Enzyme in der organischen Synthese: Naturstoff- und Wirkstoffsynthese



Ähnliche Dokumente
Moderne Aldol-Reaktionen

Enzyme in der organischen Synthese

Entschlüsseln Sie die Bedeutung der folgenden Abkürzungen: PMB tbu TBS Ph Ts Bz TPS MOM Bn Ms TES

Enzyme in der organischen Synthese ausgewählte Beispiele

Klausur zur Vorlesung Biochemie III im WS 2000/01

Organische Chemie I Chemie am Inhaltsverzeichnis Lewisformeln von Kohlenstoffverbindungen korrekt zeichnen!... 2

Selbst-Test zur Vorab-Einschätzung zum Vorkurs Chemie für Mediziner

Klausur WS 03/04. 1 Schutzgruppen 10

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 6

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

Monod-Kinetik. Peter Bützer

Chemie Zusammenfassung KA 2

Musterlösung - Übung 5 Vorlesung Bio-Engineering Sommersemester 2008

b) Synthese - der Nucleoside nach Vorbrüggen (am Beispiel eines RNA-Bausteins)

Übungsblatt zu Säuren und Basen

Musterprüfung Chemie Klassen: MPL 09 Datum: April 2010

Kapiteltest 1.1. Kapiteltest 1.2

Lineare Gleichungssysteme

Vorlesung Anorganische Chemie

Lösungen zu den Übungsaufgaben zur Thematik Säure/Base (Zwei allgemeine Hinweise: aus Zeitgründen habe ich auf das Kursivsetzen bestimmter Zeichen

Übung Zellkommunikation. Vorlesung Bio-Engineering Sommersemester Kapitel 4. 4

Übung 11 Genregulation bei Prokaryoten

Biochemisches Grundpraktikum

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

High Performance Liquid Chromatography

Wird vom Korrektor ausgefüllt: Aufgabe Punkte

3. Säure-Base-Beziehungen

Vorstellung der Biochemie -Vorlesungen im Masterstudiengang Chemie. Prof. K.-H. van Pée Professur für Allgemeine Biochemie

Spektroskopie. im IR- und UV/VIS-Bereich. Optische Rotationsdispersion (ORD) und Circulardichroismus (CD)

Katalysatoren - Chemische Partnervermittlung im virtuellen Labor

Aufgabe 2: (Aminosäuren)

Modul Katalyse. Katalyse. Martin O. Symalla

Die Online-Meetings bei den Anonymen Alkoholikern. zum Thema. Online - Meetings. Eine neue Form der Selbsthilfe?

Die Chemie der DNA. Desoxyribonukleinsäure. Laborchemie. Zellchemie. Armin Geyer Fachbereich Chemie Philipps-Universität. Jun08

Hydrierung von Kohlenmonoxid zu Methanol Kataly?sche Umsetzung von Ethen mit Wasser zu Ethanol

Professionelle Seminare im Bereich MS-Office

Foliensatz; Arbeitsblatt; Internet. Je nach chemischem Wissen können die Proteine noch detaillierter besprochen werden.

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Beispiele zur Multiple-Choice Prüfung in OC

Primzahlen und RSA-Verschlüsselung

Klausur zum Modul Molekularbiologie ILS, SS 2010 Freitag 6. August 10:00 Uhr

Berechnung der Erhöhung der Durchschnittsprämien

Festphasenpeptidsynthese und kombinatorische Bibliotheken

SaarLB-Trendstudie Erneuerbare Energien

Technische Universität Chemnitz Chemisches Grundpraktikum

Grundlagen der Theoretischen Informatik, SoSe 2008

Ist Fernsehen schädlich für die eigene Meinung oder fördert es unabhängig zu denken?

Informationsblatt Induktionsbeweis

Was meinen die Leute eigentlich mit: Grexit?

OECD Programme for International Student Assessment PISA Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

Kapitel 4. Das HMO-Modell

Finanzierung: Übungsserie III Innenfinanzierung

Ideation-Day Fit für Innovation

Kapitel 4. Die Grundlagen der Kinetik

Programm 4: Arbeiten mit thematischen Karten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Zeichen bei Zahlen entschlüsseln

Zwei einfache Kennzahlen für große Engagements

Organisch-Chemisches Grundpraktikum. trans-1,2-cyclohexandiol

Herzlich Willkommen beim Webinar: Was verkaufen wir eigentlich?

Wasserchemie Modul 7

Klausur zur Vorlesung Informationsökonomik

Übungen zur VL Chemie für Biologen und Humanbiologen Lösung Übung 3

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

VORANGEGANGENE MODELLE

Binärdarstellung von Fliesskommazahlen

6. Reaktionsgleichungen 6.1 Chemisches Reaktionsschema Wortschema Reaktionsschema Beispiel 1: Kupfer und Schwefel Vorzahlen

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

APP-GFP/Fluoreszenzmikroskop. Aufnahmen neuronaler Zellen, mit freund. Genehmigung von Prof. Stefan Kins, TU Kaiserslautern

Mean Time Between Failures (MTBF)

Pädagogik. Melanie Schewtschenko. Eingewöhnung und Übergang in die Kinderkrippe. Warum ist die Beteiligung der Eltern so wichtig?

Die innere Energie eines geschlossenen Systems ist konstant

Seminar zum Organisch-Chemischen Praktikum für Biologen Sommersemester 2015

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2014

Studiengang Biowissenschaften Modulbegleitende Prüfung zum Praktikum in Organischer Chemie (gemäß MPO vom )

AZK 1- Freistil. Der Dialog "Arbeitszeitkonten" Grundsätzliches zum Dialog "Arbeitszeitkonten"

Reaktionsgleichungen verstehen anhand der Verbrennung von Magnesium

0, v 6 = , v 4 = span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

Säure-Base Titrationen. (Seminar zu den Übungen zur quantitativen Bestimmung von Arznei-, Hilfs- und Schadstoffen)

Fehler und Probleme bei Auswahl und Installation eines Dokumentenmanagement Systems

Häufig wiederkehrende Fragen zur mündlichen Ergänzungsprüfung im Einzelnen:

Lernaufgabe: Richtigstellen von Reaktionsgleichungen

WERKZEUG KUNDENGRUPPEN BILDEN

2 Physikalische Eigenschaften von Fettsäuren: Löslichkeit, Dissoziationsverhalten, Phasenzustände

Titration einer Säure mit einer Base

8. Zusammenfassung und Ausblick

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse Lösung 10 Punkte

Über Projekte mit der HSR an Forschungs-Fördergelder gelangen. Prof. Dr. Hermann Mettler, Rektor HSR

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Aufgabenset 1 (abzugeben an LK@wacc.de)

Grundlagen der Chemie Verschieben von Gleichgewichten

«Eine Person ist funktional gesund, wenn sie möglichst kompetent mit einem möglichst gesunden Körper an möglichst normalisierten Lebensbereichen

Bilanzgleichung der i-ten Komponente eines Systems mit r Reaktionen

Die neue Aufgabe von der Monitoring-Stelle. Das ist die Monitoring-Stelle:

Transkript:

Enzyme in der organischen Synthese: Naturstoff- und Wirkstoffsynthese Wintersemester 2006-2007 Michael Müller Institut für Pharmazeutische Wissenschaften Tel. 203-6320 michael.mueller@pharmazie.uni-freiburg.de Ziele der Vorlesung: Eine Grundlage für das Verständnis biokatalytischer Transformationen legen, um damit chemische und biokatalytische Methoden vergleichen und beurteilen zu können: Was ist sinnvoll machbar mit Enzymen? Everything that is possible tends to occur at least once in the multifarious world of life. Stephen Jay Gould, in The Pandas Thumb 1

Bücher: Literatur Kurt Faber, Biotransformations in rganic Chemistry, Springer, 2004 ( 35,-). Fritz Theil, Enzyme in der organischen Synthese, Spektrum, 1997 ( 25,-). C. H. Wong, G.M. Whitesides, Enzymes in Synthetic rganic Chemistry, Pergamon Press, 1994 ($ 94,-). weiterführende Literatur / Reviews: V. Gotor, Enantioselective Enzymatic Desymmetrizations in rganic Synthesis, Chem. Rev. 2005, 105, 313-354. B. G. Davis, V. Boyer, Nat. Prod. Rep. 2001, 18, 618-640. K. Faber, Biotransformations of non-natural compounds, Pure Appl. Chem. 1997, 69, 1613-32. R. Csuk, B. I. Glänzer, Baker s yeast mediated transformations in organic chemistry, Chem. Rev. 1991, 91, 49-97. S. Servi, Baker s yeast as a reagent in organic synthesis, Synthesis 1990, 1-25. W. Boland, C. Frößl, M. Lorenz, Estereolytic and lipolytic enzymes in organic synthesis, Synthesis 1991, 1049-1072. F. Theil, Lipase-supported synthesis of biologically active compounds, Chem. Rev. 1995, 95, 2203-2227. S. M. Roberts, Preparative biotransformations, J. Chem. Soc., Perkin Trans I, 1998, 157-169; 1999, 1-21; 1999, 611-633; 2001, 1475-2253. E. Santaniello, P. Ferraboschi, P. Grisenti und A. Manzocchi, The Biocatalytic Approach to the Preparation of Enantiomerically Pure Chiral Building Blocks, Chem. Rev. 1992, 92, 1071. weiterführende Literatur / Bücher: K. Drauz, H. Waldmann, Enzyme catalysis in organic synthesis, VCH, 2002 ( 595,-). K. Buchholz, V. Kasche, U. Borscheuer, Biocatalysts and Enzyme Technology, VCH, 2005 ( 73,-). R. B. Silverman, The organic Chemistry of Enzyme-Catalyzed Reactions, Academic Press, 2000. S. M. Roberts, Biocatalysis for Fine chemicals Synthesis, Wiley, 1999. R. Patel (Ed.), Stereoselective Biocatalysis, Marcel Dekker, New York, 2000. U. Bornscheuer, R. D. Kazlauskas, Hydrolases in rganic Synthesis, VCH, 2005. 2

Beispiel für Hintergrundwissen A Was sind technische Preise? Faustregel bulk-chemicals: 1 kg Aldrich-Preis x 0.1 = techn. Preis Cl Me + tbu 1. 1 Äq. LiH 2. 1 Äq. BuLi THF, -60 C Cl tbu (Aldrich-) Katalogpreis 1 kg Acetessigsäure-tert-butylester 97 % 170,- technischer Preis 1 kg 8-9,- (to) (Aldrich) Katalogpreis 1 kg Chloressigsäuremethylester 99 % 43,80 technischer Preis 1 kg 3-4,- (to) Katalogpreise n-buli (Aldrich) Katalogpreis 20 L Butyllithium-Lösung (10 M) 4.930,- Aldrich 1 Mol BuLi (100 ml) 84,- 1 Mol BuLi ( 20 l ) 25,- 1 kg BuLi ( 20 l ) 385,- Chemetall 1 kg BuLi ( 1 kg) 500,- 1 kg BuLi ( 10 kg) 70,- 1 kg BuLi (100 kg) 50,- Preise 2005 Preise 2001 Chemikalien (Edukte, Cofaktoren, (Bio) Katalysatoren) nicht zwingend; preislimitierende Betriebskosten (Lösungsmittel, Temp. (< - 20 C (fl. N 2 ), > 100 C) Druck, Abfall, Anlagen) bestimmen den Preis eines Produktes. Biokatalysatoren (Enzyme) können besonders vorteilhaft sein technische Preise: Wirkstoffe Beispiel Preise Wirkstoffe: Katalogpreise Taxol 10 mg Paclitaxel 100,- (Sigma) 100 g Paclitaxel 28.000,- 10 mg = 2,80 3

Alternative chemoenzymatische Synthese zu Cerivastatin (Lipobay) F Cl H reclbadh t Cl Bu t Bu M: 234 M: 236 NADPH NADP + H 3 C H H Na H N reclbadh Cerivastatin (Lipobay) ADH: Alkoholdehydrogenase LBADH: Lactobacillus brevis ADH (NADP + -abhängig) reclbadh: rekombinante LBADH (Expression in rekombinanten E. coli) E. coli: Escherichia coli Sigma technische Preise NAD + 1 g 27,- 1 kg < 1.000,- NADH 1 g 84,- 1 kg < 2.500,- NADP + 1 g 285,- 1 kg 10.000,- (1 g = 10,-) NADPH 1 g 950,- 1 kg 30.000,- (1 g = 30,-) ohne Cofaktorregenerierung 1 kg Produkt = 4 mol => 4 mol NADPH werden benötigt => 3.2 kg NADPH = 100.000,- (Sigma-Preise) mit Cofaktorregenerierung 1) NADP + statt NADPH 2) ttn (total turnover number) 1000 (durchgeführt) (ttn 12.000 aus Literatur bekannt) pro mol Produkt / 1 mmol NADP + pro kg Produkt (4 mol) / 4 mmol NADP + = 3.2 g = 32,- (Sigma 3.2 g NADP + = 900,-) 4

Beispiel für Hintergrundwissen B Stereoselektive Synthese Chemoenzymatische Synthese nicht als Konkurrenz sondern Ergänzung zur klassischen stereoselektiven Synthese. Vergleich Enzyme mit katalytischer asymmetrischer Synthese: Dave Evans, Eric Carreira, Clayton Heathcock Barry Sharpless Barry Trost Eric Jacobsen R. Noyori E: J. Corey C. H. Wong, H. Whitesides Aldol Reaktionen Enolat Chemie xidationen Epoxidierung (Katzuki) Asymmetrische Dihydroxylierung (AD) Asymmetrische Aminohydroxylierung (AA) Übergangsmetalle (Pd) Epoxidierung Epoxidöffnung Hydrierung Retrosynthese, Synthese, CBS-Reduktion Chemoenzymatische Synthese Welche Vor- und Nachteile besitzen chemische Katalysatoren? Welche Vor- und Nachteile besitzen Bio-Katalysatoren? Beispiele für Nachteile der chem. Synthese: Sharpless-Epoxidierung nur Allylalkohole AD, AA nur E-konfigurierte Doppelbindungen Noyori: hohe Drücke oder hohe Katalysatorkonzentration oder niedrige ee / de I. jima, Catalytic Asymmetric Synthesis, VCH, 2000 (2. Auflage). Blaser und Schmidt, Asymmetric Catalysis on Industrial Scale, Wiley-VCH, 2004. 5

Enzyme als Katalysatoren Sehr effiziente Katalysatoren Erhöhung Reaktionsgeschwindigkeit k cat /k non 10 8 10 14 (teilweise bis 10 17 ) Chem. Katalysatoren 0.1 1 mol % Enzyme 10-3 10-4 mol % Umweltverträglich Keine Schwermetallsalze ( chem. Katalysatoren) Komplett biologisch abbaubar milde Bedingungen: ph 5 8, 20 40 C breites Substratspektrum + Lösungsmitteltoleranz (teilw.) + mögliche Immobilisierung => breite Anwendbarkeit breites Reaktionsspektrum teilweise Reaktionen, die mit chem. Methoden (noch) nicht möglich sind, z.b. selektive xidation nicht aktivierter C-H s R R CH 2 H R CH R C 2 H sehr selektive Katalysatoren: Chemoselektivität Regio- und Diastereoselektivität Enantioselektivität Bevorzugtes Lösungsmittel: H 2 Enzyme sind chiral (L-Aminosäuren [L-AA]) Wirkstoffe: Eutomer (höher aktives Enantiomer) Distomer (weniger aktiv oder unerwünschte Wirkung) Eudismic ratio Aktivität E Aktivität D Nachteile Enzyme Enzyme sind chiral (nur L-AA) chem. Katalysatoren lassen sich in aller Regel einfacher in beiden enantiomeren Formen darstellen milde Bedingungen -78 C, 180 C, ph 1, ph 14 => nicht möglich mit Enzymen (Stabilitäts- oder Reaktivitätsverlust) aber: 200 bar: möglich! bevorzugtes Lösungsmittel: H 2 (geringe Löslichkeit vieler organischer Substanzen in H 2 ) können empfindlich auf Inhibition reagieren mögliche Allergene / biol. Wirkstoffe z.b. Prionen-Problem: Famulok et al, Angew. Chemie 1997, 109, 1748-1769. 6

Beispiel für Hintergrundwissen C Thesen und Antithesen Was ist ein Biokatalysator? Enzym = Protein (Protein: Peptid, Enzym: aktive Form) aber auch: - katalytische Antikörper (abzymes) - katalytische RNA (Ribozymes) - katalytische DNA (Deoxyribozymes) M. Famulok und P. Burgstaller, Synthetic Ribozymes and Deoxyribozymes, rganic Synthesis Highlights III. Seite 173-184. Ein Enzym = ein (Bio)katalyseschritt? Ein (Bio)katalyseschritt = ein Enzym gilt nur teilweise Beispiel: - Polyketidsynthasen - oxidative Phenolkupplung (Radikal) - Diels-Alderasen vgl. Chemie: früher ebenfalls Einschrittreaktionen; heute: Dominoreaktionen Nachr. Chem. Tech. 2000, 3, 264-269. Ein Enzym ein Enantiomer als Produkt bevorzugt gebildet gilt fast immer, es gibt aber auch Ausnahmen: Thermoanaerobium brokii ADH (TB-ADH) Zeikus et al, Enzyme Microb. Technol. 1981, 3, 144. Thermoanaerobacter ethanolicus ADH (99 % Sequenzidentität mit TB-ADH) racemic temperature (in diesem Fall 26 C) Phillips et al, Tetrahedron: Asymmetry 1991, 2, 343. Grund: bei unterschiedlichen Temperaturen unterschiedliche Beiträge von H (Enthalpie) und S (Entropie) 7

Ein Metabolit = ein Biosyntheseweg gilt nur teilweise z.b. - Shikimat Biosyntheseweg 3 DAHP-Synthase Isoenzyme in E. coli (Eingangsenzym) - Shikimat + Aminoshikimat Biosynthesewege (parallel nebeneinander existierend) - Mevalonat und non-mevalonic-(mep) pathway (M. Rhomer, D. Arigoni) Sequenzinformation von Enzymen/Proteinen in DNA-Sequenz festgelegt DNA Transcription mrna Translation Protein gilt uneingeschränkt nur teilweise DNA Transcription mrna Translation Protein Introns Introns (z.b. in Eukaryonten) Inteine DNA Transcription mrna Translation Protein Beispiel für Posttranslationale Modifikation: Protein-Spleißen posttranslationale Modifikation: Protein-Spleißen Exteine Enzym 8

Sequenzinformation von Enzymen/Proteinen in DNA-Sequenz festgelegt Perler et al., Angew. Chemie 2000, 112, 458-476. weiteres Beispiel für posttranslationale Modifikation : Glycosylierung! (häufig in Eukaryonten) siehe z. B. Walsh et al, Angew. Chemie 2005, 117, 7508-7539. Drei Basenpaare = ein Codon = 1 AA ja, aber 4 Basenpaare = 1 unnatürliche AA: Sisido et al., JACS 1999, 112, 12358. genetische Information DNA (+ RNA) ja, aber wäre es auch denkbar dass? DNA => mrna => Protein (Selbstreplikation) => Protein => Protein => Protein Ghadiri et al, Nature 1997, 382, 525. S. Hoffmann, Artificial Replication Systems, in rganic Synthesis Highlights III, VCH 1998. 9

Natürliche AA: alle L? z.b. D-Ala beteiligt an der Zellwandbiosynthese von Mikroorgansimen - proteinoge AA: 20 (?) 21 (?) Selenocystein (Selen als Spurenelement) 22 (?) Pyrrolysin (Archaae) - natürliche Zucker: alle D (?) - chirale Naturstoffe: enantiomerenrein (?) von racemisch bis > 99.9 % ee alles vertreten D-Proteine: Merrifield Synthese (99 AA) - Synthese L-Protein - Synthese D-Protein Kent et al., Science 1992, 256, 1445 (D-Protein) Ergebnis: Proteine sind in allem (Primär-, Sekundär-, Tertiär-Struktur, Aktivität) absolut spiegelbildlich C. B. Anfinsen, Science 1973, 181, 223 weshalb D-Proteine:- spiegelbildliche Aktivität - stabil gegen Proteasen (weil L-Proteasen) - Peptidantibiotika enthalten auch D-AA => rale Wirksamkeit G. Jung, Angew. Chemie 1992, 104, 11 Ein Enzym = ein Protein (absolut identische Sequenz)? z.b. Pig liver esterase PLE, Schweineleber Esterase: Besteht aus 5 Isoenzymen (sehr ähnliche aber nicht identische Enzyme) unterscheiden sich in Substratspektrum, Aktivität, Selektivität Untersuchung isolierter Enzyme (einzelne Proteinmoleküle) einzelne Enzyme unterscheiden sich um Faktor 4 23 in ihrer Aktivität Sequenz alleine bestimmt nicht zwangsläufig Struktur und Aktivität Gründe: - unterschiedliche Faltungen - posttranslationale Modifikation Q. Xue, E. S. Yeung, Nature, 1995, 373, 681. Dorichi et al, JACS, 1996, 118, 5245 53. D. B. Craig, N. J. Dovichi, Can. J. Chem. 1998, 76, 623 26. vgl.hierzu: Famulok et al., Angew. Chem. 1997, 109, 1748 69. vgl. Yan et al., JACS 2006, 128, 11008 11009 (Einschluß einzelner Proteine). 10

Zitat: Prion-Krankheiten werden wahrscheinlich durch einen von Nucleinsäuren unabhängigen Erreger hervorgerufen. Nach dem gegenwärtigen Stand der Wissenschaft wird als Erreger eine strukturelle Isoform des Prion-Proteins angesehen, die Scrapie-Form PrPSc. Diese unterscheidet sich von der normalen zellulären Isoform PrPSc nicht in der Aminosäuresequenz, vermutlich aber in der Raumstruktur. Nach einer weithin akzeptierten Hypothese wird die normale Isoform des Proteins bei Kontakt mit der Scrapie-Isoform in einer Art autokatalytischem Prozeß ebenfalls in die Scrapie-Form umgewandelt. PrPSc ist bezüglich der Aminosäuresequenz und der Ladungsverteilung identisch mit der nichtinfektiösen Isoform dieses Proteins, dem zellulären Prion-Protein PrPSc. Zum tieferen Verständnis von Biokatalysatoren benötigte Grundlagen: Biosynthese Biochemie Katalyse-Mechanismus Natürliche Substrate / Produkte (nicht immer logisch) Stereochemie Unnatürliche Substrate / rg. Synthese Technische Chemie 3D-Struktur / Theoretische Chemie Interdisziplinarität Voraussetzung Regelmäßigkeiten erkennen => Ausnahmen generieren mit - genetic engineering (enzyme engineering) - substrate engineering - reaction engineering z.b. BAL - 2 Enantiomere - 1 Mutation im Vgl. zu BFD im active site (Mutation umkehrbar) - C-C-Verknüpfung + C-C-Spaltung 11

2. Vorlesungsstunde Enzyme als Katalysatoren Sehr effiziente Katalysatoren Erhöhung Reaktionsgeschwindigkeit k cat /k non 10 8 10 14 (teilweise bis 10 17 ) Chem. Katalysatoren 0.1 1 mol % Enzyme 10-3 10-4 mol % Umweltverträglich Keine Schwermetallsalze ( chem. Katalysatoren) Komplett biologisch abbaubar milde Bedingungen: ph 5 8, 20 40 C breites Substratspektrum + Lösungsmitteltoleranz (teilw.) + mögliche Immobilisierung => breite Anwendbarkeit breites Reaktionsspektrum teilweise Reaktionen, die mit chem. Methoden (noch) nicht möglich sind, z.b. selektive xidation nicht aktivierter C-H s R R CH 2 H R CH R C 2 H sehr selektive Katalysatoren: Chemoselektivität Regio- und Diastereoselektivität Enantioselektivität Bevorzugtes Lösungsmittel: H 2 Enzyme sind chiral (L-Aminosäuren [L-AA]) Wirkstoffe: Eutomer (höher aktives Enantiomer) Distomer (weniger aktiv oder unerwünschte Wirkung) Eudismic ratio Aktivität E Aktivität D 12

Enzyme als Katalysatoren Allgemein: Enzymes function by lowering transition-state energies and energetic intermediates and by raising the ground state energy. Aber: Mindestens 21 verschiedene Hypothesen (Stand 2000) Mechanistische Aspekte: Katalysator (ganz allgemein): Stabilisierung des Übergangszustandes gegenüber Grundzustand Abnahme der Aktivierungsenergie dies führt zu rate acceleration Values for k cat /K m at 25 C from the literature. Wolfenden and Snider, Acc. Chem. Res. 2001, 34, 938 945. 13

Logarithmic scale of k cat and k non values for some representative reactions at 25 C. The length of each vertical bar represents the rate enhancement by ADC = arginine decarboxylase; DC = orotidine 5'-phosphate decarboxylase; STN = staphylococcal nuclease; GLU = sweet potato -amylase; FUM = fumarase; MAN = mandelate racemase; PEP = carboxypeptidase B; CDA = E. coli cytidine deaminase; KSI = ketosteroid isomerase; CMU = chorismate mutase; CAN = carbonic anhydrase. Wolfenden and Snider, Acc. Chem. Res. 2001, 34, 938 945. Figure 6 Logarithmic scale of k cat /K m and k non values for some representative reactions at 25 C. The length of each vertical bar represents transition-state affinity or catalytic proficiency (its reciprocal). Wolfenden and Snider, Acc. Chem. Res. 2001, 34, 938 945. 14

Enzymmodelle: 1. Schlüssel-Schloß-Prinzip (lock and key) E. Fischer, Berichte dtsch. Chem. Gesellschaft 1894, 27, 2985. Voraussetzung: feste (rigide) Enzymstruktur zu stark vereinfachend, bei Schlüssel-Schloß-Prinzip fehlt z.b., dass Substanzen die geringeren räumlichen Anspruch haben als die Substrate und den Substraten ähnlich sind, trotzdem oft nicht als solche akzeptiert werden (und umgekehrt!). 2. Induced-Fit Mechanismus Koshland und Neet, Ann. Rev. Biochem. 1968, 37, 359. Vgl. Hand Handschuh Substrat Enzym Enzym ändert durch die Anbindung des (eines) Substrats seine Form Aktivität. Flexibilität von Enzymen wurde schon früher von Linus Pauling als wichtiges Merkmal der Enzymkatalyse postuliert. Chem. Eng. News 1946, 24, 1375. Am. Sci. 1948, 36, 51. 3. Desolvation- und Solvation-Substitution-Prinzinp M. J. S. Dewar, Enzyme 1986, 38, 8. Creighton et al., Proc. Natl. Acad. Sci. 1989, 86, 520. Wasser innerhalb active site wird durch Substrat ersetzt formale Gas-Phasen-Reaktion. Wasserhülle um Substrat wird ersetzt (energetisch ungünstig) Destabilisierung des Grundzustandes. Zur Zeit (2000) 21 verschiedene Modelle für Emzymkatalyse; allen gemeinsam: alle Enzymreaktionen werden initiiert durch die Bildung eines Enzym-Substrat-Komplexes (ES). Bindungskräfte, die in ES-Komplex-Bildung involviert sind: Kovalente-Bindung Ionen-Paar-Bindung (elektrostatisch) Ion-Dipol oder Dipol-Dipol-Bindung Wasserstoffbrücken Charge-Transfer Komplex Hydrophobe Wechselwirkungen van-der-waals-kräfte (-40 bis -110 kcal/mol) (bis -5 kcal/mol) (-1 -bis -3 kcal/mol) (z.b. π-π-stacking, edge-to face) (-0.5 kcal/mol) (-0.5 kcal/mol) (Werte bezogen auf G ) wichtig: viele kleine Kräfte können zusammen einen starken Effekt bewirken 15

Anmerkung zur Wasserstoffbrückenbindung: z.b. bei thermophilen Enzymen werden wesentlich mehr (>100) Wasserstoffbrückenbindungen als bei psychrophilen Enzymen gebildet. Hydrophobe Wechselwirkungen: Nicht van-der-waals-wechselwirkungen, sondern Abnahme der freien Energie durch zunehmende Entropie der Wassermoleküle, die die beiden hydrophoben Gruppen umgeben. Bindung ist wichtig bei hohen k cat kann aber release geschwindigkeitsbestimmend werden Reaktion wird diffusionslimitierend. Lösung: Enzyme binden Übergangszustand ca. 10 12 mal stärker als das Substrat oder Produkt! nach Reaktion (Bindungsknüpfung oder Spaltung) keine starke Wechselwirkungen in active site mit Produkt release des Produktes sogar durch Abstoßung möglich. Den Trick, den Enzyme vollführen müssen, ist die unstabile Übergangszustands- Struktur stark zu binden (mit einer lifetime einer Bindungsschwingung) und nicht das Substrat oder Produkt. Enzym-Mechanismen Eyring-Gleichung: Enthalpie: Änderung in Bindungsenergie (dominiert) Entropie: rientierung, Rotation, Translation, Konzentrations- und Lösungsmittel-Effekte 1. Annäherung in die räumliche Nähe bringen von (zwei) Reaktanten Verlust an konformationeller Freiheitsgrade, fest vorgegebene rientierung Reaktion wird erster rdnung statt zweiter rdnung in Lösung Erhöhung der effektiven Konzentration der Reaktanten 2. Kovalente Katalyse vor allem bei proteolytischen Enzymen z.b. nukleophile Katalyse (entspricht dem anchimeren Effekt in der chemischen Katalyse) Beispiel: Serin-Protease (Serin als Nukleophil) 16

3. Allgemeine Säure/Base-Katalyse z.b. Serin-Protease R-H schlechtes Nukleophil, R- - wesentlich besseres Nukleophil Katalytische Triade: Aspartat (Asp)-Histidin (His)-Serin (Ser) pk a -Werte in Lösung unterscheiden sich deutlich von pk a in active site (zum Teil wegen der niedrigeren Polarität innerhalb der Enzymtasche) pk a steigt (Säure) pk a sinkt (Base) Niedrigere Polarität innerhalb der Enzymtasche entspricht eher Benzol als Wasser (Dielektrizitäts-Konstante innerhalb Proteinen ca. 2-3; im Vergleich dazu: Benzol: 2.28, Wasser: 78.5) Eigentlich ist es nicht möglich, mit einem Carboxylat (Asp-C 2- ) (pk a 3.9) Histidin (Imidazol) zu deprotonieren (pk a 6.1); ebenso kann Histidin Serin (pk a 14) nicht deprotonieren. Dies gilt aber nur in (wässriger) Lösung. Aufgrund der pk a -Werte wäre Enzymkatalyse nicht möglich. Aber: Protonen-Transfer-Schritte nicht einzeln betrachten. Gleichzeitiger Angriff von von Ser - an Carboxylgruppe dadurch wird Gleichgewicht verschoben. Beispiel für selektive Säure-Base-Katalyse: Enzyme können gleichzeitig mit Säure und Base aktivieren. Kann man diese Effekte addieren? Chemische Katalysatoren: resultieren immer bei ph 7 = Neutralisation Ausnahme: neue Katalysatorsysteme : Lewis-Säure + Base gleichzeitig. Shibasaki et al. J. Am. Chem. Soc. 1999, 121, 2641. Beispiel: Enolisierung von Mandelsäure (Mandelat Racemase) Durch Säure-Katalyse wird pk a soweit erhöht, dass eine Base deprotonieren kann (vgl. Benzyl-methylketon-Problem) s. Silvermann S. 24 Vgl. Esterhydrolyse, katalysiert durch Säure (Erhöhung der Elektrophilie) oder Basen (Erhöhung der Nucleophilie) 17

4. Low-barrier-hydrogen-bond Schwache H-Brücken-Bindung wird im Übergangszustand zu einer starken H-Brücken-Bindung. Übergangszustand wird durch 4-20 kcal/mol stabilisiert (vgl. normale H-Brücken bis zu 3 (-5) kcal/mol). Cleland et al. J. Biol. Chem. 1998, 273, 25529, Science 1995, 269, 104. 5. Elektrostatische Lösung z.b. Serin-Protease rate acceleration Asp His Ser 10 9 Ala Ala Ala 10 3 (im Vgl. zur unkatalysierten Reaktion) Mutante: D32A, H64A, S221A neben nukleophiler Katalyse, general base catalysis, elektrostatische Katalyse Dies ist ein wichtiges Beispiel dafür, dass das gesamte Enzym benötigt wird um die Katalse durchzuführen. Räumliche Annäherung des Substrats an Serin ist genauso wichtig wie die katalytische Triade! Carter and Wells, Nature 1988, 332, 564 568. 6. Desolvation und Solvation-Substitutionsprinzip Entfernen von Wassermolekülen von geladenen Gruppen im active site durch Substrat. Destabilisierung des Grundzustandes. z.b. Rucker und Byers J. Am. Chem. Soc. 2000, 122, 8365. Beitrag von Desolvation eines Dianions resultiert in 10 5 -facher Reaktionsbeschleunigung. Desolvation monoanionischer Nukleophile resultiert nur in 100-facher Beschleunigung. Bei neutralen Nukleophilen kann Desolvation (z.b. Ersatz von Wasser-Hülle durch DMS) inhibitorische Wirkung haben. 18

7. (Ring)-Spannung und distortion am Enzym hoch energetischer Zustand am Substrat Erhöhung der Energie des Grundzustandes durch Destabilisierung. Dies führt zu einer höheren Reaktivität vgl. Ether Epoxide, Epoxide sind deutlich reaktiver als andere Ether. Ringspannung und distortion bezieht sich auf Substrat und Enzym. Vgl. induced-fit-mechanismus bei Koshland Enzym kann in einen hoch energetischen Zustand überführt werden. 8. Negative Katalyse (Reaktionsselektivität) Review: J. Rétey Angew. Chem. 1990, 102, 373. Zitat: Die Selektivität solcher Reaktionen wird daher eher durch das Verhindern unerwünschter Reaktionen als durch die Förderung der eigentlichen Zielreaktion bedingt. Zusammenfassung Für rate-enhancement sind verschiedene Faktoren zuständig. Der jeweilige Beitrag der verschiedenen Mechanismen hängt stark von der Natur der zu katalysierenden Reaktion (Substrate, Intermediate, Produkte, basisch, nukleophil...) ab. allgemeine Erklärung nicht einfach möglich. Bindungsenergie führt zu einer Stabilisierung des Übergangszustandes (ÜZ), aber Grundzustand (ES bzw. EP) wird auch abgesenkt Destabilisierung ist notwendig. z.b. durch - strain - distortion - Entropie-Verlust Stabilisierung des Übergangszustandes (ÜZ) wichtiger als Destabilisierung des Grundzustandes. 19

Enzyme No Enzyme + Binding Energy + Binding Energy + Destabilization S P E+S E+P E+S ES EP E+P G D -T S ES EP A B C X. Zhang, K. N. Houk et al., Acc. Chem. Res. 2005, 38, 379-385. Beitrag der kovalenten Katalyse für effiziente Enzymkatalyse vermutlich bedeutend. Wolfenden and Snider, Acc. Chem. Res. 2001, 34, 938 945. 20

3. Vorlesungsstunde Zusammenfassung 2. Vorlesung (Gründe für Aktivität) Für rate enhancement sind verschieden Faktoren zuständig. Der jeweilige Beitrag der verschiedenen Mechanismen hängt stark von der Natur der zu katalysierenden Reaktion ab. (Substrate, Intermediate, Produkte, Basisch, Nucleophil, ) allgemeine Erklärung nicht einfach möglich Gründe für Selektivität Drei-Punkte-Regel (stark vereinfachend, gilt zum Teil nicht) - Chiralitätszentrum D D A' A B' B C C' A' A B' C B C' optimaler fit nicht bevorzugt Enantiotopic discrimination: (Enantiotope Diskriminierung) 21

Gründe für Selektivität - Prochiralität pro S pro R A A A' A B C C' A' A C B C' B' B' optimaler fit nicht bevorzugt A ersetzen durch A*, A* > A > B > C R: A ist pro R S: A Ist pro S Enantioface discrimination (Enantiofaciale Diskriminierung) Si-face Re-face A' A A' B x C C' x C C' B A B' B' optimaler fit nicht bevorzugt 22

Enantioface Discrimination (Enantiofaciale Diskriminierung) z.b. prochivales Molekül Beispiel für meso-verbindung H 3 C H H 3 C H CH 3 = * * = H 3 C * * H 3 C 2 C C 2 H 3 C 2 C C 2 H 3 C 2 C C 2 H 3 C 2 C C 2 PLE PLE PLE H 3 C H 3 C 2 C H C 2 H H 3 C 2 C H C 2 H H 3 C * * H 2 C C 2 Kinetische Gründe für Selektivität E: Enzym A: Substrat B: Substrat (Stereoisomer von A) E A B EA E + P 1 EB E + P 2 G EB EA G++ E + A,B E + P2 E + P1 23

Wie groß mußg ++ sein für ee 99%? G ++ = G ++ - T S ++ K G ++ = - RT ln K 1 2 ee 10 50 90 95 99 99.9 K 1 /K 2 1.22 3 19 39 199 1999 G ++ (kcal/mol) 0.118 0.651 1.74 2.17 3.14 4.50 k Stereoselektivität E = cat K m k cat ee = 100 L K m D P1 P2 P2 + P2 Kinetik Michaelis-Menten K 1 [E] E + [S] S [ES] [EP] E [E] + + P[P] K -1 K 2 [S] v = v max K m + [S] v max = K 2 [E] v = K 2 [E] [S] K m + [S] Annahme: K 1 >> K 2, v K 2 = k cat (turnover number) (first order) K m : Michaelis-Menten Konstante (bei ½ v max ) (Dissoziationskonstante des ES-Komlexes) vmax 1 vmax 2 Km [S] (M) 24

K m : v max : ist unabhängig von der Enzymkonzentration üblich: 10-6 10-2 M max. Reaktionsgeschwindigkeit wenn jedes Enzym mit Substrat gesättigt ist (Substrat-Sättigung) üblich: 10 3 10 4 sec -1 katalytische Aktivität: 1U katalysiert die Umsetzung von 1mol/min bei spez. Bedingungen (ph, Temp.) Energie unkatalysiert k K cat m = spezifische Konstante bezieht sich auf Reactions rate von freiem Enzym und Substrat E + S [ES] ++ k cat k cat K m E + P für obiges Beispiel: k K cat m K K = K 1 2 1 + K 2 (second order) ES EP dient dazu, verschiedene Substrate auf Effizienz hin zu vergleichen Bestimmung der kinetischen Konstante dient dazu, optimale Reaktionsbedingungen zu generieren (Produktivität, Selektivität) Durchführung: Anfangsreaktionsgeschwindigkeit in Abh. von [S] bei konstantem ph, [E], Verschiedene Möglichkeiten der Auftragung: - Michaelis-Menten - Lineweaver-Burk -... 25

- Lineweaver-Burk - plot - procedure (häufig benutzt) 1 Km = + v v [S] max 1 v max Nachteil: Werte für hohe [S] fallen in engen Bereich 1 1 Plot: gegen v [S] 1 v Km Steigung = vmax v max 1 0 1 - Km [S] - Eadie- Hofstee v max v = v = K max m v + v [S] K m v [S] v vmax v Plot : v gegen [S] Steigung = - Km vmax Km v [S] genauer als Linewear-Burk, aber historisch seltener benutzt Problem: v auf beiden Achsen Fehler bei Messungen verstärken sich heute PC-Programme zur Bestimmung kinetischer Konstanten 26

Enzym-Inhibierung Definition: Abnahme der enzymatischen Aktivität aufgrund geänderter Reaktionsparameter A: Reversible Inhibierungen 1) competitive 2) noncompetitive 3) uncompetitive 4) mix 1-3 v vmax ohne Inhibitor competitive nonspecific inactivation noncompetitive [S] Enzym-Inhibierung 1. competitive Bindung eines Inhibitors nahe oder in active site Substrate und Inhibitor konkurrieren v max bleibt gleich, K m wird größer mit zunehmender Konz. Inhibitors [I] 1 v zunehmende Konz. [I] 1 [I] v = max 1 1 - Km [S] 27

Enzym-Inhibierung 2. noncompetitive Inhibitor und Substrat greifen nicht an gleicher Seite des Enzyms an Erklärung: Inhibitor bindet gleich gut an Enzym und ES-Komplex 1 v zunehmend [I] = 1 [S] Enzym-Inhibierung 3. uncompetitive Inhibitor greift ES-Komplex, aber nicht freies Enzym an 1 v [I] = zunehmend 1 [S] 28

Enzym-Inhibierung 4. mixed Inhibition Inhibitor bindet unterschiedlich gut an freies Enzym und ES-Komplex 1 v 1 v zunehmend [I] = [I] = 1 [S] 1 [S] Enzym-Inhibierung B: Irreversible Inhibierungen 1) Affinity labeling zuerst E I -Komplex, anschließend kovalente Bindung mit active site 2) Mechanismus-basierende Inaktivierung E + I E I E I E + I Enzym und Inhibitor führen zunächst Reaktion durch anschließend wirkt I als Inhibitor 29

Enzym-Inhibierung C: Substrat Inhibierung v partielle Substrat Inhibierung 1 v komplette Verlauf ohne Inhibierung komplett partielle [S] 1 [S] Erklärung: Bildung von E S S Problem: besprochene Kinetiken gelten für Ein-Substrat-Enzym (z.b. Lyasen); für Multi-Substrat-Systeme wesentlich komplexer z.b. Ping-Pong -Mechanismus E + A E. A E'. P E'+ P E'+ B E'. B E. Q E + Q (gilt z. B. für Gruppen-Transfer) 1 v [B] zunehmend 1 [S] 30

4.- 5. Vorlesungsstunde Einführung in präparative Biotransformation Allosterischer Effekt (heterotropisch) vor allem regulatorische Effekte in Biosynthese E + B E. B + A E. B. A E + B + P Cooperativität (homotropisch) Enzym ist erst jetzt aktiv oder besonders aktiv (Änderung der Konformation des Enzyms) wenn B = A, d.h. Effektor ist gleichzeitig Substrat positive oder negative Cooperativität möglich v keine Cooperativität positive Cooperativität [S] negative Cooperativität (noncompetative Inhibierung) 31

Welche verschiedenen grundsätzlichen Reaktortypen gibt es? [P] [S] 0 t 0 Batch: [S] 1 t 1 [S] [S] e t e t x Strömungsrohr: [S] 0 x 0 [P] dx [S] 1 [S] e x 1 x e [S] t x Kontinuierlich betriebener Rührkessel (CSTR): [P] [P] [S] [S] t x Problemstellung: enantioselektive Reduktion von Benzyl-methylketonen (Acetophenon-Derivate) Beispiel 1 (Beispiel für Ganzzell-Biotransformation) Problemstellung: Me Me R Me Me Me Me (Dihydroisocumarin) K. Krohn et al., Phytochemistry 1997, 45, 313-320. Aufgabenstellung: versuchte Reduktion mit: - Bestimmung der absoluten Konfiguration durch Synthese - Synthese beider Enantiomeren! - chemischen Katalysatoren < 62% ee - isolierte ADH s: keine Aktivität 32

Versuch Krohn et al.: 50 g BY 1 L 100 mm Tris-puffer (ph 6.8) + 10 g Glucose 254 mg Substrat (1 mmol) 42 d schütteln (nicht rühren); jeden 4. Tag + 10 g Glucose 110 g Glucose Aufarbeitung: - Zentrifugation (zum Abtrennen störender Zellbestandteile, z.b. DNA, Protein, Zellwand) - 4 x 200 ml Et 2 Resultat: Me + Me H Me Me Me Me 55 mg Produkt (25% Ausbeute) 100 mg Säure Vorteil: ee > 99 % (R) Säure bildet sich aufgrund von Nebenaktivitäten Nachteil: - lange Reaktionszeit, geringe Ausbeute - umständliche Aufarbeitung (800 ml Et 2 0 55 mg Produkt) - Nebenreaktion (Esterhydrolyse durch Lipasen / Esterasen) - nur ein Enantiomer zugänglich Ausweg: 1. chemische Reduktion: Übersicht Keton-Reduktion E. J. Corey, C. J. Helal, Angewandte Chemie, 1998, 110, 2092-2118. S. Itsumo, rganic Rections, Vol 52, 1998. (sehr gute, umfassende Übersicht) Problem: Katalysatoren H Me Me Phenylaceton Phenylaceton: Aber: als Substrat sehr gut untersucht, sehr gute Katalysatoren bekannt (chem. und biol.) o-substituierte Benzyl-methylketone sehr wenige Beispiele aus Literatur sterische Effekte! (+ elektrische Effekte) mögliche Keto-Enol-Tautomisierung 33

2. isolierte Enzyme gleiche Probleme wie bei chemischen Reduktionen vergleiche Biosynthese (aus dem Wissen der Biosynthese heraus das passende Enzym auswählen?) SCoA Acetyl-CoA + SCoA 4 SCoA H SCoA C 2 H Malonyl-CoA Polyketid (Pentaketid) H H Me Biosynthese: Staunton et al., J. C. S. Chem. Comm., 1987, 586-87. JCS Perkin Trans 1, 1981, 1397-1400. kein Enzym, was Benzyl-methylketon als natürliches Substrat akzeptiert in diesem Fall macht eine biomimetische Synthese keinen Sinn versuchte Ganzzellbiotransformation mit BY Beispiel 2 Synthese von (S)-8--Methylmellein Müller et al., Synthesis, 1999, 2045-48. (Beispiel für substrate engineering) Screening nach isolierten ADH R ADH R H Me Me R = A-valuee E r E s Aktivität CPCR H 0 100 C 2 1.2 17-1.5 0 F 0.25 2.7-0.46 100 0.75 31-0.55 30 CN 0.2 4.7-0.51 21 (CPCR: Carbonyl Reduktase aus Candida parapsilosis) CN als Carboxyl-mimik sehr gut geeignet 34