muss diese Höhe im Punkt M aufsetzen. Für die Spitzen der Pyramiden gilt: 8 6 OT OMFS,5 4 0,5 also T(6/ 0,5/7,5),5 4 7,5 8 0 OT OMFS,5 4 7,5 also T (0/7,5/ 0,5),5 4 0,5 8
Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand
Abituraufgaben bis 8 Baden-Württemberg Geraden, Ebenen, Abstand allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 8 Aufgabe : (Abiturprüfung 8) Gegeben sind die Ebenen E: xx x
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg
Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe
Algebra 4.
Algebra 4 www.schulmathe.npage.de Aufgaben In einem kartesischen ( Koordinatensystem ) sind die Punkte A( ), B( ), C(5 ), D( 4 0) und S gegeben. a) Die Punkte A, B und C liegen in einer Ebene E. Stellen
Analytische Geometrie
Analytische Geometrie Allg. Gymnasien: ab J1 / Q1 Berufl. Gymnasien: ab Klasse 1 Alexander Schwarz August 018 1 Aufgabe 1: a) Der Punkt P(4//-5) wird am Punkt Z(3/-1/-8) gespiegelt. Berechne die Koordinaten
Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.
LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform
1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade
993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt
Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans [email protected] Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen
Algebra Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale
Algebra 1 www.schulmathe.npage.de Aufgaben 1. Für welche reellen Zahlen m hat das folgende Gleichungssystem nur die triviale Lösung? x + y + mz = 0 mx y + z = 0 x + y + z = 0. Welche Punkte P z der z-achse
Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten
Abituraufgaben Analytische Geometrie (Pflichtteil) ab Lösung A6/ Wir stellen die gegebene Normalengleichung von in die Koordinatengleichung um und bilden. Im Gleichungssystem mit drei Unbekannten und zwei
Mathematik LK 12 M1, 3. Kursarbeit Analytische Geometrie Lösung
Mathematik LK M,. Kursarbeit Analytische Geometrie Lösung 7..4 Aufgabe : Wandle die Gleichungen der folgenden Geraden und Ebenen in die angegebene Form um.. g : x= +t 6 4 =+6t II. x =+4t in die Koordinatenform.
Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14
Aufgabe A6/ Gegeben sind die Ebene 4 : Abituraufgaben Analytische Geometrie (Pflichtteil) ab und : 8. Bestimmen Sie eine Gleichung der Schnittgeraden. (Quelle Abitur BW Aufgabe 6) Aufgabe A7/ Gegeben sind
Lösungen zur Prüfung 2014: Pflichtteil
Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte Kenntnisse: Analysis: Ableiten mit Produktregel, Integral mit Stammfunktion berechnen, Gleichung lösen, Kosinusfunktion, Nullstellen, Funktionswerte
n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )
IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------
Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:
Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:
Mathematik 12. Jahrgangsstufe - Hausaufgaben
Mathematik. Jahrgangsstufe - Hausaufgaben Inhaltsverzeichnis Raumgeometrie. Punkte einer Geraden............................... Punkte und Geraden................................ Geraden und Punkte................................5
Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide
Michael Buhlmann, Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Michael Buhlmann Mathematikaufgaben > Vektorrechnung > Parallelogrammpyramide Aufgabe: a) Zeige, dass das Viereck ABCD mit
5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren
5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination
MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte
MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen
1 aus allen 3 Zeilen folgt t = 1, also liegt A auf g. Orsvektor und Richtungsvektor der Geraden werden übernommen, den zweiten Spannvektor bekommt
Lösungsskizzen Klassische Aufgaben Lösung zu Abi - PTV Punktprobe: = + t aus allen Zeilen folgt t =, also liegt A auf g. Richtungsvektor von g: u = ; Normalenvektor von E: n = Da die n und u Vielfache
Analytische Geometrie
Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),
Zusammenfassung der Analytischen Geometrie
Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren
FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II
FOS, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung. In einem kartesischen Koordinatensystem ist die Gerade g gegeben mit der Gleichung g : x = + σ σ R (a) Die drei Punkte A( ), B(
Abitur 2010 Mathematik GK Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.
Abitur 2016 Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen
Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel
Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.
Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 06 Wahlteil B www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 06 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung
Algebra 2.
Algebra 2 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A(10 0 0), B(0 4 0) und C(0 0 6) sowie die Ebenenschar E t : 3y + tz 3t = 0 (t R) gegeben. Die Punkte
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07
Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden
A Vektorrechnung. B Geraden und Ebenen
A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit
6.6. Abstandsbestimmungen
6.6. Abstandsbestimmungen 6. Geraden und Ebenen im Raum In diesem Kapitel werden folgende Fälle vorgestellt:. Abstand zweier Punkte. Abstand zweier paralleler Geraden 3. Abstand einer Ebene zu einer zur
FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B I
FOS 994, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B(3 ) und C( ) gegeben, sowie die Punkte D a (a a a + ) mit a R..
Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK
Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,
Oktaeder. Bernhard Möller. 22. Dezember 2010
Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil... Wahlteil Analysis... 7 Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analytische Geometrie... 9 Wahlteil Analytische Geometrie... 008 Pflichtteil Lösungen zur Prüfung 008: Pflichtteil
Abitur 2017 Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur 7 Mathematik Geometrie VI Gegeben sind die beiden bezüglich der x x 3 -Ebene symmetrisch liegenden Punkte A( 3 ) und B( 3 ) sowie der Punkt C( ). Teilaufgabe
Abitur 2011 G8 Musterabitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur G8 Musterabitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem ist ein Würfel W der Kantenlänge gegeben. Die Eckpunkte G ( ) und D ( ) legen
E : y=0. g : x= ) +s ( 1 1. d = 17. Partnerquiz Punkte, Geraden und Ebenen im Raum Ausschneidebogen
Partnerquiz Aufgabe A Partnerquiz Aufgabe B Gib eine Ebenengleichung in Parameterform für die xz-ebene an. Gib eine Ebenengleichung in Koordinatenform für die xz-ebene an. E : y= E : x=r +s Partnerquiz
Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...
Pflichtteil Wahlteil Analysis 8 Wahlteil Analysis Wahlteil Analysis 9 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 9 Lösungen: Pflichtteil Lösungen zur Prüfung : Pflichtteil Benötigte
Abitur 2011 G9 Abitur Mathematik GK Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur G9 Abitur Mathematik GK Geometrie VI Auf dem Boden des Mittelmeeres wurde ein antiker Marmorkörper entdeckt, der ersten Unterwasseraufnahmen zufolge die
Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg
Pflichtteilaufgaben zu Beschreiben und Begründen Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 06 Abituraufgaben (Haupttermin) Aufgabe
Abiturprüfung Mathematik, Leistungskurs. Prüfungsteil B: Aufgaben mit Hilfsmitteln. Abbildung
M LK HT B3 GTR (GG) Seite von 3 Name: Abiturprüfung 07 Mathematik, Leistungskurs Prüfungsteil B: Aufgaben mit Hilfsmitteln Aufgabenstellung: In einem kartesischen Koordinatensystem sind die Punkte O (0
Abitur 2010 Mathematik LK Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte
Hauptprüfung Fachhochschulreife Baden-Württemberg
Hauptprüfung Fachhochschulreife 05 Baden-Württemberg Aufgabe 4 Analytische Geometrie Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com Juni 05 Ein Papierflieger
Bayern Aufgabe a. Abitur Mathematik: Musterlösung. Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist
Abitur Mathematik Bayern 201 Abitur Mathematik: Bayern 201 Aufgabe a 1. SCHRITT: VORÜBERLEGUNG Die Koordinaten von C sind die Komponenten des Vektors PC (denn P ist der Ursprung). Dabei ist PC = PB + BC
7.6. Prüfungsaufgaben zu Normalenformen
7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen
Aufgaben zur Vektorrechnung
) Liegt der Punkt P(; -; 2) auf der Geraden 4 g: x = 5+t 2? 6 2 Aufgaben zur Vektorrechnung 2) a) Wie groß ist der Abstand der Punkte A(4; 2; -4) und B(;-2;-4) zueinander? b) Gesucht wir der Mittelpunkt
Berechnung des Abstandes eines Punktes P von einer Geraden
Berechnung des Abstandes eines Punktes P von einer Geraden Vorgehen zur Bestimmung des Abstandes des Punktes P von der Gerade g: a) Aufstellen einer Hilfsebene E, die senkrecht auf der Geraden g steht
Das Wichtigste auf einen Blick
Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,
K2 KLAUSUR 2. Aufgabe Punkte (max) Punkte. (1) Bestimmen Sie die Ableitung von f(x) = 2 x
K2 KLAUSUR 2 PFLICHTTEIL 202 Aufgabe 2 3 4 5 6 7 8 Punkte (max) 2 2 3 3 5 3 5 3 Punkte () Bestimmen Sie die Ableitung von f(x) = 2 x 2 + 4. (2) Berechnen Sie das Integral 4 ( ) x 2 dx. (3) Lösen Sie die
Abitur 2013 Mathematik Geometrie V
Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die
Abitur 2011 G8 Abitur Mathematik Geometrie VI
Seite http://www.abiturloesung.de/ Seite Abitur 0 G8 Abitur Mathematik Geometrie VI In einem kartesischen Koordinatensystem sind die Punkte A( 7 ), B(6 7 ) und C( ) gegeben. Teilaufgabe a (4 BE) Weisen
Ebenen in Normalenform
Ebenen in Normalenform Normalenvektoren und Einheitsvektoren Definition Normalenvektor Ein Normalenvektor einer Ebene ist ein Vektor, der senkrecht auf einer Ebene steht (siehe Seite 12). Berechnung eines
Bayern Aufgabe 1. Abitur Mathematik: Musterlösung. V = 1 G h, wobei G die Fläche des quadratischen Bodens und h die Höhe V = = 384 [VE]
Abitur Mathematik: Bayern 2 Aufgabe a). SCHRITT: KOORDINATEN DES PUNKTS B ANGEBEN 2 2 OB = OA + AB = OA + DC = ( ) + ( 2) = ( 2) B(2 2 ) 2. SCHRITT: VOLUMEN BERECHNEN V = G h, wobei G die Fläche des quadratischen
13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01
. Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:
Analytische Geometrie
Analytische Geometrie Allg Gymnasien: ab J1 / Q1 Berufl Gymnasien: ab Klasse 12 Alexander Schwarz August 2018 1 Aufgabe 1: a) Bestimme den Abstand des Punktes R(-/9/-1) von der Geraden g: b) Berechne den
FOS 1995, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II
Aufgabenstellung In einem kartesischen Koordinatensystem sind die Punkte A( ), B( 3) und C( 3) gegeben.. Die Punkte A und B bestimmen die Gerade g. Die Ebene E enthält den Punkt C und steht senkrecht auf
Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra
A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische
Grundkursabitur 2011 Analytische Geometrie Aufgabe III. In einem kartesischen Koordinatensystem sind die Punkte A 3 0 0,,
Grundkursabitur 2011 Analytische Geometrie Aufgabe III In einem kartesischen Koordinatensystem sind die Punkte A 0 0,, B 0 0 C 0 und S 0 0 6 gegeben. 1. a) Das Dreieck ABC liegt in der x 1 x 2 -Ebene.
Teilaufgabe 1 (2 BE) Geben Sie die Koordinaten der beiden Eckpunkte A und C sowie die Spitze S an. C c T C ( )
Abschlussprüfung Berufliche Oberschule 1 Mathematik 1 Technik - B I - Lösung Vor dem Louvre, dem berühmten Pariser Kunstmuseum, wurde im Jahre 1989 eine Glaspyramide erbaut, welche den unterirdisch liegenden
Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg
Baden-Württemberg: Abitur 14 Wahlteil B www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 14 (ohne CAS) Baden-Württemberg Wahlteil Analytische Geometrie / Stochastik Hilfsmittel: GTR und Formelsammlung
Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.
Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel
Parameter Das Buch Inhaltsverzeichnis Stichwortverzeichnis Aufgaben zum Selberrechnen Die Strukturierung
Das Buch: Dieses Kapitel ist Teil eines Buches. Das vollständige Buch können Sie unter www.mathe-laden.de bestellen (falls Sie das möchten). Sie werden in diesem Buch ein paar Sachen finden, die nicht
Lernkarten. Analytische Geometrie. 6 Seiten
Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf
Kursstufe K
Kursstufe K 6..6 Schreiben Sie die Ergebnisse bitte kurz unter die jeweiligen Aufgaben, lösen Sie die Aufgaben auf einem separaten Blatt. Aufgabe : Berechnen Sie das Integral Lösungsvorschlag : exp(3x
Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion
Übungen Mathematik I, M
Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0).0.0. Berechnen Sie unter Verwendung des binomischen Lehrsatzes ( x + y) 7 Lösung: Nach dem binomischen Lehrsatz ist ( x + y) 7 = 7
1 lineare Gleichungssysteme
Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x
(Quelle Landungsbildungsserver BW) (Quelle Landungsbildungsserver BW)
Aufgabe M01 Lösen Sie das lineare Gleichungssystem 7 2 2 3 5 4 4 7 Aufgabe M02 14 Stellen Sie den Vektor 5 als Linearkombination der drei Vektoren 7 0 1 5 1, 3 und 2 dar. 3 7 2 Aufgabe M03 0 2 Gegeben
Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen)
Anwendungsaufgaben zur Vektorrechnung (Abstände bestimmen) 1) a) Ein Flugzeug fliegt von A(4; 2; 5) nach B(12; 6; 10). In S(10; 10; 4,75) befindet sich die Spitze eines Berges. Wie weit fliegt das Flugzeug
Mögliche Lösung. Ebenen im Haus
Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung
Geometrie / Lineare Algebra
6 Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail: [email protected],
d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1
2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach
Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung
Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit
Philipp-Melanchthon-Gymnasium Bautzen Lk Mathematik Kl. 11. Schwerpunkt: Aufgaben ohne HM Abitur Sachsen
Übungen zur Analytischen Abitur 00 Die Punkte A( 0), B( 0) und C(5 0) sind Eckpunkte eines Rechtecks ABCD. Der Punkt S ist die Spitze einer geraden Pyramide mit dem Rechteck ABCD als Grundfläche und der
12. Jgst. 4. Kursarbeit Datum:
12. Jgst. 4. Kursarbeit Datum: 04.04.2017 Klasse: BGY LK 2 Fach: Mathematik (Leistungsfach) Thema: Analytische Geometrie; Punkte im R 3 ; Geraden/Ebenen; Lagebeziehungen; Winkel; Skalar- & Vektorprodukt;
Lösungen zum Thema Kreis & Kugel
Lösungen zur Aufg. : a r ; r 8 (,8 ; M M m m M M Dann gilt: r +r + 8 > M M und weiter: r r 8, < M M b Aus r r < M M
b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 a b = a 1 b 1 + a 2 b 2 + a 3 b 3
1. Rechnen mit Vektoren Skalarprodukt a b = a b cosα = a 1 a 2 a 3 b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 b a 1. Betrag = Länge eines Vektors: a = a a = a 2 1 + a 2 2 + a 2 3 2. Winkel zwischen 2 Vektoren:
Abstand Punkt/Ebene. x 50 = 0
Abstand Punkt/Ebene 1. Gegeben ist die Ebene E: ( ) x = Um den Abstand des Punktes P(2 ) zu E zu berechnen, gehen wir von der Hesseschen Normalenform der Ebenengleichung aus und bringen die Ebene zum Schnitt
Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren
Vektoren Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail:
Mathematik LK 12 M1, 3. KA LA I / Analytische Geometrie Lösung
Mathematik LK M,. KA LA I / Analytische Geometrie Lösung 6..7 Aufgabe : Rechnen mit Vektoren Berechne... und vereinfache das Ergebnis so weit wie möglich. Falls der Term keinen gültigen Ausdruck darstellt,
Lektionen zur Vektorrechnung
Die Homepage von Joachim Mohr Start Mathematik Lektionen zur Vektorrechnung in Aufgaben Diese Datei kann auch als PDF-Datei heruntergeladen werden. Download... Es handelt sich um " Basisaufgaben " der
Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden
Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der
Abitur 2011 G8 Musterabitur Mathematik Geometrie V
Seite http://www.abiturloesung.de/ Seite Abitur G Musterabitur Mathematik Geometrie V In einem kartesischen Koordinatensystem beschreibt die x x -Ebene eine flache Landschaft, in der sich ein Flughafen
a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche Aussagen auf eine Raute zutreffen.
und Klausuren: P.. 0 Raute und Pyramide Gegeben sind die Punkte A( 8 4 ), B(7 8 7) und C(7 6 5). a) Berechnen Sie einen Punkt D so, dass das Viereck ABCD eine Raute ist. (5 P) b) Kreuzen Sie an, welche
Abitur 2011 G8 Abitur Mathematik Geometrie V
Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Abitur Mathematik Geometrie V In einem kartesischen Koordinatensystem sind die Punkte A( 6 ), B( 8 6 6) und C( 8 6) gegeben. Teilaufgabe 1a (8
Formelsammlung Analytische Geometrie
Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..
Abstände und Zwischenwinkel
Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /
Analytische Geometrie Aufgaben und Lösungen
Analytische Geometrie Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. Januar Inhaltsverzeichnis Punkte:Vektor - Abstand - Steigung - Mittelpunkt. Aufgaben....................................................
Inhalt der Lösungen zur Prüfung 2011:
Inhalt der Lösungen zur Prüfung : Pflichtteil Wahlteil Analysis 7 Wahlteil Analysis Wahlteil Analysis 6 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 6 Pflichtteil Lösungen zur Prüfung
Durch Ausmultiplizieren von Gleichung (1) erhält man eine Gleichung der Form
49 9. Der Kreis 9.1 Die Koordinaten- und Parameterform der Kreisgleichung Def. Unter dem Kreis k mit Mittelpunkt M(u,v) und Radius R versteht man die Menge aller Punkte P(x,y) die von M den Abstand R haben,
Algebra 3.
Algebra 3 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A( 3), B( ) sowie für jedes a (a R) ein Punkt P a (a a a) gegeben. a) Zeigen Sie, dass alle Punkte
