Ferienkurs Experimentalphysik Übung 4 - Musterlösung

Größe: px
Ab Seite anzeigen:

Download "Ferienkurs Experimentalphysik Übung 4 - Musterlösung"

Transkript

1 Ferienkurs Experimentalphysik 4 11 Übung 4 - Musterlösung 1. Übergänge im Wasserstoffatom (**) Ein Wasserstoffatom befindet sich im angeregten Zustand p und geht durch spontane Emission eines Photons in den Grundzustand 1s über. a) Berechnen Sie den Einsteinkoeffizienten für diesen Übergang für den Fall eines linear polarisierten Photons. Hinweise: Ψ nlml (r) = R nl (r)y lml (ϑ, ϕ), R 1 (r) = e r/a, R a 3/ 1 (r) = 1 re r/(a), 6a 5/ Y (ϑ, ϕ) = 1 3 4π, Y 1 (ϑ, ϕ) = cos ϑ, 4π dr r n e αr = n!. α n+1 b) Die mittlere Lebensdauer des p-zustands beträgt τ = 1.6 ns. Berechnen Sie die natürliche Breite für die Lyman-α-Linie (p 1s) und vergleichen Sie diese mit der Doppler-Breite bei Zimmertemperatur. c) Vergleichen Sie die sich aus b) ergebenden Breiten der Lyman-α-Linie (p 1s) mit der Hyperfeinstrukturaufspaltung (HFS) des Wasserstoffgrundzustandes, die durch die Wellenlänge λ = 1.1 cm zwischen den beiden F -Zuständen charakterisiert ist. Welche Temperatur muss erreicht werden, damit die HFS von einem idealen Spektrometer aufgelöst werden kann? Hinweis: Vernachlässigen Sie hierbei die Hyperfeinstruktur der p Energieniveaus d) Wie groß sind Übergangswahrscheinlichkeit und natürliche Linienbreite des Übergangs 3s p im Wasserstoffatom, wenn die Lebensdauer der Zustände τ(3s) = 3 ns und τ(p) =.1 µs betragen? Lösung a) Die Übergangswahrscheinlichkeit ist gemäß der Vorlesung gegeben durch A ik = e ωik 3 3 ε c 3 h M ik. Der p-zustand besitzt drei entartete m-komponenten (m =, ±1), da es sich jedoch laut Aufgabenstellung hier um ein linear polarisiertes Photon handelt, können wir uns auf m = beschränken. 1

2 Zunächst berechnen wir die einzelnen Komponenten des Matrixelements M ik = (M ik ) x + (M ik ) y + (M ik ) z mit Hilfe von Kugelkoordinaten. Man erhält (M ik ) x = (M ik ) y = (M ik ) z = ˆ ˆ ˆ ˆπ dr r 3 R 1 (r)r 1 (r) dϕ sin ϕ } {{ } = ˆπ dr r 3 R 1 (r)r 1 (r) dϕ cos ϕ ˆπ dr r 3 R 1 (r)r 1 (r) = 1 ˆ a 4 dr r 4 e 3 } {{ } =4!(a /3) 5 } {{ } = ˆπ r a ˆπ dϕ ˆπ ˆπ dϑ sin ϑy (ϑ, ϕ)y 1 (ϑ, ϕ) = dϑ sin ϑy (ϑ, ϕ)y 1 (ϑ, ϕ) = dϑ sin ϑ cos ϑy (ϑ, ϕ)y 1 (ϑ, ϕ) = dϑ sin ϑ cos ϑ } {{ } =/3 = 15/ 3 5 a Wir benötigen nun nur noch die Kreisfrequenz ω ik des emittierten Photons, welche sich mit Hilfe der Balmerformel für n = 1 und m = ( 1 E = ω = Ry* n 1 ) = 3 m 4 Ry* ω = π Hz berechnen lässt (Feinstruktur etc. kann hier vernachlässigt werden). Für die Übergangswahrscheinlichkeit erhalten wir letztendlich A ik = e a πε 4 c 3 Ry*3 = s 1. b) Der Zusammenhang zwischen der natürlichen Breite der Lyman-α-Linie und der Lebensdauer τ des p-zustandes ist gegeben durch ν nat = 1 πτ = 1 MHz. Für die Doppler-Verbreiterung ergibt sich gemäß der Formel aus der Vorlesung bei T = 93 K und der Frequenz ν die in a) berechnet wurde ν D = ν 8 ln kb T = 3.1 GHz 3 ν nat. c m H

3 c) Beim Übergang p 1s, können wir bei hinreichend guter Auflösung zwei Linien erkennen, jeweils für F = und F = 1 der HFS des 1s Energieniveaus. Damit die HFS aufgelöst werden kann, muss die Doppler-Verbreiterung kleiner sein als der Abstand zwischen den beiden Linien. ν c 8 ln kb T m H ν T m Hc 8 ln k B ( ) ν =.66 K. d) Der 3s-Zustand kann nur in den p-zustand zerfallen. Deshalb ist die Wahrscheinlichkeit für diesen Übergang Die natürliche Linienbreite ist ν nat = 1 π A ik = 1 τ(3s) = s 1. ( 1 τ(3s) + 1 τ(p) ν ) = 7 MHz.. Einsteinium und exotische Atome (**) a) Berechnen Sie für ein fast vollständig ionisiertes Einsteinium-Ion ( 54 99Es 98+ ) den Bahnradius und die Gesamtenergie im Grundzustand mit verschiedenen gebundenen Teilchen in der Hülle: i) Elektron ii) Myon (m µ 7m e ) iii) Anti-Proton b) Berechnen Sie für alle drei Fälle die Aufenthaltswahrscheinlichkeit im 1s- Zustand innerhalb des Kernvolumens (R K 1.1 fm A 1/3 ). α Hinweise: R 1 (r) = 3 αr e mit α = Z/r B (Bahnradius r B ), Ŕ ( ) dr r e αr = e αr R + R + +. α α α 3 α 3 Lösung a) Mit den Relationen r n = n Z a mit a.5 Å, E n = Z Ry* mit Ry* 13.6 ev n 3

4 aus der Verlosung erhält man für n = 1 und Z = 99 für die verschiedenen Teilchen folgende Ergebnisse: i) Elektron ii) Myon (m µ 7m e ) iii) Anti-Proton a e = a, Ry* e = Ry*, r e 1( 54 99Es 98+ ) = n Z a = m, E1( e 54 99Es 98+ ) = Z Ry* = 133 kev. n a µ = m e m µ a, Ry* µ = m µ m e Ry*, r µ 1 ( 54 99Es 98+ ) = m e m µ n Z a = m, E µ 1 ( 54 99Es 98+ ) = m µ Z Ry* = 7 MeV. m e n a p = m e a, m p Ry* p = m p m e Ry*, r p 1 ( 54 99Es 98+ ) = m e n m p Z a = m, E p 1 ( 54 99Es 98+ ) = m p Z Ry* =.4 GeV. m e n b) Die radiale Aufenthaltswahrscheinlichkeit erhält man durch Integration bis zum Kernrand: ˆR ˆR P 1 (R) = dr r R 1 (r) = α3 dr r e αr = ( ) α = 1 e αr R + αr + 1. Der Kernradius berechnet sich zu R = / m = m. Mit den in a) berechneten Bahnradien ergeben sich somit für die drei Teilchen folgende Aufenthaltswahrscheinlichkeiten innerhalb des Kerns: P e 1(R) =.53, P µ 1(R) 1, P p 1 (R) 1. Sowohl das Myon als auch das Anti-Proton befinden sich also vollständig im Kern! 4

5 3. Schwingungs-Rotations-Übergänge von HCl (**) Wir betrachten ein zweiatomiges Molekül und lassen sowohl Schwingung als auch Rotation zu. Die Energie der Schwingungs-Rotationszustände beträgt dann ( E = E vib + E rot = ω ν + 1 ) + hcbj(j + 1) mit ν =, 1,... und j = 1,,... Die Schwingungsenergie ist dabei um ein Vielfaches größer als die Rotationsenergie. Im Energiespektrum gehört deshalb zu jedem Schwingungszustand eine Gruppe von Rotationszuständen. a) Skizzieren Sie das Energieniveausschema für ν = 1, und j =, 1,, 3 und zeichnen Sie die Absorptionsübergänge zwischen den Schwingungs-Rotations- Zuständen ein. Die Auswahlregeln für diese Übergänge sind ν = ±1, j = ±1. Abb. 1: Infrarottransmissionsspektrum von HCl. b) Abb. 1 zeigt das Infrarottransmissionsspektrum von Salzsäuredampf (HCl). Wie man erkennt zerfällt es in zwei Teile, einen sogenannten P-Zweig und einen R-Zweig. Ordnen Sie die Peaks im Transmissionsspektrum den Übergängen in ihrem Energieniveauschema gemäß der angegebenen Nomenklatur zu (R(), R(1),..., P(1), P(),...). Was charakterisiert P-Übergange/R- Übergänge? Warum ergibt sich im Spektrum eine Lücke? Welchem Übergang würde das entsprechen? Wie groß ist demnach die Energie des ersten angeregten Vibrationszustandes? c) Berechnen Sie den mittleren Kernabstand R des HCl-Moleküls. Hinweis: m Cl = kg, m H = kg d) Bei genauer Betrachtung fällt auf, dass die Absorptions-Peaks eine Substruktur (Doppelpeak) haben. Wie erklären Sie diese Tatsache? 5

6 Lösung: a) Erlaubte Absorptionsübergänge: 3 E υ = 1 1 J 3 υ = R() R(1) R() P(1) P() P(3) 1 b) Aus dem Vergleich von Termschema umd Transmissionsspektrum erhält man: Im P-Zweig nimmt die Absorptionsenergie mit sinkendem j, im R-Zweig mit steigendem j zu. Im P-Zweig gilt j = 1, im R-Zweig j = +1. Der Übergang j = j = ist verboten. Deshalb fehlt im Spektrum diese Linie. Die Energie E = hc x des fehlenden Übergangs entspräche genau der Differenz E = ω zwischen Schwingungsgrundzustand und erstem angeregten Zustand. Die Energie des ersten angeregten Zustands beträgt E (1) vib = 3 ω = hc x =.54 ev. c) Der Kernabstand kann aus dem Energieintervall zwischen den Rotationspeaks bestimmt werden. Zwischen x 1 = 359 cm 1 und x = 65 cm 1 befinden sich 19 (näherungsweise) äquidistante Linien (inklusive des fehlenden Mittelpeaks). Der mittlere Abstand ist dann x = x 1 x =.4 cm 1. 6

7 Für die Energie beim Übergang zweier benachbarter Niveaus gilt E = [E(ν, j) E(ν 1, j 1)] [E(ν, j 1) E(ν 1, j )] = hcb = hc x. Über die Definition der Rotationskonstante B = /(4πcI) und dem Trägheitsmoment I = µr, wobei für reduzierte Masse µ = m Cl m H m Cl + m H = kg gilt, erhält man B = 4πcµR = x R = 1 h π cµ x 1.3 Å. d) Atomares Chlor kommt in der Natur in zwei Isotopen vor: 35 Cl (75.5%) und 37 Cl (4.5%). Der Massenunterschied führt zu unterschiedlichen Trägheitsmomenten und damit zu verschobenen Absorptionspeaks im Rotationsspektrum. 4. Moleküle im interstellaren Medium (**) In der Radio- und Infrarotastronomie beobachtet man u.a. auch Moleküllinien im interstellaren Medium. Aus diesen Beobachtungen können Rückschlüsse auf die galaktische Verteilung und Häufigkeit der Moleküle sowie auf Sternentstehungsgebiete und -mechanismen gezogen werden. a) Kohlenmonoxid 1 C 16 O emittiert beim Übergang vom ersten angeregten Rotationsniveau (J = 1) zum Grundzustand (J = ) eine Linie der Wellenlänge λ =.6 mm. Berechnen Sie die dazu gehörige Energie und den Abstand der beiden Atome im Molekül. b) Berechnen Sie die Energie und Frequenz des gleichen Übergangs auch für das Molekül 13 C 16 O sowie die relative Frequenzverschiebung. Hinweis: Nehmen Sie den gleichen Abstand R wie bei 1 C 16 O. Lösung: a) Mit der Formel für die Rotationsenergie aus der Verlosung E rot (J) = J(J + 1), I mit dem Trägheitsmoment I = µr, wobei die reduzierte Masse 7

8 µ = 1 u 16 u 1 u + 16 u 6.86 u beträgt, erhält man für die Energie des Übergangs von J = 1 nach J = E 1 = E rot (J = 1) E rot (J = ) = I = hc λ = E. Somit erhält man aus der Rotationskonstanten und dem Trägheitsmoment I = h 4π µr = hc R = 1 hλ 1.13 Å. λ π cµ b) Beim 13 C 16 O ändert sich im Vergleich zu 1 C 16 O nur die reduzierte Molekülmasse µ 13 = Damit ergibt sich für die Energie für die Frequenz 13 u 16 u 13 u + 16 u 7.17 u. E 13 = µ 1 µ 13 E ev, ν 13 = E 13 h und für die relative Frequenzverschiebung 111 GHz ν ν 1 = E E 1 = 1 µ 1 µ 13, 4. 8

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 4 Emission und Absorption elektromagnetischer Strahlung Stephan Huber, Markus Kotulla, Markus Perner 01.09.2011 Inhaltsverzeichnis 1 Emission und Absorption elektromagnetischer

Mehr

Dr. Jan Friedrich Nr

Dr. Jan Friedrich Nr Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 5 Dr. Jan Friedrich Nr. 4.7.5 Email Jan.Friedrich@ph.tum.de Telefon 89/89-586 Physik Department E8, Raum 564 http://www.e8.physik.tu-muenchen.de/teaching/phys4/

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4

FERIENKURS EXPERIMENTALPHYSIK 4 FERIENKURS EXPERIMENTALPHYSIK 4 Musterlösung 3 - Mehrelektronensysteme Hannah Schamoni 1 Hundsche Regeln Ein Atom habe die Elektronenkonfiguration Ne3s 3p 6 3d 6 4s. Leite nach den Hundschen Regeln die

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2)

Übungen Atom- und Molekülphysik für Physiklehrer (Teil 2) Übungen Atom- und Molekülphysik für Physiklehrer (Teil ) Aufgabe 38) Welche J-Werte sind bei den Termen S, P, 4 P und 5 D möglich? Aufgabe 39) Welche Werte kann der Gesamtdrehimpuls eines f-elektrons im

Mehr

Schwingungen (Vibrationen) zweiatomiger Moleküle

Schwingungen (Vibrationen) zweiatomiger Moleküle Schwingungen (Vibrationen) zweiatomiger Moleküle Das Molekülpotential ist die Potentialkurve für die Schwingung H 2 Molekül 0.0 2.5 4 5 6 H( 1s) + H( 3l ) Energie in ev 5.0 7.5 H( 1s) + H( 2l ) H( 1s)

Mehr

Ferienkurs Experimentalphysik 4 WS09/10. Übung 3: Musterlösung

Ferienkurs Experimentalphysik 4 WS09/10. Übung 3: Musterlösung Ferienkurs Experimentalphysik 4 WS09/10 1 Elektronenpotential Übung 3: Musterlösung Wie sieht das Potential für das zweite Elektron im He-Atom aus, wenn das erste Elektron durch eine 1s-Wellenfunktion

Mehr

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen

Dynamik von Molekülen. Rotationen und Schwingungen von Molekülen Rotationen und Schwingungen von Molekülen Schwingungen und Rotationen Bis jetzt haben wir immer den Fall betrachtet, daß die Kerne fest sind Was geschieht nun, wenn sich die Kerne bewegen können? Zwei

Mehr

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek

z n z m e 2 WW-Kern-Kern H = H k + H e + H ek 2 Molekülphysik Moleküle sind Systeme aus mehreren Atomen, die durch Coulomb-Wechselwirkungen Elektronen und Atomkerne ( chemische Bindung ) zusammengehalten werden. 2.1 Born-Oppenheimer Näherung Der nichtrelativistische

Mehr

FK Experimentalphysik 3, Lösung 4

FK Experimentalphysik 3, Lösung 4 1 Sterne als schwarze Strahler FK Experimentalphysik 3, 4 1 Sterne als schwarze Strahler Betrachten sie folgende Sterne: 1. Einen roten Stern mit einer Oberflächentemperatur von 3000 K 2. einen gelben

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

Theoretische Physik 4 - Blatt 1

Theoretische Physik 4 - Blatt 1 Theoretische Physik 4 - Blatt 1 Christopher Bronner, Frank Essenberger FU Berlin 21.Oktober.2006 Inhaltsverzeichnis 1 Compton-Effekt 1 2 Bohrsches Atommodell 2 2.1 Effektives Potential..........................

Mehr

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor.

Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten oder in Festkörpern vor. phys4.025 Page 1 13. Moleküle Nur eine kleine Anzahl von Elementen kommt natürlich in Form von einzelnen Atomen vor. Die meisten Elemente liegen in gebundener Form als einzelne Moleküle, in Flüssigkeiten

Mehr

Ferienkurs Experimentalphysik Probeklausur - Musterlösung

Ferienkurs Experimentalphysik Probeklausur - Musterlösung Ferienkurs Experimentalphysik 4 2010 Probeklausur - Musterlösung 1 Allgemeine Fragen a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt? b) Was

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Ferienkurs Experimentalphysik 4 - SS 2008

Ferienkurs Experimentalphysik 4 - SS 2008 Physik Departement Technische Universität München Karsten Donnay (kdonnay@ph.tum.de) Musterlösung latt 3 Ferienkurs Experimentalphysik - SS 28 1 Verständnisfragen (a) Was ist eine gute Quantenzahl? Was

Mehr

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2

mit n =1, 2, 3,... (27) Die gesuchten Wellenfunktionen sind Sinuswellen, deren Wellenlänge λ die Bedingung L = n λ 2 3FREIETEICHEN TEICHEN IM KASTEN 17 Somit kann man z. B. a = 2/ setzen. (Man könnte auch a = e iϕ 2/ wählen, mit beliebigem ϕ.) Damit sind die Energie- Eigenzustände des Teilchens im Kasten gegeben durch

Mehr

Physikalische Ursachen der Molekülbindung

Physikalische Ursachen der Molekülbindung Physikalische Ursachen der Molekülbindung Molekülbindungen können auf verschiedene Arten entstehen: gemeinsame Elektronen durch räumliche Umrodnung der W keitverteilung - - + + Verringerung der kinetischen

Mehr

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun

Die Rotationsterme werden im Folgenden wegen der geringen Auflösung des Gerätes nicht weiter betrachtet. Für kleine Schwingungsamplituden gilt näherun UV/VIS-Spektroskopie: Optische Bestimmung der Dissoziationsenergie von I 2 Es soll ein UV/VIS-Spektrum von Ioddampf aufgenommen werden. Daraus sollen die Bandensysteme der v 00 -Progressionen (v 00 = 0,

Mehr

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem

Cluster-Struktur in Kernen. Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Cluster-Struktur in Kernen Cluster: Aus mehr als einem Nukleon zusammengesetzten und identifizierbarem Subsystem Die Struktur von 11 Li Beim Aufbruch von 11 Li wird nicht nur ein Neutron herausgeschlagen

Mehr

Ferienkurs Experimentalphysik Probeklausur - Musterlösung

Ferienkurs Experimentalphysik Probeklausur - Musterlösung Ferienkurs Experimentalphysik 4 010 Probeklausur - Musterlösung 1 Allgemeine Fragen a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable eine Erhaltungsgröße darstellt? b) Was

Mehr

Ferienkurs Experimentalphysik Übung 2 - Musterlösung

Ferienkurs Experimentalphysik Übung 2 - Musterlösung Ferienkurs Experimentalphysik 4 211 Übung 2 - Musterlösung 1. Wasserstoffatom Die Wellenfunktionen für ein Elektron im Zustand 1s und 2s im Coulombpotential eines Kerns mit Kernladungszahl Z sind gegeben

Mehr

A. Mechanik (18 Punkte)

A. Mechanik (18 Punkte) Prof. Dr. A. Hese Prof. Dr. G. v. Oppen Dipl.-Phys. G. Hoheisel Dipl.-Phys. R. Jung Technische Universität Berlin Name: Vorname: Matr. Nr.: Fachbereich: Platz Nr.: Tutor: A. Mechanik (18 Punkte) 1. Wie

Mehr

a) Zählen Sie alle Symmetrieelemente dieser Moleküle auf und geben Sie ihre Punktgruppe an! (5 Punkte)

a) Zählen Sie alle Symmetrieelemente dieser Moleküle auf und geben Sie ihre Punktgruppe an! (5 Punkte) . Aufgabe Die folgenden Aufgaben beziehen sich auf die Moleküle: H H H H Sn Br C N H Pyridin, Z-Dichlorethen, Sn 4, CHBr und E-Dichlorethen. a) Zählen Sie alle Symmetrieelemente dieser Moleküle auf und

Mehr

Klausur zum Modul PC-3-P - Matrie und Strahlung

Klausur zum Modul PC-3-P - Matrie und Strahlung Klausur zum Modul PC-3-P - Matrie und Strahlung Nils Bartels 8. September 008 Formaldehyd 1 Spektroskopischer Nachweis von Formaldehyd in der Raumluft 1.1 Rotationsspektrum Die übergeordnete Auswahlregel

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

TC1 Grundlagen der Theoretischen Chemie

TC1 Grundlagen der Theoretischen Chemie TC1 Grundlagen der Theoretischen Chemie Irene Burghardt (burghardt@chemie.uni-frankfurt.de) Topic: Wasserstoffatom Vorlesung: Mo 1h-12h, Do9h-1h Übungen: Do 8h-9h Web site: http://www.theochem.uni-frankfurt.de/tc1

Mehr

Ferienkurs Experimentalphysik Lösung zur Übung 2

Ferienkurs Experimentalphysik Lösung zur Übung 2 Ferienkurs Experimentalphysik 4 01 Lösung zur Übung 1. Ermitteln Sie für l = 1 a) den Betrag des Drehimpulses L b) die möglichen Werte von m l c) Zeichnen Sie ein maßstabsgerechtes Vektordiagramm, aus

Mehr

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r

[ H, L 2 ]=[ H, L z. ]=[ L 2, L z. U r = Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2. r 1 2. y 2 2. z 2 = 2. r 2 2 r Warum haben wir soviel Zeit mit L 2 verbracht? = x 2 2 y 2 2 z 2 = 2 r 2 2 r r 1 2 L r 2 ħ 2 11. Das Wasserstoffatom H = p2 2 U r μ = Masse (statt m, da m später als Quantenzahl verwendet wird) U r = e2

Mehr

Einführung in die Schwingungsspektroskopie

Einführung in die Schwingungsspektroskopie Einführung in die Schwingungsspektroskopie Quelle: Frederik Uibel und Andreas Maurer, Uni Tübingen 2004 Molekülbewegungen Translation: Rotation: Die Bewegung des gesamten Moleküls ls in die drei Raumrichtungen.

Mehr

Dr. Jan Friedrich Nr

Dr. Jan Friedrich Nr Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 2005 Dr. Jan Friedrich Nr. 7 06.06.2005 Email Jan.Friedrich@ph.tum.de Telefon 089/289-2586 Physik Department E8, Raum 3564

Mehr

Dr. Jan Friedrich Nr Z 2. E n,z = µα2 n 2, n 2 E H und r µ n = µe

Dr. Jan Friedrich Nr Z 2. E n,z = µα2 n 2, n 2 E H und r µ n = µe Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 25 Dr. Jan Friedrich Nr. 8 2.6.25 Email Jan.Friedrich@ph.tum.de Telefon 89/289-2586 Physik Department E8, Raum 3564 http://www.e8.physik.tu-muenchen.de/teaching/phys4/

Mehr

Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie

Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie Bachelorstudiengang / Diplomstudiengang CBI - Teil Physikalische Chemie - WS0809 - Blatt 1 / 16 Klausur Bachelorstudiengang Prüfung Modul Physikalische Chemie und Thermodynamik Teil 1: Physikalische Chemie

Mehr

8 Das Wasserstoffatom

8 Das Wasserstoffatom 8DAS WASSERSTOFFATOM 41 Nomenklatur von Rotations-Vibrations-Übergängen. Bei den Spektroskopikern hat sich folgender Code eingebürgert: J := J J = 1 0 1 Code O P Q R S Hinter diese Buchstaben schreibt

Mehr

I. Physikalisches Institut der Justus-Liebig-Universität Giessen

I. Physikalisches Institut der Justus-Liebig-Universität Giessen I. Physikalisches Institut der Justus-Liebig-Universität Giessen Versuch 1.2 Bandenspektrum von Jod A. Aufgabenstellung Im Bereich von 500-600 nm soll die Absorption von Joddampf photoelektrisch registriert

Mehr

Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen

Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen Fakultät für Physik Institut für Experimentelle Kernphysik Musterlösung zur 2. Klausur zur Vorlesung Moderne Physik für Lehramtskandidaten, Geophysiker, Meteorologen und Ingenieurpädagogen Prof. Dr. U.

Mehr

J 2. Rotations-Spektroskopie. aus der klassischen Physik. Drehimpuls. Energie eines Rotators. Trägheitsmoment

J 2. Rotations-Spektroskopie. aus der klassischen Physik. Drehimpuls. Energie eines Rotators. Trägheitsmoment Rotations-Spektroskopie aus der klassischen Physik J E = I Drehimpuls Energie eines Rotators Trägheitsmoment I = mr Atommassen Geometrie von Molekülen Abstandsinformationen!!! C 3 -Rotation C -Rotation

Mehr

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen)

Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) KIT-Fakultät für Physik Institut für Experimentelle Kernphysik Prof. Dr. Günter Quast Priv. Doz. Dr. Roger Wolf Dr. Pablo Goldenzweig Übungen zu Moderne Experimentalphysik III (Kerne und Teilchen) Sommersemester

Mehr

2. Klausur zur Vorlesung Physikalische Chemie II - Wintersemester 02/ Februar 2003, Uhr

2. Klausur zur Vorlesung Physikalische Chemie II - Wintersemester 02/ Februar 2003, Uhr 2. Klausur zur Vorlesung Physikalische Chemie II - Wintersemester 02/03 07. Februar 2003, 10 15 -- 13 00 Uhr Name, Vorname:... Geburtsdatum, -ort:... Matrikelnummer:... Studienfach, Fachsemester:... Hinweise

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2013 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 6. Vorlesung, 16. 5. 2013 Molekülspektren, Normalkoordinaten, Franck-Condonprinzip,

Mehr

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 )

Federkraft: F 1 = -bx (b = 50 N/m) Gravitationskraft: F 2 = mg (g = 9,8 m/s 2 ) Aufgabe: Schwingung An eine Stahlfeder wird eine Kugel mit der Masse 500g gehängt. Federkraft: F 1 -b (b 50 N/m) Gravitationskraft: F mg (g 9,8 m/s ) m 500g F ma W 1 F( ) d W kin 1 mv b ( t + ϕ ) Acos(

Mehr

Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie

Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik. Teil 1: Physikalische Chemie Bachelorstudiengang / Diplomstudiengang CBI - Teil Physikalische Chemie - SS07 - Blatt 1 / 16 Klausur Bachelorstudiengang / Diplomstudiengang, Prüfung Modul Physikalische Chemie und Thermodynamik Teil

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

M. Musso: Physik II Teil 37 Moleküle Seite 1

M. Musso: Physik II Teil 37 Moleküle Seite 1 M. Musso: Physik II Teil 37 Moleküle Seite 1 Tipler-Mosca Physik Moderne Physik 37. Moleküle (Molecules) 37.1 Die chemische Bindung (Molecular bonding) 37. Mehratomige Moleküle (Polyatomic molecules) 37.3

Mehr

Fundamentale Physikalische Konstanten - Gesamtliste Relativer Größe Symbol Wert Einheit Fehler

Fundamentale Physikalische Konstanten - Gesamtliste Relativer Größe Symbol Wert Einheit Fehler UNIVERSELLE KONSTANTEN Vakuumlichtgeschwindigkeit c, c 0 299 792 458 m s 1 (exact) Magnetische Feldkonstante des Vakuums µ 0 4π 10 7 N A 2 (exact) =12.566 370 614... 10 7 N A 2 (exact) Elektrische Feldkonstante

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Betreuer Andreas Branding - 1 - Theorie Zur Erläuterung

Mehr

Einführung in die Spektroskopie für Studenten der Biologie

Einführung in die Spektroskopie für Studenten der Biologie Einführung in die Spektroskopie für Studenten der Biologie Jörg H. Kleinschmidt http://www.biologie.uni-konstanz.de/folding/home.html Literatur Banwell, C. N., Elaine M. McCash, Molekülspektroskopie. Ein

Mehr

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom

7. Das Bohrsche Modell des Wasserstoff-Atoms. 7.1 Stabile Elektronbahnen im Atom phys4.08 Page 1 7. Das Bohrsche Modell des Wasserstoff-Atoms 7.1 Stabile Elektronbahnen im Atom Atommodell: positiv geladene Protonen (p + ) und Neutronen (n) im Kern negative geladene Elektronen (e -

Mehr

Experimentelle Physik II

Experimentelle Physik II Experimentelle Physik II Sommersemester 08 Vladimir Dyakonov (Lehrstuhl Experimentelle Physik VI) VL#8 07-05-2008 Tel. 0931/888 3111 dyakonov@physik.uni-wuerzburg.de Experimentelle Physik II 2. Rotationen

Mehr

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie

Klausur Bachelorstudiengang CBI / LSE. Physikalische Chemie Bachelorstudiengang CBI / LSE - Teil Physikalische Chemie SS10 - Blatt 1 / 15 Klausur Bachelorstudiengang CBI / LSE Physikalische Chemie 27.09.2010 Name: Vorname: geb. am: in: Studienfach: Matrikelnummer:

Mehr

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17.

Kerne und Teilchen. Aufbau der Kerne (1) Moderne Experimentalphysik III Vorlesung 17. Kerne und Teilchen Moderne Experimentalphysik III Vorlesung 17 MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Aufbau der Kerne (1) KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur

VL Spin-Bahn-Kopplung Paschen-Back Effekt. VL15. Wasserstoffspektrum Lamb Shift. VL16. Hyperfeinstruktur VL 16 VL14. Spin-Bahn-Kopplung (III) 14.1. Spin-Bahn-Kopplung 14.2. Paschen-Back Effekt VL15. Wasserstoffspektrum 15.1. Lamb Shift VL16. Hyperfeinstruktur 16.1. Hyperfeinstruktur 16.2. Kernspinresonanz

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie

Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Ferienkurs Quantenmechanik I WKB-Näherung und Störungstheorie Sebastian Wild Freitag, 6.. Inhaltsverzeichnis Die WKB-Näherung. Grundlegendes............................. Tunnelwahrscheinlichkeit.......................

Mehr

Emission und Absorption von elektromagnetischer Strahlung durch Atome

Emission und Absorption von elektromagnetischer Strahlung durch Atome Kapitel 4 Emission und Absorption von elektromagnetischer Strahlung durch Atome Bisher wurden vor allem stationäre Atomzustände beschrieben, die für Einelektronensysteme durch eine Wellenfunktion ψ n,l,ml,m

Mehr

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0)

11.2 Störungstheorie für einen entarteten Energie-Eigenwert E (0) Skript zur 6. Vorlesung Quantenmechanik, Freitag den. Juni,.. Störungstheorie für einen entarteten Energie-Eigenwert E () n Sei E n () eing-fachentartetet Eigenwert desoperatorsĥ undsei ψ nα, () α =,...,g

Mehr

WECHSELWIRKUNG STRAHLUNG-STOFF

WECHSELWIRKUNG STRAHLUNG-STOFF Jürgen Henniger Arbeitsgruppe Strahlungsphysik (ASP) des Instituts für Kern- und Teilchenphysik (IKTP) Andreas-Schubert-Bau 409A henniger@asp.tu-dresden.de 0351 463 32479 / 0173 6864000 WECHSELWIRKUNG

Mehr

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 13/1 2. Klausur aus der Physik Blatt 1 (von 2) Blatt 1 (von 2) 1. Leuchtelektronen-Modell des Na-Atoms 5 BE Berechne aus dem experimentellen Wert der Ionisierungsenergie von Natrium, 5, 12 ev, die effektive Kernladungszahl für das Leuchtelektron der

Mehr

Übungen zu Physik 2 für Maschinenwesen

Übungen zu Physik 2 für Maschinenwesen Physikdepartment E13 SS 011 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 1.07.011,

Mehr

Kolleg 1998/ Klausur aus der Physik Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1

Kolleg 1998/ Klausur aus der Physik Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1 Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1 1. Rutherfordsches Atommodell Im Jahr 1904 entwickelte Thomson ein Atommodell, bei dem das Atom aus einer positiv geladenen Kugel mit homogener Massenverteilung

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen.

(2.65 ev), da sich die beiden Elektronen gegenseitig abstossen. phys4.026 Page 1 13.8 Das Wasserstoff-Molekül Wie im Fall des H2 + Moleküls führen im H2 Molekül symmetrische Wellenfunktionen zu bindenden Zuständen, wohingegen anti-symmetrische Wellenfunktionen zu anti-bindenden

Mehr

9. GV: Atom- und Molekülspektren

9. GV: Atom- und Molekülspektren Physik Praktikum I: WS 2005/06 Protokoll zum Praktikum Dienstag, 25.10.05 9. GV: Atom- und Molekülspektren Protokollanten Jörg Mönnich Anton Friesen - Veranstalter Andreas Branding - 1 - Theorie Während

Mehr

Physik für Mediziner Radioaktivität

Physik für Mediziner  Radioaktivität Physik für Mediziner http://www.mh-hannover.de/physik.html Radioaktivität Peter-Alexander Kovermann Institut für Neurophysiologie Kovermann.peter@mh-hannover.de Der Aufbau von Atomen 0-5 - 0-4 m 0-0 -4

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Aufgaben zum Wasserstoffatom

Aufgaben zum Wasserstoffatom Aufgaben zum Wasserstoffatom Hans M. Strauch Kurfürst-Ruprecht-Gymnasium Neustadt/W. Aufgabenarten Darstellung von Zusammenhängen, Abgrenzung von Unterschieden (können u.u. recht offen sein) Beantwortung

Mehr

Experimentalphysik für Physiker IV: Atom- und Molekülphysik Universität Erlangen Nürnberg SS 2007 Klausur ( )

Experimentalphysik für Physiker IV: Atom- und Molekülphysik Universität Erlangen Nürnberg SS 2007 Klausur ( ) Nur vom Korrektor auszufüllen 1 2 3 4 5 6 7 8 9 10 Note Experimentalphysik für Physiker IV: Atom- und Molekülphysik Universität Erlangen Nürnberg SS 2007 Klausur (18.7.2007) Name: Studiengang: Matrikel-Nummer:

Mehr

Atom-, Molekül- und Festkörperphysik

Atom-, Molekül- und Festkörperphysik Atom-, Molekül- und Festkörperphysik für LAK, SS 2016 Peter Puschnig basierend auf Unterlagen von Prof. Ulrich Hohenester 2. Vorlesung, 17. 3. 2016 Wasserstoffspektren, Zeemaneffekt, Spin, Feinstruktur,

Mehr

zum Ende seines Lebens infolge schlechter Durchblutung des Gehirn an schwerem Gedächtnisschwund.

zum Ende seines Lebens infolge schlechter Durchblutung des Gehirn an schwerem Gedächtnisschwund. Kapitel 12 Der Zeeman-Effekt In diesem Kapitel befassen wir uns mit dem Einfluss eines externen Magnetfelds auf das Spektrum eines Atoms. Wir werden sehen, dass infolge dieser Beeinflussung die Entartung

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 21 Übungsblatt Nr. 3 Bearbeitung bis 6.5.21 Aufgabe 1: Neutronensterne Im Allgemeinen kann man annehmen, dass die Dichte in Zentrum von Neutronensternen

Mehr

Versuch Fluoreszenz-Quenching

Versuch Fluoreszenz-Quenching Versuch Fluoreszenz-Quenching Zielstellung: 1.) Aufnahme des UV-Vis-Spektrums eines Fluoreszenzfarbstoffes 2.) Aufnahme der Kennlinie des verwendeten Photon-Counting-Moduls (PCM) im Bereich von 1,9 2,9

Mehr

Vorlesung Statistische Mechanik: N-Teilchensystem

Vorlesung Statistische Mechanik: N-Teilchensystem Virialentwicklung Die Berechnung der Zustandssumme bei realen Gasen ist nicht mehr exakt durchführbar. Eine Möglichkeit, die Wechselwirkung in realen Gasen systematisch mitzunehmen ist, eine Entwicklung

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Thüringer Kultusministerium Abiturprüfung 1995 Physik als Grundfach (Haupttermin) Hinweise für die Prüfungsteilnehmerinnen und Prüfungsteilnehmer Arbeitszeit: Einlesezeit: Hilfsmittel: 180 Minuten 30 Minuten

Mehr

Nachklausur: Quantentheorie I, WS 07/08

Nachklausur: Quantentheorie I, WS 07/08 Nachklausur: Quantentheorie I, WS 7/8 Prof. Dr. R. Friedrich Aufgabe : [ P.] Betrachten Sie die Bewegung eines Teilchens im konstanten Magnetfeld B = [,, b] a)[p.] Zeigen Sie, dass ein zugehöriges Vektorpotential

Mehr

Radioaktiver Zerfall des Atomkernes: α-zerfall

Radioaktiver Zerfall des Atomkernes: α-zerfall Radioaktiver Zerfall des Atomkernes: α-zerfall Schwere Atomkerne (hohes Z, hohes N) sind instabil gegen spontanen Zerfall. Die mögliche Emission einzelner Protonen oder einzelner Neutronen ist nicht häufig.

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungsblatt Nr. 1 Bearbeitung bis 22.04.2010 Webseite des Email-Verteilers: https://www.lists.kit.edu/sympa/info/ktp-ss2010 Verwenden Sie den

Mehr

PHYSIK. Studienbrief Moleküle. AUTOR: Dr. Johannes Bernardi

PHYSIK. Studienbrief Moleküle. AUTOR: Dr. Johannes Bernardi PHYSIK AUTOR: Dr. Johannes Bernardi Inhalt: 1 Einführung...3 2 Ionenbindung (heteropolare Bindung): A + B...4 3 Kovalente Bindung (chemische Bindung): AB...6 4 Van der Waals Bindung...7 5 Wasserstoffbindung...8

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 3. Übungsblatt - 8.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (2 Punkte) Berechnen

Mehr

Das solare Neutrinoproblem

Das solare Neutrinoproblem Das solare Neutrinoproblem Helene Kraft, Benjamin Gutknecht, Bartosz Slomski, Esther Dönsdorf, Maria Reinhardt, Kristoffer Menzel, David Caliebe 3. Juni, 2005 1 Der Weg zum Postulat des Neutrinos 1930,

Mehr

Physikalisches Fortgeschrittenenpraktikum Mößbauereffekt. Vorbereitung

Physikalisches Fortgeschrittenenpraktikum Mößbauereffekt. Vorbereitung Physikalisches Fortgeschrittenenpraktikum Mößbauereffekt Vorbereitung Armin Burgmeier Robert Schittny 1 Grundlagen 1.1 Absorptions- und Emissionslinien Emittiert ein angeregter Kern beim Übergang in den

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe 1: Radon im Keller a) 222 86Rn hat 86 Protonen, 86 Elektronen und 136 Neutronen. Der Kern hat demnach eine gerade Anzahl Protonen und eine gerade Anzahl Neutronen und gehört

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 16/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 8 / 7.1.16 1. Schwerpunkte Berechnen Sie den Schwerpunkt in

Mehr

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell:

10. Das Wasserstoff-Atom Das Spektrum des Wasserstoff-Atoms. im Bohr-Modell: phys4.016 Page 1 10. Das Wasserstoff-Atom 10.1.1 Das Spektrum des Wasserstoff-Atoms im Bohr-Modell: Bohr-Modell liefert eine ordentliche erste Beschreibung der grundlegenden Eigenschaften des Spektrums

Mehr

Protokoll zum Versuch Infrarot-Spektren mehratomiger Gase

Protokoll zum Versuch Infrarot-Spektren mehratomiger Gase Protokoll zum Versuch Infrarot-Spektren mehratomiger Gase. Versuchsziel / Experimentelles In diesem Versuch wird ein Infrarot-Spektrum von CO im Bereich der Wellenzahlen ν von 6000 bis 400 cm- mit einer

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie

UNIVERSITÄT GREIFSWALD. Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE. Arbeitskreis Biophysikalische Chemie UNIVERSITÄT GREIFSWALD Mathematisch-Naturwissenschaftliche Fakultät INSTITUT FÜR BIOCHEMIE Arbeitskreis Biophysikalische Chemie Prof. Dr. Walter Langel Modelle für elektronische Zustände Einfachstes klassisches

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 6. Atom- und Molekülphysik 6.1 - GV Atom- und Molekülspektren Durchgeführt am 22.11.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Sarah Dirk Marius Schirmer

Mehr

5. Kernzerfälle und Kernspaltung

5. Kernzerfälle und Kernspaltung 5. Kernzerfälle und Kernspaltung 1. Zerfallsgesetz 2. α Zerfall 3. Kernspaltung 4. ß Zerfall 5. γ Zerfall 1 5.1 Das Zerfallsgesetz 2 Mittlere Lebensdauer und Linienbreite 3 Mehrere Zerfallskanäle 4 Zerfallsketten

Mehr

Atomvorstellung: Antike bis 19. Jh.

Atomvorstellung: Antike bis 19. Jh. GoBack Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell 1 / 24 Atomvorstellung der Griechen Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell Die

Mehr

Physikalische Chemie für Fortgeschrittene. Protokoll

Physikalische Chemie für Fortgeschrittene. Protokoll Universität Leipzig Studiengang Chemie (Bachelor) Physikalische Chemie für Fortgeschrittene Sommersemester 014 Protokoll Versuch 3 Infrarotspektroskopie Rotationsschwingungsspektren Betreuer: M.Sc. Marcel

Mehr

Übungsblatt 10. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 1. 7.

Übungsblatt 10. PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, oder 1. 7. Übungsblatt 10 PHYS4100 Grundkurs IV (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@uni-ulm.de) 30. 6. 2005 oder 1. 7. 2005 1 Aufgaben 1. Zeigen Sie, dass eine geschlossene nl-schale

Mehr

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme

FERIENKURS EXPERIMENTALPHYSIK 4. Mehrelektronensysteme FERIENKURS EXPERIMENTALPHYSIK 4 Vorlesung 3 am 04.09.2013 Mehrelektronensysteme Hannah Schamoni, Susanne Goerke Inhaltsverzeichnis 1 Das Helium-Atom 2 1.1 Grundlagen und Ortswellenfunktion........................

Mehr

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 )

c = Ausbreitungsgeschwindigkeit (2, m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) 2.3 Struktur der Elektronenhülle Elektromagnetische Strahlung c = λ ν c = Ausbreitungsgeschwindigkeit (2,9979 10 8 m/s) λ = Wellenlänge (m) ν = Frequenz (Hz, s -1 ) Quantentheorie (Max Planck, 1900) Die

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

Übungsaufgaben zur Experimentalphysik IV. X. Angeregte Zustände

Übungsaufgaben zur Experimentalphysik IV. X. Angeregte Zustände WALTHER-MEISSNER-INSTITUT Bayerische Akademie der Wissenschaften LEHRSTUHL FÜR TECHNISCHE PHYSIK E3 Technische Universität München PD DR. LAMBERT ALFF DATUM 18. Juni 00 Übungsaufgaben zur Experimentalphysik

Mehr

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf:

Atommodell. Atommodell nach Bohr und Sommerfeld Für sein neues Atommodell stellte Bohr folgende Postulate auf: Für sein neues Atommodell stellte Bohr folgende Postulate auf: Elektronen umkreisen den Kern auf bestimmten Bahnen, wobei keine Energieabgabe erfolgt. Jede Elektronenbahn entspricht einem bestimmten Energieniveau

Mehr