Zweite und dritte Sitzung

Größe: px
Ab Seite anzeigen:

Download "Zweite und dritte Sitzung"

Transkript

1 Zweite und dritte Sitzung Mengenlehre und Prinzipien logischer Analyse

2 Menge Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohlunterschiedenen Objekten unserer Anschauung und unseres Denkens (welche die Elemente von M genannte werden) zu einem Ganzen. Listenschreibweise Die einzelnen Elemente werden in einer Liste aufgeführt, d.h., die Namen oder Kennzeichnungen aller Elemente der Menge werden aufgelistet, und in geschwungene Klammern ("{", "}") eingeschlossen.

3 Beispiel: {3, 5, 7, 8} Bei der Listenschreibweise ist es egal, in welcher Anordnung und wie oft sie aufgeführt und auf welche Weise die Elemente bezeichnet werden.

4 Identische Mengen sind z.b.: {1, 5, 7} {7, 1, 5} {1, 1, 5, 5, 5, 7} {kleinste natürliche Zahl, 25, Anzahl der Zwerge bei "Schneewittchen"} Prädikatschreibweise Wenn es nicht möglich oder unpraktisch ist, alle Elemente aufzuzählen, verwenden wir die Prädikatschreibweise, um uns auf Mengen zu beziehen. Hierfür bilden wir ein Prädikat, dem alle (und nur die) Elemente der Menge genügen sollen, und verwenden dieses Prädikat für die Bezeichnung der Menge.

5 Beispiele {x: x ist natürliche Zahl und x < 7} für die Menge {1, 2, 3, 4, 5, 6}. Teilmengenbeziehung Seien A und M Mengen. Genau dann, wenn jedes Element von A auch Element von M ist, sagen wir, dass A M, also dass A Teilmenge von M ist.

6 Beispiel {1, 2, 3} {1, 2, 3, 4, 5, 6, 7, 8, 9} {1, 2, 3} {2, 3, 4} {1, 2, 3} {1, 2, {3}} Operationen mit Mengen Die Menge A B = {x: x A oder x B} heißt die Vereinigung von A und B. A = {1, 2, 3}, B = {2, 3, 4}, A B = {1, 2, 3, 4}

7 Operationen mit Mengen Die Menge A B = {x: x A und x B} heißt Durchschnitt von A und B. A = {1, 2, 3}, B = {2, 3, 4}, A B = {2, 3} Operationen mit Mengen Die Menge A B = {x: x A und x B} heißt die Differenz von A und B. A = {1, 2, 3}, B = {2, 3, 4}, A B = {1}

8 Geordnetes Paar Im geordneten Paar ist die Anordnung der aufgeführten Gegenstände von Bedeutung. Angenommen <a, b> ist ein geordnetes Paar, und a b, dann soll auch gelten, dass die geordneten Paare <a, b> und <b, a> verschieden sind. Geordnetes Paar Wir können den Begriff des geordneten Paares definieren: <a, b> = df {{a}, {a, b}}

9 N-Tupel Unter Rückgriff auf geordnete Paare lassen sich weitere geordnete Objekte, nämlich Tripel und allgemeiner n-tupel definieren. N-Tupel <a 1, a 2, a 3,..., a n > = df <a 1, <a 2, <a 3,..., <a n 1, a n >...>.

10 Kartesische Produkte Die Menge aller geordneten Paare, deren erste Koordinaten Elemente aus A sind, und deren zweite Koordinaten Elemente aus B sind, heißt das kartesische Produkt von A und B, und wir schreiben dies als "A B". Beispiel A = {1, 2} B = {a, b, c} A B = {<1, a>, <1, b>, <1, c>, <2, a>, <2, b>, <2, c>}

11 Relationen Sei A B das kartesische Produkt von A und B. R ist eine zweistellige Relation über A B, gdw. R A B. Terminologie i) A nennen wir den Vorbereich der Relation, B den Nachbereich. ii) Sei R eine Relation, seien a und b Objekte. Wir sagen: "R trifft auf a und b zu" oder "a und b stehen in der Relation R" oder "arb" gdw. <a, b> R. iii) Wir sagen: "R ist eine Relation in A" gdw. R A A, wo A eine Menge ist.

12 Beispiel A = {1, 2}, B = {a, b}, A B = {<1, a>, <1, b>, <2, a>, <2, b>} R = {<1, a>, <1, b>, <2, a>} A ist der Vorbereich von R, B ist der Nachbereich. R trifft auf 1 und a zu. R trifft aber nicht auf 2 und b zu. N-stellige Relationen Seien A 1, A 2,..., A n Mengen. Das kartesische Produkt dieser Mengen ist dann A 1 A 2... A n. R ist eine n- stellige Relation über A 1 A 2... A n gdw. R A 1 A 2... A n.

13 Beispiel A = {1, 2}, B = {a, b}, C = {a,b} R = {<1, a, a>, <1, b, a>, <2, a, a>} Funktionen In Mathematik und Logik versteht man unter "Funktion" eine bestimmte Art der Zuordnung. Eine Funktion von A nach B ordnet jedem Element von A genau ein Element von B zu (anstatt "Funktion" sagt man auch "Abbildung").

14 Funktionen Eine Relation R mit Vorbereich V R und Nachbereich N R heißt funktional, gdw. für jedes x V R gilt: Es gibt genau ein y N R, so dass <x, y> R. Beispiel: A = {1, 2}, B = {a, b, c} R = {<1, a>, <2, c>}

15 A f = {<1, 5>, <2, 6>, <3, 7>} B A h = {<1, 5>, <2, 5>, <3, 7>} B

16 A B g = {<1, 5>, <2, 6>, <2, 7>, <3, 8> <3, 7>} Keine Funktion! A B i = {<1, 5>, <2, 6>, <7, 3>} Keine Funktion!

17 A B j = {<1, 5>, <2, 6>} Keine Funktion! Terminologie Sei f eine Funktion mit V f als Vorbereich und N f als Nachbereich. i) Wenn A = V f und B = N f, dann sagen wir, f sei eine Funktion von A nach B, und schreiben: f: A B

18 ii) Die Elemente des Vorbereichs nennt man die "Argumente der Funktion", die Elemente aus dem Nachbereich, die den Elementen des Vorbereichs unter f zugeordnet werden, nennt man die "Werte der Funktion". Den Vorbereich bezeichnet man deswegen auch als "Argumentbereich", den Nachbereich als "Wertebereich" von f. iii) Wenn x V f, dann schreiben wir für den Wert von x unter f "f(x)". iv) Die Menge aller Werte von f können wir mit "f(v f )" bezeichnen.

19 v) Mit der Idee der Funktion ist die Idee der Abhängigkeit verbunden. Wir denken uns den Funktionswert von dem Funktionsargument abhängig. Deswegen spricht man anstatt von "Funktion" auch von "funktionaler Abhängigkeit". Surjektion Sei f eine Funktion mit V f und N f : f(v f ) = N f. Die Funktion erfasst alle Elemente des Nachbereichs als Werte. Sie ist surjektiv oder eine Surjektion.

20 A B k = {<1, 5>, <2, 6>, <3,6>} k ist eine Funktion. k ist surjektiv. A B k* = {<1, 6>, <2, 6>, <3,6>} k* ist eine Funktion. k* ist nicht surjektiv.

21 Injektion Sei f eine Funktion mit V f und N f : Für alle x, y V f mit x y gilt: f(x) f(y). Wenn die Argumente von f verschieden sind, dann sind auch die Werte von f verschieden. Eine solche Funktion ist injektiv bzw. ist eine Injektion. A B k** = {<1, 5>, <2, 7>, <3,6>} k** ist eine Funktion. k** ist injektiv.

22 A B k*** = {<1, 5>, <2, 6>, <3,6>} k*** ist eine Funktion. k*** ist nicht injektiv. Bijektion Sei f eine Funktion mit V f und N f : f(v f ) = N f und für alle x, y V f mit x y gilt: f(x) f(y). Funktionen, die sowohl injektiv als auch surjektiv sind, nennt man bijektive Funktionen oder Bijektionen.

23 A B k**** = {<1, 5>, <2, 6>, <3,7>} k**** ist eine Funktion. k**** ist bijektiv. Beweis Ein Beweis einer Behauptung ist ein Argument oder eine Folge von Argumenten deren letzte Konklusion die zu erweisende Behauptung ist. Eine beweisende Argumentation muss zwei Bedingungen erfüllen:

24 1. endliche Länge Eine beweisende Argumentation muss endliche Länge haben, da eine unendliche lange Argumentation nicht hervorgebracht werden und deshalb auch nicht dazu verwendet werden kann, jemanden zu überzeugen. 2. Überprüfbarkeit Die einzelnen Schritte einer beweisenden Argumentation müssen für die Person, die durch die Argumentation überzeugt werden soll, jeweils nachvollziehbar und überprüfbar sein. Dazu muss klar gemacht werden, wie die einzelnen Schritte des Beweises gerechtfertigt sind.

25 Beispiel (hart an der Trivialität) Sei M = N. Es ist zu zeigen "M N". D.h. es ist zu zeigen, dass jedes Element von M auch ein Element von N ist (Def. der Teilmengenbeziehung). Beweis: Sei a ein beliebiges Element aus M. Da M = N, und laut Extensionalitätsprinzip zwei Mengen genau dann identisch sind, wenn sie dieselben Elemente haben, ist a auch Element von N. Da a beliebig gewählt ist, gilt dies für alle Elemente aus M. Es gilt also M N. QED Prinzipien logischer Analyse Wir werden die natürliche Sprache nur so weit betrachten können, als in ihr drei Prinzipien nicht verletzt werden, nämlich das Kontextinvarianzprinzip, das Prinzip der Wahrheitsfunktionalität und das Prinzip der Extensionalität.

26 Kontextinvarianzprinzip Die Ausdrücke, die in Sätzen vorkommen, insbesondere die Eigenschaftswörter und Eigennamen, beziehen sich überall, wo sie vorkommen auf dasselbe; d.h., das, worauf sie sich beziehen, variiert nicht mit dem (sprachlichen oder außersprachlichen) Kontext, in dem die Ausdrücke verwendet werden. Eine mehrdeutige Verwendung von Ausdrücken wird damit ausgeschlossen. Only man are rational beings. No woman is a man. No woman is a rational being.

27 Kein Kind sollte arbeiten müssen. Jeder ist ein Kind von jemandem. Niemand sollte arbeiten müssen. Ebenso schließt das Kontextinvarianzprinzip alle Sätze aus unserer Betrachtung aus, deren Wahrheit und Falschheit davon abhängen, von wem, an welchem Ort und zu welcher Zeit sie verwendet werden.

28 Sätze mit indexikalischen Ausdrücken wie "Ich studiere die Beziehung der logischen Folgerung", "Heute ist schönes Wetter", und "Dort steht ein Stuhl" werden somit aus unserer Betrachtung ausgeschlossen. Extensionalitätsprinzip Der Wahrheitswert eines Satzes hängt in funktionaler Weise davon ab, worauf sich in ihm vorkommende Teilausdrücke beziehen.

29 Das Prinzip der Extensionalität lässt sich folgendermaßen erläutern: Wenn ich in einem Satz S einen Ausdruck A durch einen anderen Ausdruck A' ersetze, der sich auf dasselbe bezieht wie A, dann ist der Wahrheitswert des resultierenden Satzes S' derselbe wie der von S. Beispiel: Superman = Clark Kent S: Superman liebt Lois Lane (wahr) A: Superman, A': Clark Kent S': Clark Kent liebt Lois Lane (wahr) Extensionalitätsprinzip nicht verletzt.

30 Wahrheitsfunktionalitätsprinzip Der Wahrheitswert eines Satzes hängt in funktionaler Weise von den Wahrheitswerten seiner Teilsätze ab. Das Prinzip der Wahrheitswertfunktionalität lässt sich in folgender Weise erläutern: Wenn ich in einem Satz S einen Teilsatz T durch einen anderen Teilsatz T' ersetze, der denselben Wahrheitswert hat wie T, dann ist der Wahrheitswert des resultierenden Satzes S' derselbe wie der von S.

31 Beispiel: S: Superman liebt Lois Lane und Batman ist stärker als Micky Maus. (w) T: Batman ist stärker als Micky Maus (w) T': Frege ist Logiker (w) S': Superman liebt Lois Lane und Frege ist Logiker (w) Weitere Erläuterung der drei Prinzipien Zunächst betrachten wir einen Fall auf den alle drei Prinzipien zutreffen: Superman ist mit Clark Kent identisch und Superman bekommt von Kryptonit Migräne.

32 Superman ist mit Clark Kent identisch und Superman bekommt von Kryptonit Migräne. Das Kontextinvarianzprinzip trifft hier zu, denn der Name "Superman" bezeichnet eine bestimmte Person und zwar immer dieselbe. Der Name kommt zweimal vor und beide male bezeichnet er dasselbe. Superman ist mit Clark Kent identisch und Superman bekommt von Kryptonit Migräne. Das Wahrheitsfunktionalitätsprinzip trifft zu: Wenn wir den Teilsatz vor oder nach dem "und" durch irgendeinen anderen wahren Satz ersetzen, dann ist der resultierende Satz wieder wahr.

33 Superman ist mit Clark Kent identisch und Superman bekommt von Kryptonit Migräne. Auch das Extensionalitätsprinzip trifft zu: Es ist der Fall, dass der Wahrheitswert des ganzen Satzes in funktionaler Weise davon abhängt, was "Superman" bezeichnet. D.h. der Wahrheitswert bleibt erhalten, wenn wir im zweiten Teilsatz das Vorkommnis von "Superman" durch ein Vorkommnis von "Clark Kent" ersetzen. Beispiel: S: Lex Luthor fürchtet, dass er Superman unterlegen ist (wahr)

34 Superman ist Clark Kent (wahr) P: Lex Luthor ist Superman unterlegen. (wahr) A: Superman, A': Clark Kent P': Lex Luthor ist Clark Kent unterlegen. (wahr)

35 S': Lex Luthor fürchtet, dass er Clark Kent unterlegen ist. (falsch) Obzwar sowohl im Satz S wie auch im Satz S' die jeweiligen Teilsätze wahr sind, unterscheiden sich die resultierenden Sätze im Wahrheitswert. Das Prinzip der Wahrheitsfunktionalität scheint damit verletzt zu sein, da der Wahrheitswert des gesamten Satzes nicht in funktionaler Weise von den Wahrheitswerten der Teilsätze abzuhängen scheint.

36 Wie steht's mit Kontextinvarianz- und Extensionalitätsprinzip? Angenommen das Kontextinvarianzprinzip gilt. Das, was die Ausdrücke in S und S' bezeichnen, variiert also nicht mit dem Kontext. Die Ausdrücke sind nicht mehrdeutig. Der ursprüngliche Satz S wurde als wahr angenommen; ein Name in ihm wurde durch einen anderen Namen ersetzt, der dasselbe bezeichnet. Das Ersetzungsresultat S' ist ein falscher Satz. D.h.: der Wahrheitswert von S' hängt nicht in funktionaler Weise davon ab, was die in ihm vorkommenden Ausdrücke bezeichnen. Also ist das Extensionalitätsprinzip verletzt!

37 Angenommen das Extensionalitätsprinzip gilt. Es besteht also eine funktionale Abhängigkeit des Wahrheitswertes von S' davon, worauf sich die Teilausdrücke beziehen. Dann muss aber der Name "Clark Kent" in S' etwas anderes bezeichnen als den berühmten Superhelden vom Krypton. D.h. das Kontextinvarianzprinzip wird verletzt.

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

1 Aussagenlogik und Mengenlehre

1 Aussagenlogik und Mengenlehre 1 Aussagenlogik und engenlehre 1.1 engenlehre Definition (Georg Cantor): nter einer enge verstehen wir jede Zusammenfassung von bestimmten wohl unterschiedenen Objekten (m) unserer Anschauung oder unseres

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

y(p F x) gebunden und in den Formeln F xy

y(p F x) gebunden und in den Formeln F xy Wirkungsbereich (Skopus) eines Quantors i bzw. i nennen wir die unmittelbar auf i bzw. i folgende Formel. Wir sagen, eine IV i kommt in einer Formel A gebunden vor, wenn sie unmittelbar auf oder folgt

Mehr

Zusammenhänge präzisieren im Modell

Zusammenhänge präzisieren im Modell Zusammenhänge präzisieren im Modell Dr. Roland Poellinger Munich Center for Mathematical Philosophy Begriffsfeld Logik 1 Mathematik und Logik Die Mathematik basiert auf logisch gültigen Folgerungsschritten

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik Einheit 1 Mathematische Methodik 1. Problemlösen 2. Beweistechniken 3. Wichtige Grundbegriffe Methodik des Problemlösens Klärung der Voraussetzungen Welche Begriffe sind zum Verständnis

Mehr

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Markus Lohrey Universität Siegen Wintersemester 2014/2015 Lohrey (Universität Siegen) Diskrete Mathematik Wintersem. 2014/2015 1 / 344 Organisatorisches zur Vorlesung

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

5 Logische Programmierung

5 Logische Programmierung 5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will?

Logik und Mengenlehre. ... wenn man doch nur vernünftig mit Datenbanken umgehen können will? Mengenlehre und Logik: iederholung Repetitorium: Grundlagen von Mengenlehre und Logik 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 arum??? arum um alles in der elt muss man sich mit herumschlagen,......

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Satzbedeutung. Ludwig Wittgenstein. Satzbedeutung. Satzbedeutung

Satzbedeutung. Ludwig Wittgenstein. Satzbedeutung. Satzbedeutung Was bisher geschah Semantik III Gerrit Kentner Semantik I lexikalische Semantik Ambiguitäten Sinnrelationen (vertikal und horizontal) Wortfelder / semantische Merkmale Semantik II Intension und Extension

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

Wie löst man Mathematikaufgaben?

Wie löst man Mathematikaufgaben? Wie löst man Mathematikaufgaben? Manfred Dobrowolski Universität Würzburg Wie löst man Mathematikaufgaben? 1 Das Schubfachprinzip 2 Das Invarianzprinzip 3 Das Extremalprinzip Das Schubfachprinzip Verteilt

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

5. Übungsblatt (Musterlösung)

5. Übungsblatt (Musterlösung) Universität Konstanz Mathematische Grundlagen der Informatik Fachbereich Informatik & Informationswissenschaft WS 2015/2016 Prof. Dr. Sven Kosub / Dominik Bui, Franz Hahn, Fabian Sperrle 5. Übungsblatt

Mehr

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012)

Analysis 1. Delio Mugnolo. delio.mugnolo@uni-ulm.de. (Version von 18. Dezember 2012) Analysis 1 Delio Mugnolo delio.mugnolo@uni-ulm.de (Version von 18. Dezember 2012) 2 Dies ist das Skript zur Vorlesung Analysis 1, welche ich im Sommersemester 2012 an der Universität Ulm gehalten habe.

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Luise Unger In LATEX gesetzt von Luise Unger Mathematische Grundlagen Kurseinheit 1: Grundlagen 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 777 7 77 7777777 77777 7 77 7 7 7 7 7 7 77777777777

Mehr

Eine mathematische Reise ins Unendliche. Peter Koepke Universität Bonn

Eine mathematische Reise ins Unendliche. Peter Koepke Universität Bonn Eine mathematische Reise ins Unendliche Peter Koepke Universität Bonn Treffen sich die Schienen im Unendlichen? Gibt es unendlich ferne Punkte? Gibt es unendliche Zahlen? 1 Antwort: Nein! , so prostestire

Mehr

4. Abbildung / Funktion

4. Abbildung / Funktion 4. Abbildung / Funktion In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Eingangsgröße, Funktionsargument, unabhängige Variable,

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Die quadratische Gleichung und die quadratische Funktion

Die quadratische Gleichung und die quadratische Funktion Die quadratische Gleichung und die quadratische Funktion 1. Lösen einer quadratischen Gleichung Quadratische Gleichungen heißen alle Gleichungen der Form a x x c = 0, woei a,, c als Parameter elieige reelle

Mehr

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer:

Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09 Lineare Algebra I HP Butzmann Vorlesung im HWS 09 Inhaltsverzeichnis 1 Mengen und Abbildungen 2 2 Körper 15 3 Vektorräume 40 4 Basis und Dimension 53 5 Lineare Abbildungen 67 6 Matrizen 80 7 Lineare Gleichungssysteme

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Zur Definition von Definition Albert J. J. Anglberger, Peter Brössel

Zur Definition von Definition Albert J. J. Anglberger, Peter Brössel Zur Definition von Definition Albert J. J. Anglberger, Peter Brössel Zusammenfassung Wir werden in dieser Arbeit zwei neue Definitionsvorschläge von Definition entwickeln, die folgende Eigenschaften aufweisen:

Mehr

Interpretationskurs: Das menschliche Wissen Zweifel und Sicherheit (Descartes; Übersicht zur Sitzung am 24.10.2011)

Interpretationskurs: Das menschliche Wissen Zweifel und Sicherheit (Descartes; Übersicht zur Sitzung am 24.10.2011) TU Dortmund, Wintersemester 2011/12 Institut für Philosophie und Politikwissenschaft C. Beisbart Interpretationskurs: Das menschliche Wissen Zweifel und Sicherheit (Descartes; Übersicht zur Sitzung am

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Von der Metaethik zur Moralphilosophie: R. M. Hare Der praktische Schluss/Prinzipien Überblick zum 26.10.2009

Von der Metaethik zur Moralphilosophie: R. M. Hare Der praktische Schluss/Prinzipien Überblick zum 26.10.2009 TU Dortmund, Wintersemester 2009/10 Institut für Philosophie und Politikwissenschaft C. Beisbart Von der Metaethik zur Moralphilosophie: R. M. Hare Der praktische Schluss/Prinzipien Überblick zum 26.10.2009

Mehr

Kapitel 1: Einführung und formale Grundlagen

Kapitel 1: Einführung und formale Grundlagen Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Informatik I Wintersemester 2006 Kapitel 1: Einführung und formale Grundlagen

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler)

Handreichung. zur Mathematikvorlesung für. Wirtschaftswissenschaftler) 1 Handreichung zur Mathematikvorlesung für Wirtschaftswissenschaftler) Dr.Dr. Christina Schneider 2 Hinweis Das vorliegende Manuskript versteht sich als kurze und kompakte Handreichung zu meiner Vorlesung

Mehr

Qualitative Datenanalyse

Qualitative Datenanalyse Qualitative Datenanalyse Prof. Dr. Stefan E. Schmidt Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra SS 2007 28. September 2008 Inhaltsverzeichnis Kapitel 1 Formale Begriffsanalyse 1

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Mathematische Maschinen

Mathematische Maschinen Mathematische Maschinen Ziel: Entwicklung eines allgemeinen Schemas zur Beschreibung von (mathematischen) Maschinen zur Ausführung von Algorithmen (hier: (partiellen) Berechnungsverfahren). Mathematische

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

6.2 Perfekte Sicherheit

6.2 Perfekte Sicherheit 04 6.2 Perfekte Sicherheit Beweis. H(B AC) + H(A C) = H(ABC) H(AC) + H(AC) H(C) Wegen gilt Einsetzen in die Definition gibt = H(AB C). H(A BC) = H(AB C) H(B C). I(A; B C) = H(A C) H(AB C) + H(B C). Da

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies

Kapitel 7 Dr. Jérôme Kunegis. Logische Kalküle. WeST Web Science & Technologies Kapitel 7 Dr. Jérôme Kunegis Logische Kalküle WeST Web Science & Technologies Lernziele Grundideen des Domain-Relationenkalküls (DRK) und des Tupel-Relationenkalküls (TRK) Relationale Datenbank als Formelmenge

Mehr

Cantor sches Diagonalverfahren Von Mengen, Unendlichkeiten und Wahnsinn

Cantor sches Diagonalverfahren Von Mengen, Unendlichkeiten und Wahnsinn Cantor sches Diagonalverfahren Von Mengen, Unendlichkeiten und Wahnsinn Referatsskript Spezialklasse 03/04 Von Daniel Schliebner Andreas Oberschule Berlin Das Unendliche hat wie keine andere Frage von

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

4 Semantik von Nominalphrasen

4 Semantik von Nominalphrasen 4 Semantik von Nominalphrasen 4 Semantik von Nominalphrasen 4.1 Nominalphrasen und Determinatoren Eigennamen quantifizierende NPn und definite NPn die neben anderen natürlichsprachlichen Ausdrücken zur

Mehr

Diana Lange. Generative Gestaltung Operatoren

Diana Lange. Generative Gestaltung Operatoren Diana Lange Generative Gestaltung Operatoren Begriffserklärung Verknüpfungsvorschrift im Rahmen logischer Kalküle. Quelle: google Operatoren sind Zeichen, die mit einer bestimmten Bedeutung versehen sind.

Mehr

E I N F A C H E W A H R H E I T E N. Was ist richtig? Was ist falsch? Fragen an die Wähler. Copyright BUTTER. Agentur für Werbung GmbH www.butter.

E I N F A C H E W A H R H E I T E N. Was ist richtig? Was ist falsch? Fragen an die Wähler. Copyright BUTTER. Agentur für Werbung GmbH www.butter. . Was ist richtig? Was ist falsch? Fragen an die Wähler. Was ist richtig. Was ist falsch? Oft hört man den Satz, dass sozialdemokratische Antworten eben komplizierter seien als konservative. Aber ist das

Mehr

Null-Werte in Relationalen Datenbanken

Null-Werte in Relationalen Datenbanken Seminar: Imperfektion in Datenbanken WS03/04 Null-Werte in Relationalen Datenbanken Thomas Bierhance Einführung Null-Werte in DBen sind notwendiges Übel, da... (1) das Wissen über die tatsächliche Welt

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Semantic Web Technologies I!

Semantic Web Technologies I! www.semantic-web-grundlagen.de Semantic Web Technologies I! Lehrveranstaltung im WS11/12! Dr. Elena Simperl! DP Dr. Sebastian Rudolph! M.Sc. Anees ul Mehdi! www.semantic-web-grundlagen.de Logik Grundlagen!

Mehr

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen.

1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen. I.2. I.2. Grundlagen von von Programmiersprachen. 1. Der Begriff Informatik 2. Syntax und Semantik von Programmiersprachen I.2. I.2. Grundlagen von von Programmiersprachen. - 1 - 1. Der Begriff Informatik "Informatik" = Kunstwort aus Information und Mathematik

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join Parsen der Anfrage (SQL) Transformation in eine Standardform (Relationenalgebra) Logische Optimierung Transformation in alternative Zugriffspläne, Physische Optimierung Ausführung des gewählten Zugriffsplans

Mehr

Aussagenlogik Schnelldurchlauf

Aussagenlogik Schnelldurchlauf Aussagelogik Schelldurchlauf Michael Leuschel Softwaretechik ud Programmiersprache Lecture 3 Teil 1: Sprache (Sytax) Bestadteile Atomare Aussage (atomic propositios) Etweder wahr oder falsch (Wahrheitswert,

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Datenbanken: Relationales Datenbankmodell RDM

Datenbanken: Relationales Datenbankmodell RDM Das RDM wurde in den 70'er Jahren von Codd entwickelt und ist seit Mitte der 80'er Jahre definierter Standard für Datenbanksysteme! Der Name kommt vom mathematischen Konzept einer Relation: (Sind A, B

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati René Descartes Meditationen Erste Untersuchung INHALTSVERZEICHNIS 1 EINLEITUNG 3 1.1 PROBLEMSTELLUNG 3 1.2 ZIELSETZUNG

Mehr

Prädikatenlogik - Micromodels of Software

Prädikatenlogik - Micromodels of Software Prädikatenlogik - Micromodels of Software Philipp Koch Seminar Logik für Informatiker Universität Paderborn Revision: 30. Mai 2005 1 Inhaltsverzeichnis 1 Motivation 3 2 Modelle 3 2.1 Definition eines Modells.......................

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

6.2 Petri-Netze. kommunizierenden Prozessen in der Realität oder in Rechnern Verhalten von Hardware-Komponenten Geschäftsabläufe Spielpläne

6.2 Petri-Netze. kommunizierenden Prozessen in der Realität oder in Rechnern Verhalten von Hardware-Komponenten Geschäftsabläufe Spielpläne 6.2 Petri-Netze WS 06/07 mod 621 Petri-Netz (auch Stellen-/Transitions-Netz): Formaler Kalkül zur Modellierung von Abläufen mit nebenläufigen Prozessen und kausalen Beziehungen Basiert auf bipartiten gerichteten

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007.

Zahlentheorie. Daniel Scholz im Winter 2006 / 2007. Überarbeitete Version vom 7. September 2007. Zahlentheorie Daniel Scholz im Winter 2006 / 2007 Überarbeitete Version vom 7. September 2007. Inhaltsverzeichnis 1 Einleitung und Grundlagen 4 1.1 Einleitung............................. 4 1.2 Zahlensysteme..........................

Mehr

hhhhdirk-michael lambertusinesscoaching24.com

hhhhdirk-michael lambertusinesscoaching24.com hhhhdirk-michael lambertusinesscoaching24.com Praxis-Report Copyright LAMBERT AKADEMIE GmbH www.internet-marketing-akademie.de Telefon: 06151-785 780 Fax: 06151-785 789 Email: info@lambert-akademie.de

Mehr