Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse



Ähnliche Dokumente
i x k k=1 i u i x i v i 1 0, ,08 2 0, ,18 3 0, ,36 4 0, ,60 5 1, ,00 2,22 G = n 2 n i=1


Statistische Thermodynamik I Lösungen zur Serie 1

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Beispiel Zusammengesetzte Zufallsvariablen

Bei vielen Zufallsexperimenten interessiert man sich lediglich für das Eintreten bzw. das Nichteintreten eines bestimmten Ereignisses.

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

R. Brinkmann Seite Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

Zufallsgrößen. Vorlesung Statistik für KW Helmut Küchenhoff

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

15.3 Bedingte Wahrscheinlichkeit und Unabhängigkeit

Die Post hat eine Umfrage gemacht

Quantilsschätzung als Werkzeug zur VaR-Berechnung

Gibt es einen Geschmacksunterschied zwischen Coca Cola und Cola Zero?

q = 1 p = k k k = 0, 1,..., = [ ] = 0.678

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Professionelle Seminare im Bereich MS-Office

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

A Lösungen zu Einführungsaufgaben zu QueueTraffic

Zeichen bei Zahlen entschlüsseln

Die neue Aufgabe von der Monitoring-Stelle. Das ist die Monitoring-Stelle:

Die Invaliden-Versicherung ändert sich

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

DAVID: und David vom Deutschlandlabor. Wir beantworten Fragen zu Deutschland und den Deutschen.

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 2010

Was meinen die Leute eigentlich mit: Grexit?

Statuten in leichter Sprache

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

Arbeitslos Wohnen in den Niederlanden, Arbeiten in Deutschland

allensbacher berichte

9 Auto. Rund um das Auto. Welche Wörter zum Thema Auto kennst du? Welches Wort passt? Lies die Definitionen und ordne zu.

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Wir arbeiten mit Zufallszahlen

Wie löst man Mathematikaufgaben?

Eva Douma: Die Vorteile und Nachteile der Ökonomisierung in der Sozialen Arbeit

Mechanismus Design Auktionen

Was ich als Bürgermeister für Lübbecke tun möchte

Lichtbrechung an Linsen

Zufallsgrößen und Wahrscheinlichkeitsverteilungen

Alle gehören dazu. Vorwort

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = ,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Regeln für das Qualitäts-Siegel

Schleswig-Holstein Kernfach Mathematik

Anleitung über den Umgang mit Schildern

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Geld Verdienen im Internet leicht gemacht

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Wichtig ist die Originalsatzung. Nur was in der Originalsatzung steht, gilt. Denn nur die Originalsatzung wurde vom Gericht geprüft.

Daten sammeln, darstellen, auswerten

Data Mining: Einige Grundlagen aus der Stochastik

Dazu gilt Folgendes: : Hier kannst du bis zum 6. Stich problemlos abwerfen und

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Lehrer: Einschreibemethoden

y P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

Die Binomialverteilung

Die Liebe und der Verlust

Eine der Aktien hat immer einen höheren Gewinn als die andere Aktie. Ihre Aufgabe ist es diese auszuwählen.

KinderPlus. Mit KinderPlus wird Ihr Kind zum Privatpatienten im Krankenhaus.

40-Tage-Wunder- Kurs. Umarme, was Du nicht ändern kannst.

Der Kalender im ipad

Quadratische Gleichungen

Lassen Sie sich dieses sensationelle Projekt Schritt für Schritt erklären:

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Korrelation (II) Korrelation und Kausalität

Informationen zum Ambulant Betreuten Wohnen in leichter Sprache

Maristengymnasium Fürstenzell zuletzt geändert am Aufgaben zur Kombinatorik (mit Lösungen)

Nicht über uns ohne uns

Impulse Inklusion 2014 Beteiligungskulturen - Netzwerke - Kooperationen (Leichte Sprache Version)

Sichere Anleitung Zertifikate / Schlüssel für Kunden der Sparkasse Germersheim-Kandel. Sichere . der

Unsere Ideen für Bremen!

Abitur 2007 Mathematik GK Stochastik Aufgabe C1

W-Rechnung und Statistik für Ingenieure Übung 11

Steinmikado I. Steinmikado II. Steinzielwerfen. Steinwerfen in Dosen

DER SELBST-CHECK FÜR IHR PROJEKT

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Markovketten. Bsp. Page Ranking für Suchmaschinen. Wahlfach Entscheidung unter Risiko und stat. Datenanalyse

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

Studieren- Erklärungen und Tipps

Rentenarten in der gesetzlichen Rentenversicherung + VBL-Rente

Einstellungen der Deutschen gegenüber dem Beruf der Putzfrau

$ % + 0 sonst. " p für X =1 $

Diagnostisches Interview zur Bruchrechnung

1. Weniger Steuern zahlen

Im Folgenden werden einige typische Fallkonstellationen beschrieben, in denen das Gesetz den Betroffenen in der GKV hilft:

Warum Sie dieses Buch lesen sollten

Welche Bereiche gibt es auf der Internetseite vom Bundes-Aufsichtsamt für Flugsicherung?

Impulse Inklusion Selbst-bestimmtes Wohnen und Nachbarschaft

Wie ist das Wissen von Jugendlichen über Verhütungsmethoden?

Das Leitbild vom Verein WIR

11. Rent-Seeking 117

DAVID: und David vom Deutschlandlabor. Wir beantworten Fragen zu Deutschland und den Deutschen.

Hautkrebsscreening. 49 Prozent meinen, Hautkrebs sei kein Thema, das sie besorgt. Thema Hautkrebs. Ist Hautkrebs für Sie ein Thema, das Sie besorgt?

Statistiktraining im Qualitätsmanagement

Ohne Fehler geht es nicht Doch wie viele Fehler sind erlaubt?

Elternzeit Was ist das?

Statistik I für Betriebswirte Vorlesung 5

Variationen Permutationen Kombinationen

Transkript:

Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien 2 bis 7) B) Diskretes Warten: Geometrische Verteilung und Binomialverteilung (Folien 8 bis 14) C) Die (negative) Exponentialverteilung (Folien 15 bis 19) C) Die (negative) Exponentialverteilung (Folien 15 bis 19) D) Die Poissonverteilung (Folien 20 bis 31) D) Die Poissonverteilung (Folien 20 bis 31) E) Übersicht: Spezielle Verteilungen (Folien 30 bis 32)

Beispiel zur geometrischen Verteilung 1 / 2 Folie I - 12-2 Im Spielkasino... Ein Roulettspieler setzt immer auf Zero. Er wartet auf seinen ersten Gewinn. Wie lange muss er warten, bis er das erste Mal gewinnt? Oder präziser: Wie ist die Wahrscheinlichkeitsverteilung von T 1 = Zahl der verlorenen Spiele bis zum ersten Gewinn? Die Wahrscheinlichkeit für einen Verlust beträgt: 36 ( 1 p) = 37 Dann ist die Wahrscheinlichkeit für 0 verlorene Spiele bis zum ersten Gewinn 1 p( 0) = = p = 0, 027 37

Beispiel zur geometrischen Verteilung 2 / 2 Folie I - 12-3 Voraussetzung: Die Roulett-Spiele sind unabhängig, Kugel hat kein Gedächtnis 1 p( 0) = = p = 0, 0270 37 36 1 p( 1) = = ( 1 p) p = 0, 0263 37 37 2 36 1 2 p( 2) = 1 0 0256 37 = ( p) p =, 37 k 36 1 k p( k) = = ( 1 p) p 37 37 Wie viele verlorene Spiele wird der Spieler im Mittel bis zum ersten Gewinn in Kauf nehmen müssen? 36 1 p 37 36 E( T1 ) = = = = 36 p 1 1 37

Die Geometrische Verteilung Folie I - 12-4 Ausgangssituation: Sie ziehen nacheinander zufällig n Objekte aus N Objekten heraus, die sich in bezug auf ein Merkmal mit zwei Ausprägungen A und A unterscheiden. Die Objekte werden nach jedem Zug zurückgelegt. Dann ist die ZV X = "Anzahl der Objekte mit A vor dem ersten Objekt mit A" N A geometrisch verteilt mit dem Parameter p =, wobei N A die N Anzahl der Objekte mit A ist. D. h. die ZV folgt der Verteilung GV p. ( ) Mögliche Werte von X: k = 0, 1,... Wie Häufigkeits- groß ist die und Varianz Verteilungsfunktion: von Y? 1 k k f ( k) = ( p) p F( k) = 1 ( 1 p) + 1 Erwartungswert von X: Varianz Wie großvon ist X: die Varianz von Y? 1 p ( 1 p) E( X ) = (=Wettquotient, Quote, odds) Var( X ) = 2 p p

Graphische Darstellung der Dichte einer Geometrischen Verteilung mit p =1 / 37 (Roulette, einfaches Spiel) Folie I - 12-5 0,03 Geometrische Verteilung (p=1/37) 0,02 0,01 0 0 10 20 30 40 50 60 70 80 90 100

Häufigkeits- und Verteilungsfunktion der Geometrischen Verteilung Folie I - 12-6 Leiten Sie aus der Häufigkeitsfunktion einer geometrisch verteilten Zufallsvariable die Verteilungsfunktion ab! 1 k k f ( k) = ( p) p F( k) = 1 ( 1 p) + 1 F( k) = P( k) = f ( i) k = = i= 0 0 1 ( 1 ) ( 1 ) ( 1 ) 0 1 k ( 1 ) ( 1 ) ( 1 ) F( k) = p p + p p +... + p p F( k) = p p + p +... + p = + + + ( 1 p) F( k) p ( 1 p) ( 1 p)... ( 1 p) 1 2 k+ 1 Subtrahiert man die letzte von der vorletzten Zeile, erhält man: ( 1 ) ( 1 ) p F( k) = p p p 0 k+ 1 F( k) = p p F( k) = ( 1 ) ( 1 ) k+ 1 1 ( 1 p) 0 k+ 1 k

Folie I - 12-7 Beispiele für Wahrscheinlichkeitsverteilungen der Geometrischen Verteilung

Aufgabe: Am Roulettisch 1 / 2 Folie I - 12-8 Am Roulettisch... Ein Roulettspieler setzt ständig auf Rot. a) Welcher Verteilung folgt die Zahl der verlorenen Spiele bis zum ersten Gewinn? b) Wie viele Spiele verliert der Spieler im Mittel bis zum ersten Gewinn? c) Wie groß ist die Wahrscheinlichkeit, dass er genau einmal verliert und dann gewinnt? d) Wie groß ist die Wahrscheinlichkeit, dass er erst im dritten Spiel oder später gewinnt?

Aufgabe: Am Roulettisch 2 / 2 Folie I - 12-9 Am Roulettisch (fortgesetzt)... Ein Roulettspieler setzt ständig auf Rot. e) Wie groß ist die Wahrscheinlichkeit, dass er erst im 10. Spiel oder später gewinnt? f) Wie ist die Zahl der verlorenen Spiele unter den ersten drei Spielen verteilt? g) Wie groß ist die Wahrscheinlichkeit, unter den ersten drei Spielen dreimal zu verlieren? h) Wie ist die Zahl der gewonnen Spiele unter den ersten drei Spielen verteilt?

Aufgabe: Geburtenpolitik in China Folie I - 12-10 Die chinesische Regierung verfolgt zur Bevölkerungskontrolle eine strikte Ein-Kind- Politik. Es gelingt ihr, dies in den Städten konsequent durchzusetzen. Unterstellen Sie im folgenden, dass Knaben- und Mädchengeburten gleichwahrscheinlich sind und dass Geschlecht aufeinander folgender Kinder stochastisch unabhängig ist. a) Welcher Verteilung folgt demnach die Zahl der Knaben unter 100 in einer Stadt geborenen Kindern? b) Auf Druck der Bevölkerung wird die Politik dahingehend gelockert, dass jede Familie solange Kinder bekommen darf, bis der erste Knabe geboren wird. Unterstellen Sie, dass diese Regel strikt befolgt und maximal ausgenutzt wird. i. Welcher Verteilung folgt die Zahl der Kinder in einer Familie und wie viele Kinder wird eine Familie im Mittel haben? ii. iii. iv. Wie groß ist der Anteil der Ein-Kind-Familien unter dieser Regel? Wird sich das Verhältnis der Geschlechter verschieben, und wenn ja, wird es mehr Jungen oder mehr Mädchen geben? Beantworten Sie Frage iii für den Fall, dass nicht jede Familie die ihr maximal mögliche Zahl von Kindern bekommt!

Aufgabe: Beziehungskiste 1 / 2 Folie I - 12-11 Franz und Suse stellen fest, dass es ihrer Beziehung nicht gut tut, wenn sie sich an Tagen treffen, wo einer von beiden keine Lust hat. Sie beschließen, jeden Tag miteinander zu telefonieren und sich nur dann zu treffen, wenn beide Lust haben. Unterstellen Sie, dass die Wahrscheinlichkeit, dass einer auf den anderen Lust hat, jeden Tag gleich ist und dass sich jeder von beiden nicht von der Lust oder Unlust des anderen beeinflussen lässt. Franz möge im Mittel dreimal, Suse zweimal die Woche Lust haben. a) Wie groß ist die Wahrscheinlichkeit, dass sie sich heute treffen? b) Wie groß ist der Abstand zwischen zwei Treffen im Mittel? c) Welcher Verteilung folgt die Zahl der Treffen pro Woche?

Aufgabe: Beziehungskiste 2 / 2 Folie I - 12-12 Franz und Suse stellen fest, dass es ihrer Beziehung nicht gut tut, wenn sie sich an Tagen treffen, wo einer von beiden keine Lust hat. Sie beschließen, jeden Tag miteinander zu telefonieren und sich nur dann zu treffen, wenn beide Lust haben. Unterstellen Sie, dass die Wahrscheinlichkeit, dass einer auf den anderen Lust hat, jeden Tag gleich ist und dass sich jeder von beiden nicht von der Lust oder Unlust des anderen beeinflussen lässt. Franz möge im Mittel dreimal, Susi zweimal die Woche Lust haben. d) Welcher Verteilung folgt die Zahl der einsamen Tage bis zum nächsten Treffen? e) Wie groß ist die Wahrscheinlichkeit, dass sie sich mindestens 3 Wochen nicht sehen ( das Trennungsrisiko )? f) Angenommen, jeder lässt sich doch ein bisschen von der Lust des anderen anstecken, so dass sich die tägliche Wahrscheinlichkeit eines Treffens verdoppelt. Wie lauten dann die richtigen Antworten auf a), b) und e)?

Aufgabe: Die Transistoren-Schachtel 1 / 2 Folie I - 12-13 In einer Schachtel befinden sich 8 Transistoren, von denen einer defekt ist. a) Sie entnehmen 2 Transistoren zufällig mit Zurücklegen. Wie groß ist die Wahrscheinlichkeit, dass sich darunter i. genau ein defekter Transistor befindet? ii. kein defekter Transistor befindet? b) Sie entnehmen 2 Transistoren zufällig ohne Zurücklegen. Wie groß ist die Wahrscheinlichkeit, dass sich darunter i. genau ein defekter Transistor befindet? ii. kein defekter Transistor befindet?

Aufgabe: Die Transistoren-Schachtel 2 / 2 Folie I - 12-14 In einer Schachtel befinden sich 8 Transistoren, von denen einer defekt ist. c) Sie entnehmen jeweils einen Transistor zufällig, prüfen ihn und legen ihn dann zurück. Es sei X=k falls bei der (k+1)-ten Entnahme zum ersten Mal ein defekter Transistor entnommen wird. k {0,1,2,...} i. Bestimmen Sie E(X) und Var(X)! ii. Bestimmen Sie P( X 2 )! iii. Bestimmen Sie P( X 2 )!

Beispielaufgabe zum stetigen Warten: Schneller als die Feuerwehr... Folie I - 12-15 Die Feuerwehr schickt bei jedem per Notruf gemeldeten Herzinfarkt einen speziellen Notarztwagen (NAW). Aus der Vergangenheit ist bekannt, dass im Schnitt 40 Herzinfarkte pro Tag gemeldet werden. Um planen zu können, wie viele NAW sie brauchen, müssen von Ihnen als Berater noch einige Fragen beantwortet werden. a) Wie groß ist die Wahrscheinlichkeit, innerhalb der durchschnittlichen Einsatzdauer von 20 Minuten einen zweiten Notruf zu bekommen? b) Wie groß ist die Wahrscheinlichkeit, innerhalb von einer Stunde mehr als drei Einsätze fahren zu müssen?

Folie I - 12-16 Lösung zur Beispielaufgabe zum stetigen Warten: Schneller als die Feuerwehr... Die Fragen der Feuerwehr lassen sich unter zwei Voraussetzungen leicht mit Hilfe der Wahrscheinlichkeitsrechnung beantworten: 1. Die Notrufe gehen unabhängig ein (keine gegenseitige Beeinflussung). 2. Die Wahrscheinlichkeit, dass in der nächsten Zeiteinheit ein Notruf eingeht ist den ganzen Tag gleich, d. h. es gibt keine bevorzugte Tageszeit bei Infarkten. a) Unter diesen Voraussetzungen folgt die Zufallsvariable T = Wartezeit bis zum nächsten Notruf in Stunden 40 5 einer (negativen) Exponentialverteilung mit dem Parameter λ = = 24 3

Beispiele für Dichtefunktionen der (negative) Exponentialverteilung Folie I - 12-17

Graphische Darstellung der Dichte einer Geometrischen Verteilung und einer (negativen) Exponentialverteilung Folie I - 12-18 0,03 Geometrische Verteilung (p=1/37) 0,02 (negative) Exponentialverteilung (λ=1/36) 0,01 0 0 10 20 30 40 50 60 70 80 90 100

Die (negative) Exponentialverteilung Folie I - 12-19 Ausgangssituation: Sie beobachten einen "Poisson-Prozeß". Das impliziert, dass sich gleichartige Punktereignisse nicht gegenseitig beeinflussen ("Unabhängigkeit") und ihre Eintrittwahrscheinlichkeit zeitkonstant ist ("Gleichmäßiger Fluss"). Dann ist die ZV X = "Wartezeit bis zum nächsten Ereignis" (negativ) exponentialverteilt mit dem Parameter λ, wobei λ die erwartete Ereignisanzahl pro Zeiteinheit ist. D. h. die ZV folgt der Verteilung NEV λ. ( ) Mögliche Werte von X: Wie Häufigkeitsfunktion: groß ist die Varianz von Y? λ t f ( t) = λ e t F( t) = 1 e + R 0 Erwartungswert von X: Varianz Wie großvon ist X: die Varianz von Y? 1 1 E( X ) = Var( X ) = 2 λ λ λ t

Folie I - 12-20 Lösung zur Beispielaufgabe zum stetigen Warten: Schneller als die Feuerwehr...(fortgesetzt) Die Fragen der Feuerwehr lassen sich unter zwei Voraussetzungen leicht mit Hilfe der Wahrscheinlichkeitsrechnung beantworten: 1. Die Notrufe gehen unabhängig ein (keine gegenseitige Beeinflussung). 2. Die Wahrscheinlichkeit, dass in der nächsten Zeiteinheit ein Notruf eingeht ist den ganzen Tag gleich, d. h. es gibt keine bevorzugte Tageszeit bei Infarkten. b) Unter diesen Voraussetzungen folgt die Zufallsvariable X = Anzahl der Einsätze pro Stunde 40 5 einer Poissonverteilung mit dem Parameter λ = = 24 3

Folie I - 12-21 Beispiele für Wahrscheinlichkeitsverteilungen der Poisson-Verteilung

Die Poisson-Verteilung Folie I - 12-22 Ausgangssituation: Sie beobachten einen "Poisson-Prozeß". Das impliziert, dass sich gleichartige Punktereignisse nicht gegenseitig beeinflussen ("Unabhäbgigkeit") und ihre Eintrittwahrscheinlichkeit zeitkonstant ist ("Gleichmäßiger Fluss"). Dann ist die ZV X = "Anzahl der Ereignisse in einer Zeiteinheit (im Intervall T )" poissonverteilt mit dem Parameter λ ( λ T ). D. h. die ZV folgt der Verteilung PV ( λ) bzw. PV ( T ) λ. Mögliche Werte von X: k = 0, 1,... Wie Häufigkeits- groß ist und die Varianz Verteilungsfunktion: von Y? k λ λ f ( k) = e k! Erwartungswert von X: Wie Varianz großvon ist X: die Varianz von Y? E( X ) = λ Var( X ) = λ

Folie I - 12-23 Lösung zur Beispielaufgabe zum stetigen Warten: Schneller als die Feuerwehr...(fortgesetzt) Die Zufallsvariable T folgt einer (negativen) Exponentialverteilung 5 40 5 λ 5 t t 3 mit dem Parameter λ = = und der Dichte f ( t) = λ e = e. 24 3 3 5 t 3 λ t Die Verteilungsfunktion lautet F( x) = 1 e = 1 e. 1 3 Der Erwartungswert lautet E( X ) = = Stunden. λ 5 a) Die Wahrscheinlichkeit, einen Notruf innerhalb von 20 Minuten (= 1/3 Stunden) zu bekommen, beträgt: 1 1 3 1 5 3 5 t λ t λ t 3 3 9 λ 0 0 0 1 P t 0, = e dt = e = e = e + 1 = 0, 426 3 Bzw. 5 1 5 3 3 9 1 1 P t 0, = F = 1 e = 1 e = 0, 426 3 3

Folie I - 12-24 Lösung zur Beispielaufgabe zum stetigen Warten: Schneller als die Feuerwehr...(fortgesetzt) Die Zufallsvariable X folgt einer Poissonverteilung 5 k 40 5 λ 3 λ mit dem Parameter λ = = und der Dichte f ( k) = e = e 24 3 k! k! x k x k λ λ λ λ Die Verteilungsfunktion lautet F( x) = e = e. k = 0 k! k = 0 k! 5 Der Erwartungswert lautet E( X ) = λ = Notrufe. 3 b) Die Wahrscheinlichkeit, mehr als drei Einsätze pro Stunde fahren zu müssen beträgt: ( > 3) = 1 ( 3) = 1 [ ( = 0) + ( = 1) +... ( = 3) ] P X P X P X P X P X 5 5 3 k 5 λ λ 3 3 3 = 1 e 1 e... = + + k= 0 k! 0! 3! 5 5 25 125 3 = 1 e 1 + + + = 0, 088 2 18 162 0 3 k 5 3

Aufgabe: Im Wartezimmer 1 / 3 Folie I - 12-25 Ein mit Ihnen befreundeter Arzt behandelt im Schnitt 15 Patienten pro Stunde. Als enger Freund werden Sie bevorzugt behandelt, kommen also immer als nächster dran, wenn Sie die Praxis betreten. a) Welcher Verteilung folgt die Wartezeit (in Minuten)? b) Wie lange müssen Sie im Schnitt warten? c) Wie groß ist die Wahrscheinlichkeit, dass Sie nicht mehr als 2 Minuten warten müssen?

Aufgabe: Im Wartezimmer 2 / 3 Folie I - 12-26 Ein mit Ihnen befreundeter Arzt behandelt im Schnitt 15 Patienten pro Stunde. Als enger Freund werden Sie bevorzugt behandelt, kommen also immer als nächster dran, wenn Sie die Praxis betreten. d) Wie groß ist die Wahrscheinlichkeit, dass Sie 3 bis 5 Minuten warten müssen? e) Wie groß ist die Wahrscheinlichkeit, dass Sie 10 Minuten oder länger warten müssen? f) Welche Wartezeit wird in 90% der Fälle nicht überschritten?

Aufgabe: Im Wartezimmer 3 / 3 Folie I - 12-27 Ein mit Ihnen befreundeter Arzt behandelt im Schnitt 15 Patienten pro Stunde. Als enger Freund werden Sie bevorzugt behandelt, kommen also immer als nächster dran, wenn Sie die Praxis betreten. g) Wie ist die Verteilung der Anzahl der Patienten, die in einer Minute dran kommen? h) Wie ist die Verteilung der Anzahl der Patienten, die in 4 Minuten dran kommen? i) Wie groß ist die Wahrscheinlichkeit, dass in 4 Minuten nicht mehr als ein Patient dran kommt?

Aufgabe: Über den Wolken 1 / 2 Folie I - 12-28 Auf einem internationalen Großflughafen landen auf mehreren parallelen Landebahnen im Mittel 120 Flugzeuge pro Stunde. 10% der Flugzeuge kommen im Mittel aus Deutschland. Unterstellen Sie, dass der Flugzeugfluss gleichmäßig ist und die Flugbewegungen unabhängig sind. Ein Besucher beginnt zu einem bestimmten Zeitpunkt mit der Beobachtung des Luftverkehrs. a) Welcher Verteilung folgt die Wartezeit bis zum ersten Flugzeug? b) Welcher Verteilung folgt die Wartezeit bis zum ersten deutschen Flugzeug? c) Welcher Verteilung folgt die Zahl der Flugzeuge in den ersten 10 Minuten?

Aufgabe: Über den Wolken 2 / 2 Folie I - 12-29 Auf einem internationalen Großflughafen landen auf mehreren parallelen Landebahnen im Mittel 120 Flugzeuge pro Stunde. 10% der Flugzeuge kommen im Mittel aus Deutschland. Unterstellen Sie, dass der Flugzeugfluss gleichmäßig ist und die Flugbewegungen unabhängig sind. Ein Besucher beginnt zu einem bestimmten Zeitpunkt mit der Beobachtung des Luftverkehrs. d) Welcher Verteilung folgt die Zahl der nicht-deutschen Flugzeuge bis zur Landung des ersten deutschen Flugzeugs? e) Welcher Verteilung folgt die Anzahl der deutschen Flugzeuge unter den ersten 20 Flugzeugen? f) Inwieweit sind die Voraussetzungen der Verteilungsmodelle realistische Annahmen?

Übersicht: Spezielle Verteilungen 1 / 2 Folie I - 12-30 Gleichverteilung GLV ( n), n N Bernoulliverteilung (=Zweipunktverteilung) [ 0 1] ZPV ( p), p, Binomialverteilung [ 0 1] BV ( n, p), n N, p, Hypergeometrische Verteilung HV ( N, M, n), N, M, n N

Übersicht: Spezielle Verteilungen 2 / 2 Folie I - 12-31 Poissonverteilung PV ( λ), λ > 0 Geometrische Verteilung [ 0 1] GV ( p), p, Negative Exponentialverteilung NEV ( λ), λ > 0