Evolutionäre Algorithmen
|
|
|
- Lennart Martin
- vor 8 Jahren
- Abrufe
Transkript
1 Karsten Weicker Evolutionäre Algorithmen 2., überarbeitete und erweiterte Auflage m Teubner
2 Inhaltsverzeichnis 1 Natürliche Evolution Entwicklung der evolutionären Mechanismen Evolutionsfaktoren Herleitung der Evolutionsfaktoren Mutation Rekombination Selektion Genfluss Gendrift Anpassung als Resultat der Evolution Nischenbildung Evolution ökologischer Beziehungen Baldwin-Effekt Übungsaufgaben Historische Anmerkungen 16 2 Von der Evolution zur Optimierung Optimierungsprobleme Der simulierte evolutionäre Zyklus Ein beispielhafter evolutionärer Algorithmus Formale Einführung evolutionärer Algorithmen Vergleich mit der natürlichen Evolution Vergleich mit anderen Optimierungsverfahren Übungsaufgaben Historische Anmerkungen 44 3 Prinzipien evolutionärer Algorithmen Wechselspiel zwischen Variation und Selektion Ein einfaches binäres Beispiel Die Gütelandschaft Modellierung als Markovprozess Das Problem lokaler Optima Der Einfluss der Kodierung Rollen der Mutation Populationskonzept Die Vielfalt in einer Population Ein vergleichendes Experiment Folgerungen für die Selektion Varianten der Umweltselektion 67
3 X Inhaltsverzeichnis Selektionsstärke Probabilistische Elternselektion Überblick und Parametrierung Experimenteller Vergleich der Selektionsoperatoren Verknüpfen mehrerer Individuen durch die Rekombination Arten der Rekombination Schema-Theorem Formae als Verallgemeinerung der Schemata Schema-Theorie und der Suchfortschritt Selbstanpassende Algorithmen Einfluss des Stands der Suche Anpassungsstrategien für evolutionäre Operatoren Zusammenfassung der Arbeitsprinzipien Der ultimative evolutionäre Algorithmus Übungsaufgaben Historische Anmerkungen Evolutionäre Standardalgorithmen Genetischer Algorithmus Evolutionsstrategien Evolutionäres Programmieren Genetisches Programmieren Einfache Lokale Suchalgorithmen Weitere Verfahren Klassifizierende Systeme Tabu-Suche Memetische Algorithmen Populationsbasiertes inkrementelles Lernen Differentialevolution Scatter Search Kulturelle Algorithmen Ameisenkolonien Partikelschwärme Kurzzusammenfassung Übungsaufgaben Historische Anmerkungen Techniken für spezifische Problemanforderungen Optimieren mit Randbedingungen Übersicht über die Methoden Dekoder-Ansatz Restriktive Methoden Tolerante Methoden Straffunktionen Mehrzieloptimierung 194
4 Inhaltsverzeichnis XI Optimalitätskriterium bei mehreren Zielgrößen Überblick Modifikation der Bewertungsfunktion Berechnung der Pareto-Front Zeitabhängige Optimierungsprobleme Approximative Bewertung Verrauschte Bewertung Stabile Lösungen Zeitaufwändige Bewertung Bewertung durch Testfalle Bewertung von Spielstrategien Übungsaufgaben Historische Anmerkungen Anwendung evolutionärer Algorithmen Vergleich evolutionärer Algorithmen Entwurf evolutionärer Algorithmen Der wiederverwendungsbasierte Ansatz Der Forma-basierte Ansatz Der analysebasierte Ansatz Nutzung von Problemwissen Fallstudie: Platzierung von Mobilfunkantennen Aufgabenstellung Entwurf des evolutionären Algorithmus Ergebnisse Fallstudie: Motorenkalibrierung Aufgabenstellung Entwurf des evolutionären Algorithmus Ergebnisse Fallstudie: Stundenplanerstellung Aufgabenstellung Entwurf des evolutionären Algorithmus Ergebnisse Übungsaufgaben Historische Anmerkungen 267 Anhang 269 A Benchmark-Funktionen 271 B Weitere Quellen 275 B.l Kurzer Literaturüberblick 275 B.2 Existierende Software 277
5 XII Inhaltsverzeichnis C Zufallszahlen 279 D Notation der Algorithmen 283 Literaturverzeichnis 285 Bildnachweis 304 Liste der Algorithmen 305 Glossar 307 Stichwortverzeichnis 309
Evolutionäre Algorithmen
Evolutionäre Algorithmen Karsten Weicker Evolutionäre Algorithmen 3., überarbeitete und erweiterte Auflage Karsten Weicker HTWK Leipzig IMN Leipzig, Deutschland ISBN 978-3-658-09957-2 DOI 10.1007/978-3-658-09958-9
Evolutionäre Algorithmen - Kapitel 15
Evolutionäre Algorithmen - Kapitel 15 Metaheuristiken Prof. Dr. Rudolf Kruse ÖÙ Û º ºÙÒ ¹Ñ ÙÖ º Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg 9. Juni 2008 R. Kruse (Uni Magdeburg) Metaheuristiken
Survival of the Fittest Optimierung mittels Genetischer Algorithmen
Übung zu Organic Computing Survival of the Fittest Optimierung mittels Genetischer Algorithmen Sabine Helwig Lehrstuhl für Informatik 12 (Hardware-Software-Co-Design) Universität Erlangen-Nürnberg [email protected]
2. Evolution als Optimierungsprinzip
2. Evolution als Optimierungsprinzip Biologen betrachten Evolution als Mechanismus, der in der Natur Lösungen für spezielle Probleme erzeugt Prinzipien der biologischen Evolution werden zur Lösung von
Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen
Anwendung genetischer Algorithmen zur Lösung des n Dame Problems und zur Optimierung von Autoprofilen Jana Müller Seminar Das Virtuelle Labor Otto von Guericke Universität Magdeburg Gliederung 1. Motivation
Populationsbasierte Suche. Evolutionäre Algorithmen (1)
Populationsbasierte Suche Bisherige Meta-Heuristiken: Simulated Annealing Tabu Search Ausgehend von einer Lösung wird gesucht Populationsbasierte Heuristiken Suche erfolgt ausgehend von mehreren Lösungen
Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff
Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche
Vorlesung Evolutionäre Algorithmen
Vorlesung Evolutionäre Algorithmen Dr. Nicole Drechsler, AG Rechnerarchitektur Raum 3480, Tel. 7391, [email protected] Vorschlag für Prüfungskriterien: Bearbeitung einer praktischen (Programmier-) Aufgabe Fachgespräch
Genetische und Evolutionäre Algorithmen (Vol. 1)
Vortrag über Genetische und Evolutionäre Algorithmen (Vol. ) von Adam El Sayed Auf und Kai Lienemann Gliederung: ) Einführung 2) Grundkonzept 3) Genaue Beschreibung des Genetischen Algorithmus Lösungsrepräsentation
Genetische Algorithmen
Genetische Algorithmen Prof. Dr. Ottmar Beucher Dezember 2001 Genetische Algorithmen 1 Optimierungsaufgaben Ein einfaches Beispiel Prinzipielle Formulierung Lösungsansätze Genetische Algorithmen Anwendungen
Künstliche Intelligenz
Künstliche Intelligenz Vorlesung 9 und 10: Evolutionäre Standardalgorithmen 1/69 LERNZIELE Die gängigen Standardalgorithmen, aus der Anfangszeit bis heute, werden vorgestellt. Die bekannten Standardalgorithmen
10. Vorlesung Stochastische Optimierung
Soft Control (AT 3, RMA) 10. Vorlesung Stochastische Optimierung Genetische Algorithmen 10. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter"
Optimierung und Simulation
2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Optimierung und Simulation Von Dr. Jörg Biethahn O. Professor für
2. Von der Evolution zur Optimierung
2. Von der Evolution zur Optimierung Die Prinzipien der biologischen Evolution werden auf die Optimierung übertragen. Am Beispiel wird ein erster evolutionärer Algorithmus zur Optimierung konstruiert und
Objektorientiertes Programmieren
JL Ute Claussen Objektorientiertes Programmieren Mit Beispielen und Übungen in C++ Zweite, überarbeitete und erweiterte Auflage Mit 24 Abbildungen Springer Inhaltsverzeichnis 1 Einleitung 1 1.1 Was ist
Optimale Produktliniengestaltung mit Genetischen Algorithmen
Optimale Produktliniengestaltung mit Genetischen Algorithmen 1 Einleitung 2 Produktlinienoptimierung 3 Genetische Algorithmen 4 Anwendung 5 Fazit Seite 1 Optimale Produktliniengestaltung mit Genetischen
Rundreisen und Touren
Logistik: Rundreisen und Touren von Prof. Dr. Dr. b.c. Wolfgang Domschke TU Darm Stadt und Prof. Dr. Armin Scholl Universität Jena 5., überarbeitete und aktualisierte Auflage Oldenbourg Verlag München
Betriebliche Optimierung
Betriebliche Optimierung Joachim Schauer Joachim Schauer Betriebliche Optimierung 1 / 31 1 Metaheuristische Verfahren 2 Joachim Schauer Betriebliche Optimierung 2 / 31 Einleitendes Metaheuristische Verfahren
InformatiCup 2009 EvolutionConsole
InformatiCup 2009 EvolutionConsole Wilhelm Büchner Hochschule 19. März 2010 1 1. Das Team Teammitglieder Ralf Defrancesco KION Information Services GmbH Systemadministrator Daniel Herken Scooter Attack
Evolu&onäre Algorithmen Kapitel 2: Metaheuris&ken und verwandte Op&mierungsverfahren I/II
Evolu&onäre Algorithmen Kapitel 2: Metaheuris&ken und verwandte Op&mierungsverfahren I/II Sanaz Mostaghim Intelligente Systeme Ins2tut für Wissens- und Sprachverarbeitung (IWS) SS 2016 Outline Standard-Optimierungsverfahren
Genetische Programmierung
Bernd Ebersberger Genetische Programmierung Ein Instrument zur empirischen Fundierung ökonomischer Modelle A 234920 Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis
Evolutionäre Algorithmen
Evolutionäre Algorithmen Variation und genetische Operatoren Prof. Dr. Rudolf Kruse Christian Moewes {kruse,cmoewes}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik
Modelle und Verfahren zur innerbetrieblichen Standortplanung
Andreas Bölte Modelle und Verfahren zur innerbetrieblichen Standortplanung Mit 73 Abbildungen Physica-Verlag Ein Unternehmen des Springer-Verlags Inhaltsverzeichnis 1. Einleitung 1 2. Layoutplanung für
Künstliche Intelligenz
Künstliche Intelligenz Vorlesung 6: Evolutionäre Algorithmen 1/74 NATÜRLICHE EVOLUTION Grundverständnis für die Zusammenhänge und die Komplexität der natürlichen Evolution mit dem Ziel deren Nachahmung
Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen
Einführung in die Methoden der Künstlichen Intelligenz Evolutionäre Algorithmen Dr. David Sabel WS 2012/13 Stand der Folien: 12. November 2012 Evolutionäre / Genetische Algorithmen Anwendungsbereich: Optimierung
Evolution und Algorithmen
Kapitel 6 Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) Jana Hertel Professur für Bioinformatik Institut für Informatik Universität Leipzig Machine learning in bioinformatics
TEUBNER-TEXTE zur Informatik Band 9. J. Heistermann. Genetische Algorithmen
TEUBNER-TEXTE zur Informatik Band 9 J. Heistermann Genetische Algorithmen TEUBNER-TEXTE zur Informatik Herausgegeben von Prof. Dr. Johannes Buchmann, Saarbrücken Prof. Dr. Udo Lipeck, Hannover Prof. Dr.
Finanzmarktprognose mit neuronalen Netzen
Reihe: Quantitative Ökonomie Band 131 Herausgegeben von Prof. Dr. Eckart Bomsdorf, Köln, Prof. Dr. Wim Kösters, Bochum, und Prof. Dr. Winfried Matthes, Wuppertal Dr. Christoph A. Hövel Finanzmarktprognose
Evolutionäre Algorithmen Einführung
Evolutionäre Algorithmen Einführung Prof. Dr. Rudolf Kruse Pascal Held {kruse,pheld}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut für Wissens- und Sprachverarbeitung
Evolutionsstrategien
Evolutionsstrategien zum Seminar Evolutionäre Algorithmen von Jana Schäfer INHALTVERZEICHNIS 1. Einführung... 3 2. Die Geschichte der Evolutionsstrategien...4 3. Grundlegendes... 6 3.1 Begriffe... 6 3.2
Genetische Algorithmen und Evolutionsstrategien
Eberhard Schöneburg Frank Heinzmann Sven Feddersen Genetische Algorithmen und Evolutionsstrategien Eine Einführung in Theorie und Praxis der simulierten Evolution Tschnische UnsversSsät Darmstadt Fachbereich
Evolu&onäre Algorithmen Kapitel 4: Operatoren
Evolu&onäre Algorithmen Kapitel 4: Operatoren Sanaz Mostaghim Lehrstuhl für Intelligente Systeme SS 2016 Outline Motivation Ein-Elter-Operatoren Zwei- oder Mehr-Elter-Operatoren Interpolierende und extrapolierende
Genetische Algorithmen
Genetische Algorithmen Von Valentina Hoppe und Jan Rörden Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Gliederung Biologische Evolution Genetischer Algorithmus Definition theoretischer
Intelligente Systeme. Einführung. Christian Moewes
Intelligente Systeme Einführung Prof. Dr. Rudolf Kruse Christian Moewes Georg Ruß {kruse,russ,cmoewes}@iws.cs.uni-magdeburg.de Arbeitsgruppe Computational Intelligence Institut für Wissens- und Sprachverarbeitung
8.1 Einleitung. Grundlagen der Künstlichen Intelligenz. 8.1 Einleitung. 8.2 Lokale Suchverfahren. 8.3 Zusammenfassung. Suchprobleme: Überblick
Grundlagen der Künstlichen Intelligenz 5. April 0 8. Suchalgorithmen: Lokale Suche Grundlagen der Künstlichen Intelligenz 8. Suchalgorithmen: Lokale Suche 8.1 Einleitung Malte Helmert Universität Basel
1 Schulinterner Kernlehrplan Biologie Q2 Evolution
1 Schulinterner Kernlehrplan Biologie Q2 Evolution 1 Inhaltsfelder Schwerpunkt Basiskonzept Konkretisierte Kompetenzen Evolution Evolutionstheorien LK Evolutionstheorie Biodiversität und Systematik Entwicklung
Chinese Postman Problem Hamiltonsche Graphen und das Traveling Salesman Problem Max-Flow-Min-Cut...151
Inhaltsverzeichnis 1 Kernkonzepte der linearen Optimierung... 1 1.1 Einführung... 1 1.2 Grundlegende Definitionen... 8 1.3 Grafische Lösung... 10 1.4 Standardform und grundlegende analytische Konzepte...
VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung:
Inhaltsverzeichnis 1 Einleitung... 1 1.1 Modellbildung,mathematische Formulierung............... 1 1.2 Nichtlineare Programme................................. 2 1.3 Einteilung von nichtlinearen Programmen...
Evolutionäre (Genetische) Algorithmen
Evolutionäre (Genetische) Algorithmen Ziel, Aufgabe von evolutionären Algorithmen: Optimierung von Objekten mit komplexer Beschreibung, wobei es Parameter gibt. Die Objekte kodiert man so als Bitstrings,
Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006
Teil II Optimierung Gliederung 5 Einführung, Klassifizierung und Grundlagen 6 Lineare Optimierung 7 Nichtlineare Optimierung 8 Dynamische Optimierung (dieses Jahr nur recht kurz) (9 Stochastische Optimierungsmethoden
Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg
Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale
b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?
Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (), 204 Exercise. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp, genetische
Die interne Evolution von Organisationen
Jürgen Kumbartzki Die interne Evolution von Organisationen Evolutionstheoretischer Ansatz zur Erklärung organisationalen Wandels Mit Geleitworten von Prof. Dr. Egon Franck und Prof. Dr. Peter-J. Jost A
Systempartitionierung Evol. Algorithmen
Systempartitionierung Evol. Algorithmen Hw-Sw-Co-Design Übersicht Grundlagen Evolutionärer Algorithmen Strömungsrichtungen Hybride evolutionäre Algorithmen Systempartitionierung und -exploration 1 Einleitung
Einführung in die Methoden der Künstlichen Intelligenz. Evolutionäre Algorithmen
Einführung in die Methoden der Künstlichen Intelligenz Prof. Dr. Manfred Schmidt-Schauß SoSe 2018 Stand der Folien: 9. Mai 2018 Evolutionäre / Genetische Algorithmen Anwendungsbereich: Optimierung von
Konstruktions-Verbesserungsheuristiken. Iterierte lokale Suche (ILS)
Konstruktions-Verbesserungsheuristiken Iterierte lokale Suche (ILS) Idee: 2-Phasen-Suche 1. Phase: Randomisierte Konstruktionsheuristik 2. Phase: Lokale Suche Beispiele: Multi-Start lokale Suche GRASP:
Algorithmen und Datenstrukturen
Martin Dietzfelbinger Kurt Mehlhorn Peter Sanders Algorithmen und Datenstrukturen Die Grundwerkzeuge Springer Vieweg 1 Vorspeise: Arithmetik für ganze Zahlen 1 1.1 Addition 2 1.2 Multiplikation: Die Schulmethode
Dirk Mattfeld Richard Vahrenkamp. Logistiknetzwerke. Modelle für Standortwahl. und Tourenplanung. 2., aktualisierte und überarbeitete Auflage
Dirk Mattfeld Richard Vahrenkamp Logistiknetzwerke Modelle für Standortwahl und Tourenplanung 2., aktualisierte und überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Vorwort zur 2. Auflage Vorwort
Unterrichtsvorhaben I: Thema/Kontext: Evolution in Aktion Welche Faktoren beeinflussen den evolutiven Wandel?
Unterrichtsvorhaben I: Thema/Kontext: Evolution in Aktion Welche Faktoren beeinflussen den evolutiven Wandel? Inhaltsfeld: IF 6: Evolution Inhaltliche Schwerpunkte: Schwerpunkte übergeordneter Kompetenzerwartungen:
Grundkurs Software- Entwicklung mit C++
Dietrich May Grundkurs Software- Entwicklung mit C++ Praxisorientierte Einführung mit Beispielen und Aufgaben- Exzellente Didaktik und Übersicht Mit 30 Abbildungen 2., überarbeitete und erweiterte Auflage
EVOLUTION STRATEGIES DANIELA SCHACHERER SEMINAR: IST KÜNSTLICHE INTELLIGENZ GEFÄHRLICH? SOMMERSEMESTER 2017
EVOLUTION STRATEGIES DANIELA SCHACHERER SEMINAR: IST KÜNSTLICHE INTELLIGENZ GEFÄHRLICH? SOMMERSEMESTER 2017 Inhalt Einleitung und Überblick Evolutionsstrategien Grundkonzept Evolutionsstrategien als Alternative
Gliederung. Genetische Algorithmen (GA) Einfuehrung II. Einfuehrung I
Genetische (GA) Gliederung 2.1. Grundbegriffe. Anwendungsgebiete GA Jens Mueller 15.12.200 Folie 1 Jens Mueller 15.12.200 Folie 2 Einfuehrung I Einfuehrung II Einordnung: Soft Computing Soft Computing
1 Einleitung Spiele in Normalforrn
Inhaltsverzeichnis 1 Einleitung 1 1.1 Der Ursprung der Spieltheorie 1 1.2 Entwicklungsetappen der Spieltheorie 3 1.3 Personenkult in der Spieltheorie 8 2 Spiele in Normalforrn 11 2.1 Grundlegende Konzepte
Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff
Adaptive Systeme Evolutionäre Algorithmen Teil II Evolutionsfenster durch Mutation und sexuelle Rekombination Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Evolutionäre Algorithmen
Genetische Algorithmen (GA) Jens Mueller Folie 1
Genetische Algorithmen (GA) Jens Mueller 15.12.2004 Folie 1 Gliederung 1. Einfuehrung 2. Grundlagen Genetischer Algorithmen 2.1. Grundbegriffe 2.2. Elemente eines GAs 3. Bsp.: Magisches Quadrat 4. Anwendungsgebiete
Ralf Kirsch Uwe Schmitt. Programmieren inc. Eine mathematikorientierte Einführung. Mit 24 Abbildungen und 13 Tabellen. Springer
Ralf Kirsch Uwe Schmitt Programmieren inc Eine mathematikorientierte Einführung Mit 24 Abbildungen und 13 Tabellen Springer Inhaltsverzeichnis Eine Einleitung in Frage und Antwort V 1 Vorbereitungen 1
Hochflexibles Workforce Management: Herausforderungen und Lösungsverfahren
Hochflexibles Workforce Management: Herausforderungen und Lösungsverfahren Dissertation zur Erlangung des akademischen Gerades eines Doktors der Wirtschaftswissenschaften ( Doctor rerum politicarum") an
Prozedurales Programmieren und Problemlösungsstrategien
Prozedurales Programmieren und Problemlösungsstrategien Bachelorstudiengänge Umwelttechnik und Maschinenbau Prof. Dr. Thomas Hoch Problemlösungsstrategien Prozedurales Programmieren und Problemlösungsstrategien
Entscheidungs- und Spieltheorie
H. Bühlmann H. Loeffel E. Nievergelt Entscheidungs- und Spieltheorie Ein Lehrbuch für Wirtschaftswissenschaftler Mit 121 Figuren Springer-Verlag Berlin Heidelberg NewYork 1975 Inhaltsverzeichnis 1. Teil;
Evolutionäre Algorithmen
Evolutionäre Algorithmen Mehrkriterienoptimierung Prof. Dr. Rudolf Kruse Christian Moewes {kruse,cmoewes}@iws.cs.uni-magdeburg.de Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Institut
Genetische Algorithmen. Uwe Reichel IPS, LMU München 8. Juli 2008
Genetische Algorithmen Uwe Reichel IPS, LMU München [email protected] 8. Juli 2008 Inhalt Einführung Algorithmus Erweiterungen alternative Evolutions- und Lernmodelle Inhalt 1 Einführung
Grundkurs Theoretische Informatik
Gottfried Vossen I Kurt-Ulrich Witt Grundkurs Theoretische Informatik Eine anwendungsbezogene Einführung - Für Studierende in allen Informatik-Studiengängen 5., durchgesehene Auflage Mit 147 Abbildungen
b) Nennen Sie vier hinreichende Bedingungen für Evolution. b) Anzahl fortlaufender Einsen von rechts. c) Sind in a) oder b) Plateaus enthalten?
Übungsblatt LV Künstliche Intelligenz, Evolutionäre Algorithmen (1), 2015 Aufgabe 1. Evolution a) Finden Sie zwei Evolutionsbeispiele auÿerhalb der Biologie. Identizieren Sie jeweils Genotyp, Phänotyp,
Hauptseminar Repräsentationen für Optimierungsalgorithmen
Stefan Bens Hauptseminar Dresden, 03.07.2008 Inhalt 1. Motivation 2. Einleitung 3. Repräsentationsarten und Eigenschaften 4. Beispiel 5. Zusammenfassung Folie 2 Als Repräsentation bezeichnet man die Kodierung
Evolutionäre Algorithmen und kooperative Koevolution
Evolutionäre Algorithmen und kooperative Koevolution Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Informatik 33098 Paderborn [email protected] Zusammenfassung
GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness
GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters Brad Johanson, Riccardo Poli Seminarvortrag von Thomas Arnold G ˇ ˇ ˇ ˇ WS 2012/13 TU Darmstadt Seminar
Mechanismen der Evolution. Übersicht. Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation
Mechanismen der Evolution 1 Übersicht Lamarck und Darwin Variation natürliche Selektion, sexuelle, künstliche Gendrift Artbildung adaptive Radiation 2 Jean Baptiste de LAMARCK... der häufige Gebrauch eines
Synthese durch Rechner-Optimierung
4.2.4. Synthese durch Rechner-Optimierung Möglichkeiten zum Finden passender Reglerparameter: 1. Theoretische Synthese (Herleitung der optimalen Werte) 2. Einstellregeln Messungen an der Strecke (z. B.
Hierarchisch integrierte Produktionsplanung und -Steuerung
Volkmar Söhner Hierarchisch integrierte Produktionsplanung und -Steuerung Mit 42 Abbildungen Physica-Verlag Ein Unternehmen des Springer-Verlags 1 Einleitung 1 1.1 Problemstellung 1 1.2 Gang der Untersuchung
Genetische Algortithmen Annäherungsverfahren für Optimierungsprobleme
Genetische Algortithmen Annäherungsverfahren für Optimierungsprobleme Tobias Schiele Luca Baumann Seminararbeit im Sommersemester 2016 Prof. Dr. Thomas Thierauf - Hochschule Aalen, 16. Juni 2016 Zusammenfassung
Spieltheorie. Thomas Riechmann. Verlag Franz Vahlen München. 3., vollständig überarbeitete Auflage. von
Spieltheorie von Thomas Riechmann 3., vollständig überarbeitete Auflage Verlag Franz Vahlen München Inhaltsverzeichnis 1. Einleitung 1 1.1 Entscheidungstheorie und Spieltheorie 1 1.2 Präferenzen und Präferenzaxiome
2.5 Evolutionäre (Genetische) Algorithmen
KI 1, SS 2011, Kapitel 2, GA 1 2.5 Evolutionäre (Genetische) Algorithmen Das Ziel bzw. die Aufgabe von evolutionären Algorithmen ist eine Optimierung von Objekten mit komplexer Beschreibung, wobei es variable
Inhalt. 2 Transportoptimierung Das klassische Transportproblern Modell 73
Inhalt 1 Lineare Optimierung 13 1.1 Das Modell der linearen Optimierung 13 1.2 Graphische Lösung 20 1.3 Der primale Simplexalgorithmus 23 1.3.1 Grundlagen 24 1.3.2 Der Optimalitätstest 27 1.3.3 Verbesserungsschritt
Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen
Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Optimierungsprobleme
