Evolutionäre Algorithmen

Größe: px
Ab Seite anzeigen:

Download "Evolutionäre Algorithmen"

Transkript

1 Karsten Weicker Evolutionäre Algorithmen 2., überarbeitete und erweiterte Auflage m Teubner

2 Inhaltsverzeichnis 1 Natürliche Evolution Entwicklung der evolutionären Mechanismen Evolutionsfaktoren Herleitung der Evolutionsfaktoren Mutation Rekombination Selektion Genfluss Gendrift Anpassung als Resultat der Evolution Nischenbildung Evolution ökologischer Beziehungen Baldwin-Effekt Übungsaufgaben Historische Anmerkungen 16 2 Von der Evolution zur Optimierung Optimierungsprobleme Der simulierte evolutionäre Zyklus Ein beispielhafter evolutionärer Algorithmus Formale Einführung evolutionärer Algorithmen Vergleich mit der natürlichen Evolution Vergleich mit anderen Optimierungsverfahren Übungsaufgaben Historische Anmerkungen 44 3 Prinzipien evolutionärer Algorithmen Wechselspiel zwischen Variation und Selektion Ein einfaches binäres Beispiel Die Gütelandschaft Modellierung als Markovprozess Das Problem lokaler Optima Der Einfluss der Kodierung Rollen der Mutation Populationskonzept Die Vielfalt in einer Population Ein vergleichendes Experiment Folgerungen für die Selektion Varianten der Umweltselektion 67

3 X Inhaltsverzeichnis Selektionsstärke Probabilistische Elternselektion Überblick und Parametrierung Experimenteller Vergleich der Selektionsoperatoren Verknüpfen mehrerer Individuen durch die Rekombination Arten der Rekombination Schema-Theorem Formae als Verallgemeinerung der Schemata Schema-Theorie und der Suchfortschritt Selbstanpassende Algorithmen Einfluss des Stands der Suche Anpassungsstrategien für evolutionäre Operatoren Zusammenfassung der Arbeitsprinzipien Der ultimative evolutionäre Algorithmus Übungsaufgaben Historische Anmerkungen Evolutionäre Standardalgorithmen Genetischer Algorithmus Evolutionsstrategien Evolutionäres Programmieren Genetisches Programmieren Einfache Lokale Suchalgorithmen Weitere Verfahren Klassifizierende Systeme Tabu-Suche Memetische Algorithmen Populationsbasiertes inkrementelles Lernen Differentialevolution Scatter Search Kulturelle Algorithmen Ameisenkolonien Partikelschwärme Kurzzusammenfassung Übungsaufgaben Historische Anmerkungen Techniken für spezifische Problemanforderungen Optimieren mit Randbedingungen Übersicht über die Methoden Dekoder-Ansatz Restriktive Methoden Tolerante Methoden Straffunktionen Mehrzieloptimierung 194

4 Inhaltsverzeichnis XI Optimalitätskriterium bei mehreren Zielgrößen Überblick Modifikation der Bewertungsfunktion Berechnung der Pareto-Front Zeitabhängige Optimierungsprobleme Approximative Bewertung Verrauschte Bewertung Stabile Lösungen Zeitaufwändige Bewertung Bewertung durch Testfalle Bewertung von Spielstrategien Übungsaufgaben Historische Anmerkungen Anwendung evolutionärer Algorithmen Vergleich evolutionärer Algorithmen Entwurf evolutionärer Algorithmen Der wiederverwendungsbasierte Ansatz Der Forma-basierte Ansatz Der analysebasierte Ansatz Nutzung von Problemwissen Fallstudie: Platzierung von Mobilfunkantennen Aufgabenstellung Entwurf des evolutionären Algorithmus Ergebnisse Fallstudie: Motorenkalibrierung Aufgabenstellung Entwurf des evolutionären Algorithmus Ergebnisse Fallstudie: Stundenplanerstellung Aufgabenstellung Entwurf des evolutionären Algorithmus Ergebnisse Übungsaufgaben Historische Anmerkungen 267 Anhang 269 A Benchmark-Funktionen 271 B Weitere Quellen 275 B.l Kurzer Literaturüberblick 275 B.2 Existierende Software 277

5 XII Inhaltsverzeichnis C Zufallszahlen 279 D Notation der Algorithmen 283 Literaturverzeichnis 285 Bildnachweis 304 Liste der Algorithmen 305 Glossar 307 Stichwortverzeichnis 309

Evolutionäre Algorithmen

Evolutionäre Algorithmen Evolutionäre Algorithmen Karsten Weicker Evolutionäre Algorithmen 3., überarbeitete und erweiterte Auflage Karsten Weicker HTWK Leipzig IMN Leipzig, Deutschland ISBN 978-3-658-09957-2 DOI 10.1007/978-3-658-09958-9

Mehr

Evolutionäre Algorithmen - Kapitel 15

Evolutionäre Algorithmen - Kapitel 15 Evolutionäre Algorithmen - Kapitel 15 Metaheuristiken Prof. Dr. Rudolf Kruse ÖÙ Û º ºÙÒ ¹Ñ ÙÖ º Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg 9. Juni 2008 R. Kruse (Uni Magdeburg) Metaheuristiken

Mehr

Survival of the Fittest Optimierung mittels Genetischer Algorithmen

Survival of the Fittest Optimierung mittels Genetischer Algorithmen Übung zu Organic Computing Survival of the Fittest Optimierung mittels Genetischer Algorithmen Sabine Helwig Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design) Universität Erlangen-Nürnberg [email protected]

Mehr

2. Evolution als Optimierungsprinzip

2. Evolution als Optimierungsprinzip 2. Evolution als Optimierungsprinzip Biologen betrachten Evolution als Mechanismus, der in der Natur Lösungen für spezielle Probleme erzeugt Prinzipien der biologischen Evolution werden zur Lösung von

Mehr

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen

Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Jana Müller Seminar Das Virtuelle Labor Otto von Guericke Universität Magdeburg Gliederung 1. Motivation

Mehr

Populationsbasierte Suche. Evolutionäre Algorithmen (1)

Populationsbasierte Suche. Evolutionäre Algorithmen (1) Populationsbasierte Suche Bisherige Meta-Heuristiken: Simulated Annealing Tabu Search Ausgehend von einer Lösung wird gesucht Populationsbasierte Heuristiken Suche erfolgt ausgehend von mehreren Lösungen

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

Vorlesung Evolutionäre Algorithmen

Vorlesung Evolutionäre Algorithmen Vorlesung Evolutionäre Algorithmen Dr. Nicole Drechsler, AG Rechnerarchitektur Raum 3480, Tel. 7391, [email protected] Vorschlag für Prüfungskriterien: Bearbeitung einer praktischen (Programmier-) Aufgabe Fachgespräch

Mehr

Genetische und Evolutionäre Algorithmen (Vol. 1)

Genetische und Evolutionäre Algorithmen (Vol. 1) Vortrag über Genetische und Evolutionäre Algorithmen (Vol. ) von Adam El Sayed Auf und Kai Lienemann Gliederung: ) Einführung 2) Grundkonzept 3) Genaue Beschreibung des Genetischen Algorithmus Lösungsrepräsentation

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Prof. Dr. Ottmar Beucher Dezember 2001 Genetische Algorithmen 1 Optimierungsaufgaben Ein einfaches Beispiel Prinzipielle Formulierung Lösungsansätze Genetische Algorithmen Anwendungen

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Vorlesung 9 und 10: Evolutionäre Standardalgorithmen 1/69 LERNZIELE Die gängigen Standardalgorithmen, aus der Anfangszeit bis heute, werden vorgestellt. Die bekannten Standardalgorithmen

Mehr

10. Vorlesung Stochastische Optimierung

10. Vorlesung Stochastische Optimierung Soft Control (AT 3, RMA) 10. Vorlesung Stochastische Optimierung Genetische Algorithmen 10. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"

Mehr

Optimierung und Simulation

Optimierung und Simulation 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optimierung und Simulation Von Dr. Jörg Biethahn O. Professor für

Mehr

2. Von der Evolution zur Optimierung

2. Von der Evolution zur Optimierung 2. Von der Evolution zur Optimierung Die Prinzipien der biologischen Evolution werden auf die Optimierung übertragen. Am Beispiel wird ein erster evolutionärer Algorithmus zur Optimierung konstruiert und

Mehr

Objektorientiertes Programmieren

Objektorientiertes Programmieren JL Ute Claussen Objektorientiertes Programmieren Mit Beispielen und Übungen in C++ Zweite, überarbeitete und erweiterte Auflage Mit 24 Abbildungen Springer Inhaltsverzeichnis 1 Einleitung 1 1.1 Was ist

Mehr

Optimale Produktliniengestaltung mit Genetischen Algorithmen

Optimale Produktliniengestaltung mit Genetischen Algorithmen Optimale Produktliniengestaltung mit Genetischen Algorithmen 1 Einleitung 2 Produktlinienoptimierung 3 Genetische Algorithmen 4 Anwendung 5 Fazit Seite 1 Optimale Produktliniengestaltung mit Genetischen

Mehr

Rundreisen und Touren

Rundreisen und Touren Logistik: Rundreisen und Touren von Prof. Dr. Dr. b.c. Wolfgang Domschke TU Darm Stadt und Prof. Dr. Armin Scholl Universität Jena 5., überarbeitete und aktualisierte Auflage Oldenbourg Verlag München

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Joachim Schauer Betriebliche Optimierung 1 / 31 1 Metaheuristische Verfahren 2 Joachim Schauer Betriebliche Optimierung 2 / 31 Einleitendes Metaheuristische Verfahren

Mehr

InformatiCup 2009 EvolutionConsole

InformatiCup 2009 EvolutionConsole InformatiCup 2009 EvolutionConsole Wilhelm Büchner Hochschule 19. März 2010 1 1. Das Team Teammitglieder Ralf Defrancesco KION Information Services GmbH Systemadministrator Daniel Herken Scooter Attack

Mehr

Evolu&onäre Algorithmen Kapitel 2: Metaheuris&ken und verwandte Op&mierungsverfahren I/II

Evolu&onäre Algorithmen Kapitel 2: Metaheuris&ken und verwandte Op&mierungsverfahren I/II Evolu&onäre Algorithmen Kapitel 2: Metaheuris&ken und verwandte Op&mierungsverfahren I/II Sanaz Mostaghim Intelligente Systeme Ins2tut für Wissens- und Sprachverarbeitung (IWS) SS 2016 Outline Standard-Optimierungsverfahren

Mehr

Genetische Programmierung

Genetische Programmierung Bernd Ebersberger Genetische Programmierung Ein Instrument zur empirischen Fundierung ökonomischer Modelle A 234920 Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Evolutionäre Algorithmen

Evolutionäre Algorithmen Evolutionäre Algorithmen Variation und genetische Operatoren Prof. Dr. Rudolf Kruse Christian Moewes {kruse,cmoewes}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik

Mehr

Modelle und Verfahren zur innerbetrieblichen Standortplanung

Modelle und Verfahren zur innerbetrieblichen Standortplanung Andreas Bölte Modelle und Verfahren zur innerbetrieblichen Standortplanung Mit 73 Abbildungen Physica-Verlag Ein Unternehmen des Springer-Verlags Inhaltsverzeichnis 1. Einleitung 1 2. Layoutplanung für

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Vorlesung 6: Evolutionäre Algorithmen 1/74 NATÜRLICHE EVOLUTION Grundverständnis für die Zusammenhänge und die Komplexität der natürlichen Evolution mit dem Ziel deren Nachahmung

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen Einführung in die Methoden der Künstlichen Intelligenz Evolutionäre Algorithmen Dr. David Sabel WS 2012/13 Stand der Folien: 12. November 2012 Evolutionäre / Genetische Algorithmen Anwendungsbereich: Optimierung

Mehr

Evolution und Algorithmen

Evolution und Algorithmen Kapitel 6 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics

Mehr

TEUBNER-TEXTE zur Informatik Band 9. J. Heistermann. Genetische Algorithmen

TEUBNER-TEXTE zur Informatik Band 9. J. Heistermann. Genetische Algorithmen TEUBNER-TEXTE zur Informatik Band 9 J. Heistermann Genetische Algorithmen TEUBNER-TEXTE zur Informatik Herausgegeben von Prof. Dr. Johannes Buchmann, Saarbrücken Prof. Dr. Udo Lipeck, Hannover Prof. Dr.

Mehr

Finanzmarktprognose mit neuronalen Netzen

Finanzmarktprognose mit neuronalen Netzen Reihe: Quantitative Ökonomie Band 131 Herausgegeben von Prof. Dr. Eckart Bomsdorf, Köln, Prof. Dr. Wim Kösters, Bochum, und Prof. Dr. Winfried Matthes, Wuppertal Dr. Christoph A. Hövel Finanzmarktprognose

Mehr

Evolutionäre Algorithmen Einführung

Evolutionäre Algorithmen Einführung Evolutionäre Algorithmen Einführung Prof. Dr. Rudolf Kruse Pascal Held {kruse,pheld}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Wissens- und Sprachverarbeitung

Mehr

Evolutionsstrategien

Evolutionsstrategien Evolutionsstrategien zum Seminar Evolutionäre Algorithmen von Jana Schäfer INHALTVERZEICHNIS 1. Einführung... 3 2. Die Geschichte der Evolutionsstrategien...4 3. Grundlegendes... 6 3.1 Begriffe... 6 3.2

Mehr

Genetische Algorithmen und Evolutionsstrategien

Genetische Algorithmen und Evolutionsstrategien Eberhard Schöneburg Frank Heinzmann Sven Feddersen Genetische Algorithmen und Evolutionsstrategien Eine Einführung in Theorie und Praxis der simulierten Evolution Tschnische UnsversSsät Darmstadt Fachbereich

Mehr

Evolu&onäre Algorithmen Kapitel 4: Operatoren

Evolu&onäre Algorithmen Kapitel 4: Operatoren Evolu&onäre Algorithmen Kapitel 4: Operatoren Sanaz Mostaghim Lehrstuhl für Intelligente Systeme SS 2016 Outline Motivation Ein-Elter-Operatoren Zwei- oder Mehr-Elter-Operatoren Interpolierende und extrapolierende

Mehr

Genetische Algorithmen

Genetische Algorithmen Genetische Algorithmen Von Valentina Hoppe und Jan Rörden Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Gliederung Biologische Evolution Genetischer Algorithmus Definition theoretischer

Mehr

Intelligente Systeme. Einführung. Christian Moewes

Intelligente Systeme. Einführung. Christian Moewes Intelligente Systeme Einführung Prof. Dr. Rudolf Kruse Christian Moewes Georg Ruß {kruse,russ,cmoewes}@iws.cs.uni-magdeburg.de Arbeitsgruppe Computational Intelligence Institut für Wissens- und Sprachverarbeitung

Mehr

8.1 Einleitung. Grundlagen der Künstlichen Intelligenz. 8.1 Einleitung. 8.2 Lokale Suchverfahren. 8.3 Zusammenfassung. Suchprobleme: Überblick

8.1 Einleitung. Grundlagen der Künstlichen Intelligenz. 8.1 Einleitung. 8.2 Lokale Suchverfahren. 8.3 Zusammenfassung. Suchprobleme: Überblick Grundlagen der Künstlichen Intelligenz 5. April 0 8. Suchalgorithmen: Lokale Suche Grundlagen der Künstlichen Intelligenz 8. Suchalgorithmen: Lokale Suche 8.1 Einleitung Malte Helmert Universität Basel

Mehr

1 Schulinterner Kernlehrplan Biologie Q2 Evolution

1 Schulinterner Kernlehrplan Biologie Q2 Evolution 1 Schulinterner Kernlehrplan Biologie Q2 Evolution 1 Inhaltsfelder Schwerpunkt Basiskonzept Konkretisierte Kompetenzen Evolution Evolutionstheorien LK Evolutionstheorie Biodiversität und Systematik Entwicklung

Mehr

Chinese Postman Problem Hamiltonsche Graphen und das Traveling Salesman Problem Max-Flow-Min-Cut...151

Chinese Postman Problem Hamiltonsche Graphen und das Traveling Salesman Problem Max-Flow-Min-Cut...151 Inhaltsverzeichnis 1 Kernkonzepte der linearen Optimierung... 1 1.1 Einführung... 1 1.2 Grundlegende Definitionen... 8 1.3 Grafische Lösung... 10 1.4 Standardform und grundlegende analytische Konzepte...

Mehr

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung:

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung: Inhaltsverzeichnis 1 Einleitung... 1 1.1 Modellbildung,mathematische Formulierung............... 1 1.2 Nichtlineare Programme................................. 2 1.3 Einteilung von nichtlinearen Programmen...

Mehr

Evolutionäre (Genetische) Algorithmen

Evolutionäre (Genetische) Algorithmen Evolutionäre (Genetische) Algorithmen Ziel, Aufgabe von evolutionären Algorithmen: Optimierung von Objekten mit komplexer Beschreibung, wobei es Parameter gibt. Die Objekte kodiert man so als Bitstrings,

Mehr

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006 Teil II Optimierung Gliederung 5 Einführung, Klassifizierung und Grundlagen 6 Lineare Optimierung 7 Nichtlineare Optimierung 8 Dynamische Optimierung (dieses Jahr nur recht kurz) (9 Stochastische Optimierungsmethoden

Mehr

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale

Mehr

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten? Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (), 204 Exercise. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp, genetische

Mehr

Die interne Evolution von Organisationen

Die interne Evolution von Organisationen Jürgen Kumbartzki Die interne Evolution von Organisationen Evolutionstheoretischer Ansatz zur Erklärung organisationalen Wandels Mit Geleitworten von Prof. Dr. Egon Franck und Prof. Dr. Peter-J. Jost A

Mehr

Systempartitionierung Evol. Algorithmen

Systempartitionierung Evol. Algorithmen Systempartitionierung Evol. Algorithmen Hw-Sw-Co-Design Übersicht Grundlagen Evolutionärer Algorithmen Strömungsrichtungen Hybride evolutionäre Algorithmen Systempartitionierung und -exploration 1 Einleitung

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen

Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen Einführung in die Methoden der Künstlichen Intelligenz Prof. Dr. Manfred Schmidt-Schauß SoSe 2018 Stand der Folien: 9. Mai 2018 Evolutionäre / Genetische Algorithmen Anwendungsbereich: Optimierung von

Mehr

Konstruktions-Verbesserungsheuristiken. Iterierte lokale Suche (ILS)

Konstruktions-Verbesserungsheuristiken. Iterierte lokale Suche (ILS) Konstruktions-Verbesserungsheuristiken Iterierte lokale Suche (ILS) Idee: 2-Phasen-Suche 1. Phase: Randomisierte Konstruktionsheuristik 2. Phase: Lokale Suche Beispiele: Multi-Start lokale Suche GRASP:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Martin Dietzfelbinger Kurt Mehlhorn Peter Sanders Algorithmen und Datenstrukturen Die Grundwerkzeuge Springer Vieweg 1 Vorspeise: Arithmetik für ganze Zahlen 1 1.1 Addition 2 1.2 Multiplikation: Die Schulmethode

Mehr

Dirk Mattfeld Richard Vahrenkamp. Logistiknetzwerke. Modelle für Standortwahl. und Tourenplanung. 2., aktualisierte und überarbeitete Auflage

Dirk Mattfeld Richard Vahrenkamp. Logistiknetzwerke. Modelle für Standortwahl. und Tourenplanung. 2., aktualisierte und überarbeitete Auflage Dirk Mattfeld Richard Vahrenkamp Logistiknetzwerke Modelle für Standortwahl und Tourenplanung 2., aktualisierte und überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort zur 2. Auflage Vorwort

Mehr

Unterrichtsvorhaben I: Thema/Kontext: Evolution in Aktion Welche Faktoren beeinflussen den evolutiven Wandel?

Unterrichtsvorhaben I: Thema/Kontext: Evolution in Aktion Welche Faktoren beeinflussen den evolutiven Wandel? Unterrichtsvorhaben I: Thema/Kontext: Evolution in Aktion Welche Faktoren beeinflussen den evolutiven Wandel? Inhaltsfeld: IF 6: Evolution Inhaltliche Schwerpunkte: Schwerpunkte übergeordneter Kompetenzerwartungen:

Mehr

Grundkurs Software- Entwicklung mit C++

Grundkurs Software- Entwicklung mit C++ Dietrich May Grundkurs Software- Entwicklung mit C++ Praxisorientierte Einführung mit Beispielen und Aufgaben- Exzellente Didaktik und Übersicht Mit 30 Abbildungen 2., überarbeitete und erweiterte Auflage

Mehr

EVOLUTION STRATEGIES DANIELA SCHACHERER SEMINAR: IST KÜNSTLICHE INTELLIGENZ GEFÄHRLICH? SOMMERSEMESTER 2017

EVOLUTION STRATEGIES DANIELA SCHACHERER SEMINAR: IST KÜNSTLICHE INTELLIGENZ GEFÄHRLICH? SOMMERSEMESTER 2017 EVOLUTION STRATEGIES DANIELA SCHACHERER SEMINAR: IST KÜNSTLICHE INTELLIGENZ GEFÄHRLICH? SOMMERSEMESTER 2017 Inhalt Einleitung und Überblick Evolutionsstrategien Grundkonzept Evolutionsstrategien als Alternative

Mehr

Gliederung. Genetische Algorithmen (GA) Einfuehrung II. Einfuehrung I

Gliederung. Genetische Algorithmen (GA) Einfuehrung II. Einfuehrung I Genetische (GA) Gliederung 2.1. Grundbegriffe. Anwendungsgebiete GA Jens Mueller 15.12.200 Folie 1 Jens Mueller 15.12.200 Folie 2 Einfuehrung I Einfuehrung II Einordnung: Soft Computing Soft Computing

Mehr

1 Einleitung Spiele in Normalforrn

1 Einleitung Spiele in Normalforrn Inhaltsverzeichnis 1 Einleitung 1 1.1 Der Ursprung der Spieltheorie 1 1.2 Entwicklungsetappen der Spieltheorie 3 1.3 Personenkult in der Spieltheorie 8 2 Spiele in Normalforrn 11 2.1 Grundlegende Konzepte

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen Teil II Evolutionsfenster durch Mutation und sexuelle Rekombination Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Evolutionäre Algorithmen

Mehr

Genetische Algorithmen (GA) Jens Mueller Folie 1

Genetische Algorithmen (GA) Jens Mueller Folie 1 Genetische Algorithmen (GA) Jens Mueller 15.12.2004 Folie 1 Gliederung 1. Einfuehrung 2. Grundlagen Genetischer Algorithmen 2.1. Grundbegriffe 2.2. Elemente eines GAs 3. Bsp.: Magisches Quadrat 4. Anwendungsgebiete

Mehr

Ralf Kirsch Uwe Schmitt. Programmieren inc. Eine mathematikorientierte Einführung. Mit 24 Abbildungen und 13 Tabellen. Springer

Ralf Kirsch Uwe Schmitt. Programmieren inc. Eine mathematikorientierte Einführung. Mit 24 Abbildungen und 13 Tabellen. Springer Ralf Kirsch Uwe Schmitt Programmieren inc Eine mathematikorientierte Einführung Mit 24 Abbildungen und 13 Tabellen Springer Inhaltsverzeichnis Eine Einleitung in Frage und Antwort V 1 Vorbereitungen 1

Mehr

Hochflexibles Workforce Management: Herausforderungen und Lösungsverfahren

Hochflexibles Workforce Management: Herausforderungen und Lösungsverfahren Hochflexibles Workforce Management: Herausforderungen und Lösungsverfahren Dissertation zur Erlangung des akademischen Gerades eines Doktors der Wirtschaftswissenschaften ( Doctor rerum politicarum") an

Mehr

Prozedurales Programmieren und Problemlösungsstrategien

Prozedurales Programmieren und Problemlösungsstrategien Prozedurales Programmieren und Problemlösungsstrategien Bachelorstudiengänge Umwelttechnik und Maschinenbau Prof. Dr. Thomas Hoch Problemlösungsstrategien Prozedurales Programmieren und Problemlösungsstrategien

Mehr

Entscheidungs- und Spieltheorie

Entscheidungs- und Spieltheorie H. Bühlmann H. Loeffel E. Nievergelt Entscheidungs- und Spieltheorie Ein Lehrbuch für Wirtschaftswissenschaftler Mit 121 Figuren Springer-Verlag Berlin Heidelberg NewYork 1975 Inhaltsverzeichnis 1. Teil;

Mehr

Evolutionäre Algorithmen

Evolutionäre Algorithmen Evolutionäre Algorithmen Mehrkriterienoptimierung Prof. Dr. Rudolf Kruse Christian Moewes {kruse,cmoewes}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut

Mehr

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008

Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008 Genetische Algorithmen Uwe Reichel IPS, LMU München [email protected] 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung

Mehr

Grundkurs Theoretische Informatik

Grundkurs Theoretische Informatik Gottfried Vossen I Kurt-Ulrich Witt Grundkurs Theoretische Informatik Eine anwendungsbezogene Einführung - Für Studierende in allen Informatik-Studiengängen 5., durchgesehene Auflage Mit 147 Abbildungen

Mehr

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?

b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten? Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (1), 2015 Aufgabe 1. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp,

Mehr

Hauptseminar Repräsentationen für Optimierungsalgorithmen

Hauptseminar Repräsentationen für Optimierungsalgorithmen Stefan Bens Hauptseminar Dresden, 03.07.2008 Inhalt 1. Motivation 2. Einleitung 3. Repräsentationsarten und Eigenschaften 4. Beispiel 5. Zusammenfassung Folie 2 Als Repräsentation bezeichnet man die Kodierung

Mehr

Evolutionäre Algorithmen und kooperative Koevolution

Evolutionäre Algorithmen und kooperative Koevolution Evolutionäre Algorithmen und kooperative Koevolution Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Informatik 33098 Paderborn [email protected] Zusammenfassung

Mehr

GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness

GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters Brad Johanson, Riccardo Poli Seminarvortrag von Thomas Arnold G ˇ ˇ ˇ ˇ WS 2012/13 TU Darmstadt Seminar

Mehr

Mechanismen der Evolution. Übersicht. Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation

Mechanismen der Evolution. Übersicht. Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation Mechanismen der Evolution 1 Übersicht Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation 2 Jean Baptiste de LAMARCK... der häufige Gebrauch eines

Mehr

Synthese durch Rechner-Optimierung

Synthese durch Rechner-Optimierung 4.2.4. Synthese durch Rechner-Optimierung Möglichkeiten zum Finden passender Reglerparameter: 1. Theoretische Synthese (Herleitung der optimalen Werte) 2. Einstellregeln Messungen an der Strecke (z. B.

Mehr

Hierarchisch integrierte Produktionsplanung und -Steuerung

Hierarchisch integrierte Produktionsplanung und -Steuerung Volkmar Söhner Hierarchisch integrierte Produktionsplanung und -Steuerung Mit 42 Abbildungen Physica-Verlag Ein Unternehmen des Springer-Verlags 1 Einleitung 1 1.1 Problemstellung 1 1.2 Gang der Untersuchung

Mehr

Genetische Algortithmen Annäherungsverfahren für Optimierungsprobleme

Genetische Algortithmen Annäherungsverfahren für Optimierungsprobleme Genetische Algortithmen Annäherungsverfahren für Optimierungsprobleme Tobias Schiele Luca Baumann Seminararbeit im Sommersemester 2016 Prof. Dr. Thomas Thierauf - Hochschule Aalen, 16. Juni 2016 Zusammenfassung

Mehr

Spieltheorie. Thomas Riechmann. Verlag Franz Vahlen München. 3., vollständig überarbeitete Auflage. von

Spieltheorie. Thomas Riechmann. Verlag Franz Vahlen München. 3., vollständig überarbeitete Auflage. von Spieltheorie von Thomas Riechmann 3., vollständig überarbeitete Auflage Verlag Franz Vahlen München Inhaltsverzeichnis 1. Einleitung 1 1.1 Entscheidungstheorie und Spieltheorie 1 1.2 Präferenzen und Präferenzaxiome

Mehr

2.5 Evolutionäre (Genetische) Algorithmen

2.5 Evolutionäre (Genetische) Algorithmen KI 1, SS 2011, Kapitel 2, GA 1 2.5 Evolutionäre (Genetische) Algorithmen Das Ziel bzw. die Aufgabe von evolutionären Algorithmen ist eine Optimierung von Objekten mit komplexer Beschreibung, wobei es variable

Mehr

Inhalt. 2 Transportoptimierung Das klassische Transportproblern Modell 73

Inhalt. 2 Transportoptimierung Das klassische Transportproblern Modell 73 Inhalt 1 Lineare Optimierung 13 1.1 Das Modell der linearen Optimierung 13 1.2 Graphische Lösung 20 1.3 Der primale Simplexalgorithmus 23 1.3.1 Grundlagen 24 1.3.2 Der Optimalitätstest 27 1.3.3 Verbesserungsschritt

Mehr

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Optimierungsprobleme

Mehr