p max = 4 T = 8 Work = 28 3 I = Work / T = 3,5 2 Cost = p max * T = 32 U = I / p max = 87,5% 1

Größe: px
Ab Seite anzeigen:

Download "p max = 4 T = 8 Work = 28 3 I = Work / T = 3,5 2 Cost = p max * T = 32 U = I / p max = 87,5% 1"

Transkript

1 Massivparallele Modelle und Architekturen Wintersemester 13/14 Lösungsvorschlag 1. Übung 1. Aufgabe: Leistungsbewertung paralleler Systeme Betrachtet werden soll der Odd-Even-Sort-Algorithmus mit n Eingangswerten ohne Vergleich des ersten und letzten Elements im odd-schritt. Für die Bestimmung des Parallelitätsgrades q(t) seien hier die Vergleicher (Operationen) maßgeblich. Nehmen Sie weiterhin an, Sie haben beliebig viele Ressourcen (Vergleicher) zur Verfügung und es fallen keine zusätzlichen Operationen für Kommunikation, Synchronisation oder Organisation an. a) Zeichnen Sie ein Parallelitätsprofil für n=8. b) Bestimmen Sie allgemein für gerade n die folgenden Größen: den Parallelitätsindex I das Maß für die geleistete Arbeit Work(p) das Maß für die Kosten Cost(p) die Auslastung U(p) den maximalen Speedup S max gegenüber einer sequentiellen Ausführung mit einem einzigen Vergleicher. c) Sei wieder n=8. Wie hoch wäre der Speedup, wenn genau zwei Vergleicher zur Verfügung stünden? Bestimmen Sie U(2). mit (p max = p) a) p Fachgebiet Rechnerarchitektur Prof. R. Hoffmann b) In jedem even-schritt werden n/2 Vergleiche benötigt, in jedem odd-schritt (n/2)-1. Da es gleich viele even-schritte wie odd-schritte gibt, beträgt der Parallelitätsindex I = (n/2 + n/2-1)/2 = (n-1)/2. Alternativ kann man auch zunächst T und Work bestimmen: es werden n/2 even-schritte, sowie n/2 odd- Schritte benötigt. Daher folgt T = n/2 + n/2 = n. p max = 4 T = 8 Work = 28 3 I = Work / T = 3,5 2 Cost = p max * T = 32 U = I / p max = 87,5% 1 Die Herleitung von Work erfolgt wie oben die Herleitung von I: Anzahl der benötigten Vergleiche für even und für odd mal der Anzahl der Schritte, d. h. Work = ((n/2)-1 + (n/2)) * n/2 = n(n-1)/ T

2 2 I ergibt sich nun auch aus I = Work/T. Die maximale Anzahl der benötigten Ressourcen p max ergibt sich aus der Anzahl der im even-schritt benötigten Vergleicher: p max = n/2. Die Kosten betragen Cost = T * p max = n* n/2 = n 2 /2. Die Auslastung U(p max ) ist der Quotient I/p max = 2(n-1)/2n = (n-1)/n. Für große n ist die Auslastung nahezu optimal. Der maximale relative Speedup (unter Verwendung des gleichen Algorithmus) ergibt sich aus dem Vergleich von T bei beliebig vielen Ressourcen und T 1 bei nur einem einzigen Vergleicher. T 1 entspricht der Gesamtzahl aller Vergleiche, also T 1 = Work(p max ). Daraus folgt S max = T 1 / T = (n(n-1)/2) / n = (n-1)/2. c) Für n=8 gilt: Stehen nur zwei Vergleicher zur Verfügung, kann nach dem folgenden Schema sortiert werden (Beachte, dass zusätzliche Operationen für Kommunikation etc. hier vernachlässigt werden) Es werden in jedem Takten beide Vergleicher benutzt. Nach sieben Takten sind dann je zwei even- und zwei odd-phasen komplett durchlaufen (In der Zeichnung bedeuten rote Pfeile auf schattiertem Hintergrund einen Vergleich/Tausch im odd-schritt, schwarze Pfeile auf hellem Hintergrund einen Vergleich/Tausch im even-schritt). Insgesamt werden 14 = 2*7 Takte benötigt.. Es ergibt sich für den Speedup S = 28/14 = 2. (28 ist die Anzahl der Operationen) U(2) = 100%, da immer beide Vergleicher benutzt werden können. p Zum Vergleich: bei beliebig vielen Ressourcen (4 Vergleicher werden benötigt) wären es S max = 3,5. T 2. Aufgabe: Amdahl s Gesetz Das folgende Schema illustriert den sequentiellen Ablauf eines Programms. Jedes Kästchen symbolisiert dabei einen unteilbaren Task. Vereinfacht wird angenommen, dass ein Task auf einem Prozessor genau eine Zeiteinheit benötigt. Die dunklen Kästchen stellen nicht parallelisierbare Tasks dar. Die hellen können parallelisiert werden. a) Wie groß ist der parallelisierbare Anteil g?

3 3 b) Was ist nach Amdahl s Gesetz der maximale Speedup für p=, p=5, p=4, p=3 und p=2? Kann dieser Speedup tatsächlich erreicht werden? a) g = 15/20 = 75%. b) p = : S max = 1/f = 20/5 = 4 p = 5: S max = 1/(0,25+0,75/5) = 2,5 p = 4: S max = 1/(0,25+0,75/4) 2,29 p = 3: S max = 1/(0,25+0,75/3) = 2 p = 2: S max = 1/(0,25+0,75/2) = 1,6 Dieser Speedup kann in der Praxis nicht immer erreicht werden, da die parallelisierbaren Teile nicht beliebig teilbar, und somit nicht immer optimal auf die p Prozessoren verteilt werden können. Amdahl s Gesetz stellt lediglich eine obere Schranke dar. Im Spezialfall für p = wird angenommen, dass der parallelisierbare Anteil auf 0 reduziert wird (unendlich viele Prozessoren erledigen die in unendlich kleine Teile zerlegten Tasks in unendlich kleiner Zeit). (Bei dem vorgegebenen Zeitraster sind nur max. 5 Prozessoren sinnvoll und S max ist dann nur 20/9!!). 3. Aufgabe: Additionsalgorithmus im PRAM Modell Gegeben Sei ein EREW-PRAM Algorithmus zur Addition von n Zahlen. Zunächst werden die n Zahlen gleichmäßig auf p Prozessoren verteilt, wo in einer lokalen Phase sequentiell die jeweilige Teilsumme gebildet wird. Danach wird per Reduktionsbaum in einer globalen Phase die Gesamtsumme gebildet. a) Erstellen Sie eine Tabelle für n = 256 und p = 1, 2, 4, 8, 16, 32, 64, 128, 256, mit den Werten für Work, Cost, Anzahl der Schritte T, Speedup und Effizienz. b) Geben Sie je eine allgemeine Formel für Cost und für T in Abhängigkeit von n und p an. Annahme: p = 2 i mit i N und n mod p = 0 (p ist eine Zweierpotenz und n lässt sich auf p ohne Rest aufteilen). c) Nehmen Sie nun an, p = n/log(n). Geben Sie die Laufzeitkomplexität des Algorithmus an. a) und b) p allgemein log(p) Work n T n/p -1+log(p) Cost=T*p n-p +p*log(p) Speedup T seq /T 1 2,0 3,9 7,5 13,4 21,3 28,3 31,9 31,9 Effizienz Speedup/p 1 1,00 0,98 0,94 0,84 0,66 0,44 0,25 0,13 Utilization Work/Cost 1 1,00 0,98 0,94 0,84 0,66 0,44 0,25 0,13 Anmerkungen: Der Fall p=32=n/log n ist der "Accelerated Cascading" Fall (siehe c). Hierbei ist Cost = O(T seq ), also ist der Algorithmus dann cost-optimal.

4 4 c) Die Laufzeit des Algorithmus ist gegeben durch T = n/p 1 + log(p). p wird ersetzt durch p=n/log(n) T = n/(n/log(n)) log(n/log(n)) = log(n) log(n) - log(log(n)) = 2log(n) log(log(n)) Für große n nähert sich die Laufzeit 2log(n) an. Damit liegt die Laufzeitkomplexität des Algorithmus in O(log(n)). Cost = (n/log n) T = O(2n) 4. Aufgabe: Data Broadcasting im PRAM Modell Der folgende Code beschreibt einen Algorithmus für Data Broadcasting, d. h. der Wert einer Zelle (eines Prozessors) wird an alle anderen Prozessoren gesendet. Wenn n eine Zweierpotenz ist, werden n/2 Prozessoren (zum Senden bzw. Empfangen) benötigt. for t = 0 to log 2 n 1 do parallel [i = t -1] // dyn. active B[i+ 2 t ] B[i] // proc(i) writes endfor Erweitern Sie den Code so, dass er auch für n funktioniert, das keine Zweierpotenz darstellt. Es muss lediglich eine Bedingung eingefügt werden, die verhindert, dass im letzten Schritt versucht wird, an Adressen zu schreiben, die außerhalb des Gültigkeitsbereiches liegen: for t = 0 to log 2 n 1 do parallel [i = t -1] // active if (i + 2 t < n) B[i + 2 t ] B[i] // proc(i) writes endfor 5. Aufgabe: Maximum mit CRCW-PRAM Es soll ein CRCW-PRAM Algorithmus entwickelt werden, der mit n 2 Prozessoren, die auf einen gemeinsamen Speicher mit der Common-Regel schreiben, das Maximum von n Zahlen in linearer Zeit O(1) ermittelt. Die einzelnen Prozessoren seien in einer n n-matrix angeordnet und können wie folgt programmiert werden: parallel [i = 0... n-1][j = 0... n-1] do something Input ist der Array A vom Typ Zahl (z.b. int oder float) der Länge n, Output ist die Zahl max. Es steht zusätzlich ein Hilfsarray temp vom Typ boolean der Länge n zur Verfügung.

5 5 a) Ergänzen Sie den folgenden Programmcode. Input: A[0... n-1] Output: max parallel [i = 0... n-1][j = 0] temp[i] true b) Bestimmen Sie zunächst die Werte für Work, Cost, Speedup und Effizienz und ordnen Sie sie dann Komplexitätsklassen zu. c) Würde Ihr Algorithmus auch mit der Arbitrary- oder Priority-Regel funktionieren? a) Die Idee ist, dass in der Prozessor-Matrix gleichzeitig jeder Wert aus A mit jedem anderen verglichen werden kann. Prozessor [i][j] vergleicht A[i] mit A[j]. Immer wenn das Element A[i] kleiner ist als A[j], wird das entsprechende Flag temp[i] im Hilfsarray auf false gesetzt. Das bewirkt, dass nach allen Vergleichen, nur ein einziger Wert in diesem Array noch true ist, nämlich der, der keinen einzigen Größenvergleich verloren hat (war immer der größte). Im letzten Schritt muss nur noch das so erhaltene Maximum ausgegeben werden. Input: A[0... n-1] Output: max parallel [i = 0... n-1][j = 0] temp[i] true parallel [i = 0... n-1] [j = 0... n-1] if (A[i] < A[j]) temp[i] false parallel [i = 0... n-1][j = 0] if (temp[i]) max A[i] // wenn Ai = MAX dann wird niemals auf false gesetzt Insgesamt werden konstant (unabhängig von n) T=3 Zeitschritte benötigt. Deshalb liegt die Laufzeitkomplexität in O(1). b) Die Kosten ergeben sich aus der Anzahl der Prozessoren die in irgendeinem Schritt maximal benötigt werden (n 2 im zweiten Parallelschritt) und der Laufzeit T: Cost = T * p = 3 * n 2. Die Kostenkomplexität ist also in O(n 2 ). Die Arbeit ergibt sich aus den tatsächlich genutzten Ressourcen: n Prozessoren im ersten Schritt. n 2 Prozessoren im zweiten Schritt und n Prozessoren im dritten Schritt. Work = 2n + n 2. Die Komplexitätsklasse ist O(n 2 ). Anmerkung: Dieser Algorithmus ist nicht cost-optimal, denn die Anzahl der Schritte des (besten) sequentiellen Algorithmus beträgt T seq = n-1 bzw. dessen Laufzeitkomplexität O(n). Der schnellste sequentielle Algorithmus bräuchte T seq = n-1 Schritte. Der Speedup ergibt sich nun aus dem Quotienten von T seq und T:

6 6 Speedup = (n-1) / 3. Komplexitätsklasse O(n). Die Effizienz ist der Quotient aus Speedup und der Anzahl der Prozessoren: Effizienz = (n - 1) / (3 * n 2 ). Das liegt in der Komplexitätsklasse O(1/n). Ein weiterer Wert ist die Utilization. Sie ist der Quotient aus Work und Cost: Utilization = (2n + n 2 ) / (3 * n 2 ) = 2 / 3n + 1. Dies führt zur Komplexitätsklasse O(1/n). c) Ja. Auch mit den Konfliktregeln Arbitrary und Priority würde der Algorithmus funktionieren. Grund: Wenn alle den gleichen Wert (False) schreiben wollen, dann genügt es, wenn einer erfolgreich ist.

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen 1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2015/2016 Teil I

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

6. Parallele Algorithmen

6. Parallele Algorithmen 6. Parallele Algorithmen 6.1 Vorbemerkungen Bisher: Instruktionen von Programmen werden durch einen einzigen Prozessor sequentiell ausgeführt. Eine Beschleunigung von Algorithmen ist dabei nur möglich,

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Grundlagen der Programmierung 2. Parallele Verarbeitung

Grundlagen der Programmierung 2. Parallele Verarbeitung Grundlagen der Programmierung 2 Parallele Verarbeitung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 27. Mai 2009 Parallele Algorithmen und Ressourcenbedarf Themen: Nebenläufigkeit,

Mehr

Skript zur Vorlesung Parallele Algorithmen. Andreas Goerdt Technische Universität Chemnitz Fakultät Informatik Theoretische Informatik

Skript zur Vorlesung Parallele Algorithmen. Andreas Goerdt Technische Universität Chemnitz Fakultät Informatik Theoretische Informatik Skript zur Vorlesung Parallele Algorithmen Andreas Goerdt Technische Universität Chemnitz Fakultät Informatik Theoretische Informatik Wintersemester 1994 Das Skript ist eine etwas breiter dargestellte

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2013/14 1. Vorlesung Kapitel 1: Sortieren Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Das Problem Eingabe Gegeben: eine Folge A = a 1, a 2,..., a

Mehr

Allgemeine Speed-Up Formel. Gesetz von Gustafson-Barsis

Allgemeine Speed-Up Formel. Gesetz von Gustafson-Barsis 5 Leistungsanalyse Parallelrechner Allgemeine Speed-Up Formel Amdahlsche Gesetz Gesetz von Gustafson-Barsis Karp-Flatt Maß 1 5.1 Allgemeine Speed-Up Formel Allgemeine Speed-Up Formel Speedup = Sequentielle

Mehr

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass

Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass Achtung: Groß O definiert keine totale Ordnungsrelation auf der Menge aller Funktionen! Beweis: Es gibt positive Funktionen f und g so, dass f O g und auch g O f. Wähle zum Beispiel und G. Zachmann Informatik

Mehr

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung

Kapitel 3: Untere Schranken für algorithmische Probleme Gliederung Gliederung 1. Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs 6. Ausgewählte

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Übungen 19.01.2012 Programmieren 1 Felix Rohrer. Übungen

Übungen 19.01.2012 Programmieren 1 Felix Rohrer. Übungen Übungen if / else / else if... 2... 2 Aufgabe 2:... 2 Aufgabe 3:... 2 Aufgabe 4:... 2 Aufgabe 5:... 2 Aufgabe 6:... 2 Aufgabe 7:... 3 Aufgabe 8:... 3 Aufgabe 9:... 3 Aufgabe 10:... 3 switch... 4... 4 Aufgabe

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 3. Vorlesung Laufzeitanalyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Recap: Diskutieren Sie mit Ihrer NachbarIn! 1. 2. 3. Was sind

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

4 Effizienz und Komplexität 3.1 1

4 Effizienz und Komplexität 3.1 1 4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz

Mehr

12. September 2012 Kompexität. Analyse von Algorithmen (Ziele) Empirische Analyse Beispiel Schlussfolgerungen

12. September 2012 Kompexität. Analyse von Algorithmen (Ziele) Empirische Analyse Beispiel Schlussfolgerungen Komplexität von Algorithmen Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 12. September 2012 ODE/FHTBM Komplexität von Algorithmen 12. September 2012 1/41 (Ziele)

Mehr

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst.

Einführung Elementare Datenstrukturen. Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen (Folie 38, Seite 23 im Skript) Der Konstruktor muß den Listenkopf head erzeugen. Der Vorgänger und Nachfolger von head ist head selbst. Einführung Elementare Datenstrukturen

Mehr

Algorithmentheorie Randomisierung. Robert Elsässer

Algorithmentheorie Randomisierung. Robert Elsässer Algorithmentheorie 03 - Randomisierung Robert Elsässer Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n

Algorithmen und Datenstrukturen Wintersemester 2004/ November T(n) = T(n a) + T(a) + n Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen 3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen Sortierproblem Eingabe: Folge von n natürlichen Zahlen a 1, a 2,, a n, die Folge

Mehr

Algorithmen und Datenstrukturen 1-1. Seminar -

Algorithmen und Datenstrukturen 1-1. Seminar - Algorithmen und Datenstrukturen 1-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Inhalt der ersten beiden Vorlesungen Algorithmenbegriff Komplexität, Asymptotik

Mehr

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität Parallelrechner (1) Motivation: Bedarf für immer leistungsfähigere Rechner Leistungssteigerung eines einzelnen Rechners hat physikalische Grenzen: Geschwindigkeit von Materie Wärmeableitung Transistorgröße

Mehr

Informatik II Musterlösung

Informatik II Musterlösung Ludwig-Maximilians-Universität München SS 2006 Institut für Informatik Übungsblatt 4 Prof. Dr. M. Wirsing, M. Hammer, A. Rauschmayer Informatik II Musterlösung Zu jeder Aufgabe ist eine Datei abzugeben,

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Kurs: Parallele Algorithmen (01824) Datum: Oktober 2011 Prüfer: Prof. Verbeek Dauer: 30 Minuten Art: Leistungsnachweis (unbenotet, bestanden)

Kurs: Parallele Algorithmen (01824) Datum: Oktober 2011 Prüfer: Prof. Verbeek Dauer: 30 Minuten Art: Leistungsnachweis (unbenotet, bestanden) Kurs: Parallele Algorithmen (01824) Datum: Oktober 2011 Prüfer: Prof. Verbeek Dauer: 30 Minuten Art: Leistungsnachweis (unbenotet, bestanden) Professor Verbeek ist ein angenehmer Prüfer, der mehr an einem

Mehr

Informatik Vorkurs. Algorithmik

Informatik Vorkurs. Algorithmik Informatik Vorkurs Algorithmik Was ist Informatik? Computer science is no more about computers than astronomy is about telescopes Edsgin Dijkstra (zugeschrieben) it's not about computers in the same sense

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

Programmieren I. Kapitel 5. Kontrollfluss

Programmieren I. Kapitel 5. Kontrollfluss Programmieren I Kapitel 5. Kontrollfluss Kapitel 5: Kontrollfluss Ziel: Komplexere Berechnungen im Methodenrumpf Ausdrücke und Anweisungen Fallunterscheidungen (if, switch) Wiederholte Ausführung (for,

Mehr

RO-Tutorien 3 / 6 / 12

RO-Tutorien 3 / 6 / 12 RO-Tutorien 3 / 6 / 12 Tutorien zur Vorlesung Rechnerorganisation Christian A. Mandery WOCHE 2 AM 06./07.05.2013 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Grundlagen der Programmierung Prof. H. Mössenböck. 6. Methoden

Grundlagen der Programmierung Prof. H. Mössenböck. 6. Methoden Grundlagen der Programmierung Prof. H. Mössenböck 6. Methoden Parameterlose Methoden Beispiel: Ausgabe einer Überschrift class Sample { static void printheader() { // Methodenkopf Out.println("Artikelliste");

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Mathematische Grundlagen

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort.

Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe 1 (Güte von Hashfunktionen): Untersuchen Sie, inwiefern sich die folgenden Funktionen

Mehr

T (n) = max. g(x)=n t(n) S(n) = max. g(x)=n s(n)

T (n) = max. g(x)=n t(n) S(n) = max. g(x)=n s(n) Beim Logarithmischen Kostenmaß wird, im Gegensatz zum EKM, die Stelligkeit der Werte berücksichtigt und mit in die Laufzeit eingerechnet. Beispiel: R1 := R2 (R3), wobei R2 den Wert 5, R3 den Wert 10 und

Mehr

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert?

(a) Wie unterscheiden sich synchrone und asynchrone Unterbrechungen? (b) In welchen drei Schritten wird auf Unterbrechungen reagiert? SoSe 2014 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 2 2014-04-28 bis 2014-05-02 Aufgabe 1: Unterbrechungen (a) Wie unterscheiden sich synchrone

Mehr

Grundlagen der Parallelisierung

Grundlagen der Parallelisierung Grundlagen der Parallelisierung Philipp Kegel, Sergei Gorlatch AG Parallele und Verteilte Systeme Institut für Informatik Westfälische Wilhelms-Universität Münster 3. Juli 2009 Inhaltsverzeichnis 1 Einführung

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr.

Übersicht Datenstrukturen und Algorithmen. Literatur. Algorithmus: Wikipedia Definition. Vorlesung 1: Einführung. Prof. Dr. Übersicht Datenstrukturen und Vorlesung 1: Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/ Diese Präsentation verwendet

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum

Mehr

Kontrollstrukturen, Pseudocode und Modulo-Rechnung

Kontrollstrukturen, Pseudocode und Modulo-Rechnung Kontrollstrukturen, Pseudocode und Modulo-Rechnung CoMa-Übung III TU Berlin 29.10.2012 CoMa-Übung III (TU Berlin) Kontrollstrukturen, Pseudocode und Modulo-Rechnung 29.10.2012 1 / 1 Themen der Übung 1

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

Kapitel 3: Variablen

Kapitel 3: Variablen Kapitel 3: Variablen Thema: Programmieren Seite: 1 Kapitel 3: Variablen Im letzten Kapitel haben wir gelernt, bestimmte Ereignisse zu wiederholen solange eine Bedingung erfüllt ist. Nun möchten wir aber

Mehr

Die Involutfunktion Inhalt

Die Involutfunktion Inhalt Die Involutfunktion Inhalt Inhalt...1 Grundlagen... Basic-Programm...3 Programm-Ablaufplan Involut rekursiv...3 Programm Involut rekursiv...4 Programme für CASIO fx-7400g PLUS...5 Involutfunktion...5 Involut

Mehr

Amortisierte Analysen

Amortisierte Analysen Amortisierte Analysen 26. Mai 2016 1 Einleitung Es gibt viele Datenstrukturen, bei deren Komplexitätsanalyse das Problem auftaucht, dass die Ausführung mancher Operationen Einfluss auf die Komplexität

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de 4. Sortierverfahren Elementare Sortierverfahren - Sortieren durch

Mehr

Werkzeuge zur Programmentwicklung

Werkzeuge zur Programmentwicklung Werkzeuge zur Programmentwicklung B-15 Bibliothek Modulschnittstellen vorübersetzte Module Eingabe Editor Übersetzer (Compiler) Binder (Linker) Rechner mit Systemsoftware Quellmodul (Source) Zielmodul

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 32 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4

Mehr

Einführung in die Programmierung 1

Einführung in die Programmierung 1 Einführung in die Programmierung 1 Einführung (S.2) Einrichten von Eclipse (S.4) Mein Erstes Programm (S.5) Hallo Welt!? Programm Der Mensch (S.11) Klassen (S.12) Einführung Wie Funktioniert Code? Geschriebener

Mehr

Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Übungsblatt Nr. 10

Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Übungsblatt Nr. 10 Gudrun Fischer Sascha Kriewel programmierung@is.informatik.uni-duisburg.de Übungsblatt Nr. 10 Aufgabe 20: Code Verständnis Löse diese Aufgabe selbständig als Vorbereitung zur Übung auf dem Papier. a) Gib

Mehr

Seminarvortrag Amdahlsches und Gustafsonsches Gesetz

Seminarvortrag Amdahlsches und Gustafsonsches Gesetz Seminarvortrag Amdahlsches und Gustafsonsches Gesetz Volker Grabsch Yves Radunz 26. Mai 2008 Veröffentlicht unter http://www.profv.de/uni/ Lizenziert unter Creative Commons BY-SA 3.0 Inhaltsverzeichnis

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 5 Referenzdatentypen - Felder... 5-2 5.1 Eindimensionale Felder - Vektoren... 5-3 5.1.1 Vereinbarung... 5-3 5.1.2 Referenzen sind keine Felder... 5-4 5.1.3 Kopieren eindimensionaler Felder... 5-6

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Allgemeine Hinweise: TECHNISCHE UNIVERSITÄT MÜNCHEN. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift

Allgemeine Hinweise: TECHNISCHE UNIVERSITÄT MÜNCHEN. Name Vorname Studiengang Matrikelnummer. Hörsaal Reihe Sitzplatz Unterschrift TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 2008/09 Einführung in die Informatik 2 Klausur Prof. Dr. Helmut Seidl, T. M. Gawlitza, S. Pott,

Mehr

SOI 2013. Die Schweizer Informatikolympiade

SOI 2013. Die Schweizer Informatikolympiade SOI Die Schweizer Informatikolympiade Lösung SOI Wie schreibe ich eine gute Lösung? Bevor wir die Aufgaben präsentieren, möchten wir dir einige Tipps geben, wie eine gute Lösung für die theoretischen

Mehr

Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2

Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2 Jan Pöschko 18. Januar 2007 Inhaltsverzeichnis 1 Problemstellung 2 1.1 Definition................................... 2 1.2 Warum Sortieren?.............................. 2 2 Einfache Sortieralgorithmen

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Programmierung Paralleler Prozesse

Programmierung Paralleler Prozesse Vorlesung Programmierung Paralleler Prozesse Prof. Dr. Klaus Hering Sommersemester 2007 HTWK Leipzig, FB IMN Sortierproblem Gegeben: Menge M mit einer Ordnungsrelation (etwa Menge der reellen Zahlen) Folge

Mehr

Parallele Berechnungen

Parallele Berechnungen Kapitel 7 Parallele Berechnungen 7.1 Teile und Herrsche (Divide and Conquer) Diese Entwurfsmethode für Algorithmen ist in vielen Bereichen nützlich und lässt sich folgendermaßen beschreiben: Teile das

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Stefan Werner (Übungen) sowie viele Tutoren Teilnehmerkreis und Voraussetzungen Studiengänge

Mehr

JAVA - Suchen - Sortieren

JAVA - Suchen - Sortieren Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 8 Übung zur Vorlesung Grundlagen: Datenbanken im WS14/15 Harald Lang (harald.lang@in.tum.de) http://www-db.in.tum.de/teaching/ws1415/grundlagen/

Mehr

Modul Entscheidungsunterstützung in der Logistik. Einführung in die Programmierung mit C++ Übung 2

Modul Entscheidungsunterstützung in der Logistik. Einführung in die Programmierung mit C++ Übung 2 Fakultät Verkehrswissenschaften Friedrich List, Professur für Verkehrsbetriebslehre und Logistik Modul Entscheidungsunterstützung in der Logistik Einführung in die Programmierung mit C++ Übung 2 SS 2016

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean

Noch für heute: primitive Datentypen in JAVA. Primitive Datentypen. Pseudocode. Dezimal-, Binär- und Hexadezimalsystem. der logische Typ boolean 01.11.05 1 Noch für heute: 01.11.05 3 primitie Datentypen in JAVA Primitie Datentypen Pseudocode Name Speichergröße Wertgrenzen boolean 1 Byte false true char 2 Byte 0 65535 byte 1 Byte 128 127 short 2

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Paralleler Programmentwurf nach Foster

Paralleler Programmentwurf nach Foster Paralleler Programmentwurf nach Foster Die PCAM-Methode Partitionierung - ermittle maximale Parallelität Communication - ermittle Datenabhängigkeiten Agglomeration - erhöhe die Granularität der Aufgaben

Mehr

Automatisches Parallelisieren

Automatisches Parallelisieren Automatisches Parallelisieren Vorlesung im Wintersemester 2010/11 Eberhard Zehendner FSU Jena Thema: Datenabhängigkeitsanalyse Eberhard Zehendner (FSU Jena) Automatisches Parallelisieren Datenabhängigkeitsanalyse

Mehr

JAVA-Datentypen und deren Wertebereich

JAVA-Datentypen und deren Wertebereich Folge 8 Variablen & Operatoren JAVA 8.1 Variablen JAVA nutzt zum Ablegen (Zwischenspeichern) von Daten Variablen. (Dies funktioniert wie beim Taschenrechner. Dort können Sie mit der Taste eine Zahl zwischenspeichern).

Mehr

Informatik B von Adrian Neumann

Informatik B von Adrian Neumann Musterlösung zum 7. Aufgabenblatt vom Montag, den 25. Mai 2009 zur Vorlesung Informatik B von Adrian Neumann 1. Java I Schreiben Sie ein Java Programm, das alle positiven ganzen Zahlen 0 < a < b < 1000

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

= 7 (In Binärdarstellung: = 0111; Unterlauf) = -8 (In Binärdarstellung: = 1000; Überlauf)

= 7 (In Binärdarstellung: = 0111; Unterlauf) = -8 (In Binärdarstellung: = 1000; Überlauf) Musterlösung Übung 2 Aufgabe 1: Große Zahlen Das Ergebnis ist nicht immer richtig. Die Maschine erzeugt bei Zahlen, die zu groß sind um sie darstellen zu können einen Über- bzw. einen Unterlauf. Beispiele

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

188.154 Einführung in die Programmierung Vorlesungsprüfung

188.154 Einführung in die Programmierung Vorlesungsprüfung Matrikelnummer Studienkennzahl Name Vorname 188.154 Einführung in die Programmierung Vorlesungsprüfung Donnerstag, 27.1.2005, 18:15 Uhr EI 7 Arbeitszeit: 60 min - max. 50 Punkte erreichbar - Unterlagen

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

Architektur Verteilter Systeme Teil 2: Prozesse und Threads

Architektur Verteilter Systeme Teil 2: Prozesse und Threads Architektur Verteilter Systeme Teil 2: Prozesse und Threads 21.10.15 1 Übersicht Prozess Thread Scheduler Time Sharing 2 Begriff Prozess und Thread I Prozess = Sequentiell ablaufendes Programm Thread =

Mehr

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

Quadratisches Sieb. Aufgabenstellung

Quadratisches Sieb. Aufgabenstellung Quadratisches Sieb Aufgabenstellung Sei N > 1 eine zerlegbare positive ganze Zahl. Wir wollen ein Verfahren entwickeln, mit dem N in Primfaktoren zerlegt werden kann. Ist N von der Form N = p e mit einer

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

Java. Wir verwenden oft Java für Datenstrukturen und Algorithmen. Die Vorlesung ist aber von der Programmiersprache unabhängig.

Java. Wir verwenden oft Java für Datenstrukturen und Algorithmen. Die Vorlesung ist aber von der Programmiersprache unabhängig. Komplexität von Algorithmen (Folie 34, Seite 18 im Skript) Wir verwenden oft für Datenstrukturen und Algorithmen. Die Vorlesung ist aber von der Programmiersprache unabhängig. Lernziel sind die einzelnen

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 7. Random Walks Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 43 Überblick Überblick Ein randomisierter

Mehr

Einführung Datentypen Verzweigung Schleifen. Java Crashkurs. Kim-Manuel Klein May 4, 2015

Einführung Datentypen Verzweigung Schleifen. Java Crashkurs. Kim-Manuel Klein May 4, 2015 Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 4, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr