Mengenlehre und vollständige Induktion

Ähnliche Dokumente
Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Indexmengen. Definition. n n n. i=1 A i := A 1... A n

Grundbegriffe Mengenlehre und Logik

Kapitel 1. Grundlagen Mengen

2. Grundlagen. A) Mengen

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Kapitel 1. Grundlagen

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen

Induktion und Rekursion

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Kapitel 1. Grundlagen

Mengenlehre. Begriff der Mengenzugehörigkeit x M, x Ê M >x : x { a 1. e e x = a n. } 2 x = a 1. >x : x { y P(y) } 2 P(x) Begriff der leeren Menge

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Mengen und Relationen

Vorlesung. Vollständige Induktion 1

Kapitel 1: Grundbegriffe

Formale Sprachen und Automaten

Große Mengen und Ultrafilter. 1 Große Mengen

Angewandte Mathematik und Programmierung

Brückenkurs Mathematik

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

3 Vollständige Induktion

definieren eine Aussage A als einen Satz, der entweder wahr (w) oder falsch (f) (also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1.

Kapitel 1 Grundbegriffe der Mengenlehre und der Logik

Analysis I. Vorlesung 1. Mengen

Elemente der Analysis I Kapitel 3: Einführung III, Summen, Logik, Mengen, Beweise

2. Symmetrische Gruppen

Vorlesung Diskrete Strukturen Die Sprache der modernen Mathematik

Grundbegriffe aus Logik und Mengenlehre

Grundlegendes der Mathematik

b liegt zwischen a und c.

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

1 Grundlagen. 1.1 Aussagen

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mathematische Logik Zermelo-Fränkel Axiome der Mengenlehre

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Für unseren Gebrauch ist eine Menge bestimmt durch die in ihr enthaltenen Elemente. Ist M eine Menge, so ist ein beliebiges Objekt m wieder so ein

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Kapitel 3. Natürliche Zahlen und vollständige Induktion

2.1 Definitionen Sätze und Beweise Erklärungen zu den Definitionen... 15

Grundbegriffe der Mengenlehre

Grundbegriffe der Informatik

Grundlagen der Mengenlehre

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Induktionsbeweise. Induktionsbeweis: Beweisprinzip. Induktionsbeweis: Bestandeile

Relationen und Partitionen

Vorkurs Beweisführung

Vorkurs Mathematik 2016

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

2 Mengen, Abbildungen und Relationen

Modelltheorie (Einige Impulse)

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

Vorbereitungskurs Mathematik zum Sommersemester 2015 Mengen und Relationen

Einführung in die Informatik 2

Mengen, Funktionen und Logik

Peano-Axiome und Peano-Strukturen

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004

Elementare Mengenlehre

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Logische Grundlagen der Mathematik, WS 2014/15

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

HM I Tutorium 1. Lucas Kunz. 27. Oktober 2016

Logische Grundlagen der Mathematik, WS 2014/15

3 Vom Zählen zur Induktion

Vorlesung 3: Logik und Mengenlehre

Zur Vorbereitung auf die Vorlesung Grundlagen der theoretischen Informatik Mo 4., Mi 6. und Fr. 8. Oktober in H/C 3310 um Uhr.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Grundlagen der Mathematik

Mengen und Abbildungen

1.2 Klassen und Mengen

Mengenlehre. Mengenlehre. Vorkurs Informatik WS 2013/ September Vorkurs Informatik - WS2013/14

Mengen (siehe Teschl/Teschl 1.2)

Kapitel 1. Grundlegendes

Mathematik für Ökonomen 1

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Brückenkurs Mathematik

Diskrete Strukturen. Vorlesung 3: Naive Mengenlehre. 30. Oktober 2018

Dr. Regula Krapf Sommersemester Beweismethoden

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 1)

Vorlesung 2. Tilman Bauer. 6. September 2007

Mathematische Grundlagen der Computerlinguistik

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Denition 1 (Die Peanoschen Axiome). Es gibt eine Menge N und eine sogenannte Nachfolgefunktion S mit folgenden Eigenschaften.

Axiomatische Mengenlehre

Vorkurs Mathematik B

1 Sprechweisen und Symbole der Mathematik

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

: das Bild von ) unter der Funktion ist gegeben durch

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra. Jung Kyu Canci. Mit der Hilfe von: Stefano Iula, Olivia Ebneter, Katharina Laubscher, Viviane Wehrle

Transkript:

Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen mit Mengen.......................... 4.3 Kardinalität von Mengen........................... 5.4 Die natürlichen Zahlen............................ 5 3 Vollständige Induktion 7 4 Danksagung 8 1 Motivation In den ersten beiden Vorträgen des Vorkurses wurde mit dem Bereich der Logik eine unentbehrliche Grundlage der Mathematik beleuchtet. Es wurde gezeigt, wie man Aussagen mittels bekannter Wahrheiten beweisen oder widerlegen kann. Die Frage, die sich nun stellt, ist, von welchen Wahrheiten aus man die Suche nach Aussagen über die Mathematik beginnt. Eine solche grundlegende Wahrheit nennt man auch Axiom. Mittels einer geeigneten Wahl an Axiomen sowie präzisen Definitionen 1

erhält man ein solides Fundament für jene Suche. Heutzutage verwendet man als dieses üblicherweise Mengen. In diesem Vortrag wird zuerst definiert, was man unter einer Menge versteht. Dann werden die Eigenschaften von Mengen untersucht. Anschließend wird mit den natürlichen Zahlen ein Beispiel einer unendlichen Menge betrachtet sowie die Methode der vollständigen Induktion erklärt. Mengen.1 Grundbegriffe Definition.1 Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten m zu einem Ganzen. Bemerkung. Die obige Definition geht auf Georg Cantor (1845-1918) zurück, man spricht auch von naiver Mengenlehre. Um mit den Mengen arbeiten zu können, wird folgende Notation eingeführt: Notation.3 Eine Menge M kann als Aufzählung der Elemente wie z.b M = {1,, 3, 4, 5} oder mittels einer charakterisierenden Eigenschaft E(x) der Elemente x: M = {x X E(x)} notiert werden (hierbei bezeichne X auch eine Menge), z.b M = {x N 3 < x < 10} Nach Cantor wird die mehrfache Aufzählung in der Menge ignoriert: {a, a, a,..., a} = {a} Diese Aussage versteckt sich im Begriff wohlunterschiedene Objekte. Definition.4 Sei M eine Menge und m ein Objekt. m Element von M: m M m kein Element von M: m / M Leere Menge (die Menge, die keine Elemente enthält):, {}

Definition.5 Eine Menge N heißt Teilmenge einer Menge M, N M, falls gilt: x N : x M. In Worten: Jedes Element der Menge N ist auch in M enthalten. Zum Beispiel gilt: {1,, 3} {1,, 3, 4} oder {1} {1,, 3, 4}. Proposition.6 Seien L, N, M Mengen. Dann gilt: L N N M L M. Beweis: Sei x L ein beliebiges Element. Da L N ist, gilt nach Definition x N. Aus N M folgt, dass x M. Da x beliebig gewählt war, gilt x L : x M. Definition.7 Sei M eine Menge. Mit P (M) := {N N M} wird die Menge aller Teilmengen von M bezeichnet. Die Menge P (M) nennt man Potenzmenge. Die Potenzmenge von M 1 = {0, 1} ist P (M 1 ) = {, {0}, {1}, {0, 1}} Bemerkung.8 Es gilt: N M N P (M). Lemma.9 Sei M eine Menge. Dann ist M. In Worten: Die leere Menge ist eine Teilmenge jeder Menge. Beweis: Sei x M. Dann gilt, dass die Aussage x x M wahr ist, denn: Es gibt keine Elemente x in der leeren Menge, d.h die Aussage x ist falsch (bezeichne diese Aussage mit A). x M ist eine richtige Aussage für Elemente x aus M (bezeichne diese Aussage mit B). Damit ist die Aussage A B wahr (Definition der Implikation vgl. Logikvortrag). Bemerkung.10 Sei M eine Menge. Im Allgemeinen ist es falsch, dass die Aussage M wahr ist. Betrachte beispielsweise die Menge M = {1}. Dann gilt / M. Lemma.11 Sei M eine Menge. Dann ist P (M) und M P (M). Beweis: Es ist zu zeigen, dass M bzw. M M. Ersteres gilt wegen des vorherigen Lemmas. Letzteres folgt, da x M : x M ist. Mit dem Begriff der Teilmenge ist auch die formale Definition von Gleichheit von Mengen möglich: Definition.1 Seien N, M Mengen. N ist gleich M, in Zeichen N = M genau dann, wenn gilt: N M M N. 3

. Kostruktionen mit Mengen An dieser Stelle wird vorgestellt, wie man aus gegebenen Mengen A, B neue Mengen konstruieren kann. Dazu werden die Begriffe wie Durchschnitt, Vereinigung, kartesisches Produkt und Komplement von Mengen vorgestellt. Definition.13 Sei M eine Menge, A, B M Teilmengen. Dann definiert man den Durchschnitt der Mengen A und B als die Vereinigung der Mengen A und B als das kartesische Produkt von A und B als das Komplement der Menge A in M als A B = {x M x A x B} A B = {x M x A x B} A B := {(a, b) a A, b B} M \ A = {x M x / A} sowie die symmetrische Differenz von A und B als A B := {x (x A x / B) (x B x / A)} Um diese Begriffe besser zu verinnerlichen, folgt hier ein größeres Beispiel: Beispiel.14 Seien M = {1,, 3, 4, 5, 6, 7, 8, 9, 10}, A, B M mit A = {, 3, 5} und B = {5, 7}. Dann gilt: Der Durchschnitt von A und B ist A B = {5} Die Vereinigung ist A B = {, 3, 5, 7}. Das kartesische Produkt ist A B = {(, 5), (, 7), (3, 5), (3, 7), (5, 5), (5, 7)} Das Komplement von A in M ist M \ A = {1, 4, 6, 7, 8, 9, 10}. Die symmetrische Differenz von A und B ist A B = {, 3, 7} Ein interessierter Leser wird sicherlich fragen: Und wie beweist man Aussagen mit Mengen bzw. wie schreibt man es formal auf? Dazu wird ein kleines Lemma gezeigt: Lemma.15 Seien A, B, C Mengen und A, C B. Dann gilt: B \ (A C) = (B \ A) (B \ C). 4

Beweis: : Sei x B \ (A C). Dann gilt: x B und x / (A C), d.h x B und x / (A C). Mittels Wahrheitstabellen hat man gezeigt, dass x / (A C) genau der Aussage (x / A und x / C) entspricht. Fügt man die logische Aussage zusammen, dann gilt: x B und (x / A und x / C), also (x B und x / A) und (x B und x / C), was x B \ A und B \ C entspricht, also: x (B \ A) (B \ C) gilt. : ist eine Übung.. Weitere ähnliche Aussagen findet man in den Übungen..3 Kardinalität von Mengen Eine mögliches Kriterium, Mengen zu unterscheiden, ist zu schauen, ob sie gleich viele Elemente haben oder nicht. Genau das ist mit dem Begriff Kardinalität gemeint. Definition.16 Die Kardinalität #M einer endlichen Menge M bezeichne die Anzahl ihrer Elemente. Es wird #M = gesetzt, falls M unendlich viele Elemente hat. Beispielsweise: #{a, p, e, q} = 4. Lemma.17 Sei M eine endliche Menge. Dann ist #P (M) > #M. Beweis: Sei n = #M. Schreibe M = {x 1,..., x n }. Dann gilt i = 1,..., n, dass {x i } P (M). Außerdem ist nach Lemma.11 P (M), d.h #P (M) n + 1 > n = #M.4 Die natürlichen Zahlen In diesem Abschnitt werden die natürlichen Zahlen formal über ein Axiomensystem (die sogenannten Peano-Axiome) definiert. Die natürlichen Zahlen sind ein Beispiel für eine Menge mit unendlich vielen Elementen. Definition.18 Eine Menge wird die Menge der natürlichen Zahlen genannt und mit N bezeichnet, wenn sie die folgenden Axiome erfüllt: (dabei wird mit n der Nachfolger von n bezeichnet). 1. 1 N,. n N n N, 3. n N : n = 1, 4. n, m N, n = m n = m 5

5. Sei M N eine Teilmenge, sodass 1 M und n N : (n M n M). Dann ist M = N. Bemerkung.19 Mit der klassischen Vorstellung der natürlichen Zahlen als setzt man für ein n N : n := n + 1. N = {1,, 3,... } Um das Axiomensystem mathematisch zu untersuchen, sind folgende Fragen zu klären: 1. Existiert ein Objekt mit den geforderten Eigenschaften?. Inwiefern ist dieses Objekt durch die Axiome eindeutig bestimmt? Im Rahmen dieses Vortrags wird nur die Konstruktion zur ersten Frage angedeutet, da die meisten Leser noch nicht genügend Wissen haben, um die mathematische Begründung von beiden Fragen nachzuvollziehen. Definition.0 1,, 3,... sind erstmal nur Symbole, daher definiere: 1 := P ( ) = { }, := P ( P ( ) ) = {, { } } (, 3 := P P ( P ( ) )) ( {, } ) { = P { } =, { }, { { } }, {, { } }} usw. { Damit N := P ( ), P ( P ( ) ) (, P P ( P ( ) )) },.... Proposition.1 Es ist #N =. Beweis durch Widerspruch: Angenommen #N = m <. Dann kann man ein n 0 N so wählen, dass n 0 in N maximal ist. Dann ist nach Def..18 () auch P (n 0 ) N (als Nachfolger von n 0 per Konstruktion in Definition.0), aber nach Lemma.17 ist #P (n 0 ) > #n 0, was ein Widerspruch dazu ist, dass #n 0 maximal in N ist. Also gibt es kein solches Element und #N =. 6

3 Vollständige Induktion Aus den Peano-Axiomen läßt sich ein Beweisprinzip ableiten, das vollständige Induktion genannt wird. Satz 3.1 Sei S eine Eigenschaft, sodass für n N entweder S(n) = w oder S(n) = f gilt. Gilt dann S(1) = w und n N : (S(n) = w S(n ) = w), so ist S(n) = w n N. Beweis: Setze M := {n N S(n) = w} N. Dann erfüllt M die Voraussetzungen von (P5) und demnach ist M = N. Um also zu zeigen, dass eine Aussage für alle natürlichen Zahlen gilt, genügt es, die Aussage für die 1 N zu zeigen (genannt Induktionsanfang) und zu beweisen, dass die Aussagen mit beliebigem n N auch für dessen Nachfolger n gelten (genannt Induktionsschritt). An dieser Stelle folgen zwei einfache Beispiele. Dafür benötigen wir folgende Definition: Definition 3. n a i = a 1 + a + a 3 + + a n Korollar 3.3 n N : n i = n(n + 1) Beweis: (Mit vollständiger Induktion) Induktionsanfang (n=1): 1 = 1. (wahr) Induktionsvoraussetzung: Es gelte die Induktionsvoraussetzung für ein n N : n i = n(n + 1) Induktionsbehauptung: Es wird behauptet, dass für n + 1 n+1 i = (n + 1)(n + ) 7

gilt, wobei n N wie in der Induktionsvoraussetzung gewählt ist. Induktionsschluss: n+1 i = n i + (n + 1) = n(n + 1) + (n + 1) = (n + 1) + n(n + 1) = (n + 1)(n + ) Korollar 3.4. n N : n > n Beweis: (Mit vollständiger Induktion) Induktionsanfang (n=1): 1 = > 1. (wahr) Induktionsvoraussetzung: Es gelte die Induktionsvoraussetzung für ein n N : n > n Induktionsbehauptung: Es wird behauptet, dass für n + 1: n+1 > (n + 1) gilt, wobei n N wie in der Induktionsvoraussetzung gewählt ist. Induktionsschluss: n+1 = n > n = n + n > n + 1 4 Danksagung Ein besonderes Danke Schön geht an Stefan Zentarra. Auf Grundlage seines Skriptes ist aktuelles Skript entstanden. Ich danke ebenfalls die Erstis von den letzten Vorkursen, die die Fachschaft auf die unvollständige Erklärung des Konzeptes der leeren Menge hingewiesen haben. 8