Anwendungen des Eigenwertproblems

Ähnliche Dokumente
Betriebsanleitung für gewöhnliche lineare Differentialgleichungen. Prof. Dr. Dirk Ferus

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II M WM

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

Lösungsskizzen zur Nachklausur

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwerte und Eigenvektoren

B. Lösungsskizzen zu den Übungsaufgaben

Lösungsskizzen zur Klausur Mathematik II

Lösungsskizzen zur Klausur

6. Lineare DGL-Systeme erster Ordnung

4.7 Lineare Systeme 1. Ordnung

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

y hom (x) = C e p(x) dx

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

Lineare Algebra und Numerische Mathematik für D-BAUG

Mathematik I+II Frühlingsemester 2019 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Lineare Systeme 1. Ordnung

Lösungen der Aufgaben zu Kapitel 11

Vorbereitung für die Prüfung Mathematik II für Informatiker

Lösen einer Gleichung

H.J. Oberle Differentialgleichungen I WiSe 2012/ Stabilität. Wir betrachten ein allgemeines DGL-System erster Ordnung:

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 25.

Ausgewählte Lösungen zu den Übungsblättern 9-10

4.3 Anwendungen auf Differentialgleichungen

8. Übungsblatt Aufgaben mit Lösungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Lineare Differentialgleichungen

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 10. y(x) = Ae ( 3+2i)x + Be ( 3 2i)x. λ 2 2λ + 1 = (λ 1) 2. y(x) = Ae x + Bxe x.

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Lösung - Serie 25. D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger

Höhere Mathematik II (Analysis) für die Fachrichtung Informatik - Lösungen

Höhere Mathematik III für Physik

Eigenwerte (Teschl/Teschl 14.2)

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

9.4 Lineare gewöhnliche DGL

Aufgabenkomplex 4: Vektorfunktionen, Differenzialgleichungen, Eigenwertprobleme

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lineare Systeme 1. Ordnung mit konstanten Koeffizienten

Eigenwerte und Eigenvektoren

Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2

++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1

Lineare Algebra für Ingenieure

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Prof. Steinwart Höhere Mathematik I/II Musterlösung A =

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Systeme gewöhnlicher Di erentialgleichungen. Ordnung

Lösungen zu Mathematik I/II

Lineare Algebra II 5. Übungsblatt

Prüfung zur Vorlesung Mathematik I/II

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Rückblick auf die letzte Vorlesung

6 Symmetrische Matrizen und quadratische Formen

Probeklausur zu Mathematik 2 für Informatik

9 Lineare Differentialgleichungen

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Systemtheorie. Vorlesung 6: Lösung linearer Differentialgleichungen. Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann

6 Symmetrische Matrizen und quadratische Formen

sie ist also eine Lösung der Differenzialgleichung y 0 = Ay. Bei x = 0 sind diese n Spalten auch linear unabhängig, da ja

8. Übungsblatt zur Mathematik I für Maschinenbau

Sommersemester 2017 Blatt 1 von 6 Studiengänge: RMM Masterstudiengang Sem. 1 und Wiederholer

Mathematik II Frühjahrssemester 2013

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

eine vom Nullvektor verschiedene Lösung hat. r heisst in diesem Fall Eigenvektor der Matrix A zum Eigenwert λ.

4 Funktionenfolgen und normierte Räume

Klausur: Differentialgleichungen Version mit Lösungen

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Fachhochschule München Fachbereich 03 FA WS 2006/07. Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Rückblick auf die letzte Vorlesung

Lösungsvorschläge zum 4. Übungsblatt, WS 2012/2013 Höhere Mathematik III für die Fachrichtung Physik

Lineare Gleichungen mit 2 Variablen

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m

Kapitel 5. Eigenwerte. Josef Leydold Mathematik für VW WS 2017/18 5 Eigenwerte 1 / 42

Lineare Algebra 1. Roger Burkhardt

Mathematische Methoden in der Systembiologie Universität Heidelberg, Sommer 2017

Serie 13: Online Test

Serie 8: Online-Test

Probeprüfung Lineare Algebra I/II für D-MAVT

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik. Bachelor-Modulprüfung. Lösungsvorschläge

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lösungen zu Mathematik I/II

Musterlösungen für die Nachklausur in LinAlg vom

Technische Universität Berlin Fakultät II Institut für Mathematik WS 03/04 Eppler, Richter, Scherfner, Seiler, Zorn 7. April 2004

Differentialgleichungen für Ingenieure WS 06/07

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

3.6 Eigenwerte und Eigenvektoren

Transkript:

Anwendungen des Eigenwertproblems Lineare Differentialgleichungssysteme 1. Ordnung Lineare Differentialgleichungssysteme 2. Ordnung Verhalten der Lösung von linearen autonomen DGLS Hauptachsentransformation Verfasser: Mischa Haller hallerm@student.ethz.ch Robin Güttinger grobin@student.ethz.ch Raphael Gyr gyrr@student.ethz.ch Samuel Hess sahess@student.ethz.ch

Lineare Differentialgleichungssysteme 1. Ordnung Viele Phänomene in Physik, Chemie, Biologie und Ökonomie werden durch Differentialgleichungen beschrieben; das sind Gleichungen, die neben einer Funktion auch ihre Ableitung enthalten. Wir werden jetzt sehen, wie sich bestimmte Differentialgleichungssysteme mit Mitteln der linearen Algebra lösen lassen. Wir betrachten hier ein allgemeines System von linearen Differentialgleichungen erster Ordnung mit konstanten Koeffizienten der Dimension n mit zusätzlichen Anfangsbedingungen. Gegeben sei also das Anfangswertproblem (AWP) 1.1) y (t) = Ay(t), y() = y, Wobei A eine reelle halbeinfache n x n-matrix sei, y Є R n. Wir lösen das Eigenwertproblem der Matrix A. Dies ergibt die n Eigenwerte (mit Vielfachheit gezählt) λ 1,, λ n mit zugehörigern n Eigenvektoren v (1),, v (n).(eine Eigenbasis existiert, weil A als halbeinfach vorausgesetzt wurde). Definieren wir: 1.2) B := (v (1) v (n) ) So wissen wir, dass 1.3) B -1 AB =: C diag (λ 1,, λ n ) Führen wir mittels der Transformation 1.4) y(t) = Bx(t) Die Funktion x(t) ein, so muss diese das System 1.5) x (t) = Cx(t) 2

erfüllen, denn es gilt y(t) = Bx (t) = Ay(t) = ABx(t).. Das System (1.5) ist entkoppelt, d.h. es besteht aus n skalaren Gleichungen der Form 1.6) x j (t) = λ j x j (t), j = 1,, n. Die Anfangsbedingungen für das transformierte System (1.5) sind 1.7) Tx() = y. x() muss also ein lineares Gleichungssystem erfüllen mit Koeffizientenmatrix T und rechter Seite y. Die allgemeine Lösung der Gleichungen (1.6) ist bekannt: 1.8) x j (t) = c j e λjt, j = 1,, n, Wobei c j frei wählbare Parameter sind. Durch die Anfangsbedingung (1.7) sind diese Parameter wieder eindeutig bestimmt. Aus (1.8) folgt c j = x j () und da T eine reguläre Matrix ist, ist damit c := (c 1,, c n ) T = x() die eindeutige Lösung des linearen Gleichungssystems (1.7) Damit haben wir als allgemeine Lösung der Differentialgleichung y(t) = Ay(t) gefunden 1.9) y(t) = Tx(t) = c 1 e λ1t u (1) + c 2 e λ2t u (2) + + c n e λnt u (n) Löst man das lineare Gleichungssystem 1.1) Tc = y Mit LR-Zerlegung (falls T orthogonal, Multiplikation mit T T ), so erhält man die Werte c j, j = 1,,n, und damit die eindeutige Lösung des AWP 3

4 Beispiel y 1 = 3y 1 y 2 = -2y 2 mit der Anfangsbedingung y 1 ()= 1, y 2 () = 4, y 3 () = -2 y 3 = 5y 3 Geschrieben in einer Matrixgleichung erhalten wir: = 3 2 1 3 2 1 5 2 3 ' ' ' y y y y y y oder Y Y = 5 2 3 ' Da in jede Gleichung nur eine Unbekannte vorkommt, können wir sie unabhängig voneinander lösen. Nach 1.8 hat das System die allgemeine Lösung y 1 = c 1 e 3x y 2 = c 2 e -2x oder in Matrixschreibweise y 2 = c 3 e 5x Aus den Anfangsbedingungen ergeben sich 1 = y 1 () = c 1 e = c 1 4 = y 2 () = c 2 e = c 2-2 = y 3 () = c 3 e = c 3 = = x x x e c e c e c y y y Y 5 3 2 2 3 1 3 2 1

Matrixexponentialfunktion Formal kann man die Lösung des linearen Differentialgleichungssystems mit konstanten Koeffizienten (1.1) auch einfach mit Hilfe der Matrixexponentialfunktion wie folgt angeben: 2.1) y(t) = e ta y. Man findet nämlich durch Ableiten von (2.1) 2.2) y(t) = Ae ta y = Ay(t). Will man für halbeinfaches A die Lösung y(t) wirklich berechnen, so löst man das Eigenwertproblem der Matrix A und setzt B = (v (1) v (n) ) (Eigenbasis) und C = diag (λ 1,, λ n ) (Eigenwerte) und findet dann 2.3) Y(t) = Be tc B -1 y. Mit z := T -1 y (beziehungsweise z als Lösung des linearen Gleichungssystems Bz = y ) und mit e td z = ( e λ1t z 1, e λ2t z 2,, e λnt z n) T ergibt sich daraus 2.4) Y(t) = z 1e λ1t u (1) + z 2e λ2t u (2) + + z ne λnt u (n). Wir haben also die gleichen Formeln zur Berechnung von y(t) bekommen wie vorher mit der Transformationsmethode (siehe (1.9) und (1.1)). 5

Lineare Differentialgleichungssysteme 2. Ordnung (mit konstanten Koeffizienten) Wir betrachten das Anfangswertproblem bei a 1, a 2, x, x! und b-stetig in D(b) := (a,b), x D(b) Die Gleichung(*) nennt man die inhomogene Gleichung und die homogene Gleichung. Wir suchen die allgemeine Lösung x h (t) con (*) h mit Hilfe des (Euler-) Ansatzes x h (t) = e λt, welchen wir in (*) h einsetzen. Dies liefert: (λ 2 + a 1 λ + a 2 )e λt = und wegen e λt λ 2 + a 1 λ + a 2 = Allgemeine Lösung: Substitution: y(t) = x(t) z(t) =!x(t) Reduktion auf System 1. Ordnung: 6

Als Lösung dieser quadratischen Gleichung finden wir: λ 1,2 = a 1 2 ± (a 1 4 a 2) = a 1 2 ± D D: Diskriminante Die Fallunterscheidung nach den Vorzeichen von D liefert zunächst die Lösungen der quadratischen Gleichung und damit auch ein so genanntes Fundamentalsystem { x 1,x 2 } von Lösungen der homogenen Gleichung (*) h : Die allgemeine Lösung x h (t) von (*) h hat damit die Darstellung: x h (t) = c 1 x 1 (t) + c 2 x 2 (t), c 1,c 2!(bzw. C) Beispiele: 7

Einsetzen bei x 1 (t) und x 2 (t) Schliesslich noch in die Gleichung x h (t) = c 1 x 1 (t) + c 2 x 2 (t) einfügen. Beispiel für D < : Quelle: http://www-ian.math.uni-magdeburg.de/home/risch/et/etdglc2o.pdf 8

Verhalten der Lösung von linearen autonomem Differenzialgleichungssystemen Autonomes System: Ein allgemeines autonomes System hat die Form,!! x " = y(x) Jede Differenzialgleichung wird auf der linken Seite nach der Zeit abgeleitet und hat eine von der Zeit unabhängige (autonome) rechte Seite. Lineare autonome Systeme: Lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten und lineare Systeme bei der die Matrix A von der Zeit unabhängig ist sind autonom. Lineares System mit konstanten Koeffizienten: n x! = A x = a x,a IR,(i = 1,..., n),a = konst. j= 1 n n ij i ij Diese Gleichung kann auch in eine Differentialgleichung n-ter Ordnung umgeformt werden. n (n-1) d x d x dx n n n 1 (n-1) 1 i a + a +... + a + a x =,a = konst. dt dt dt Die allgemeine Lösung des Systems ist!!!!! x(t) = C x 1(t) +... + C x n (t), wobei x 1,..., xn 1 n linear unabhängig sind. Mit dem Ansatz! x(t) = v e λt!!! erhält man die Gleichung A v = λ v. Somit ist t x(t) = v e λ eine nicht triviale Lösung des Gleichungssystems, wenn v! ein Eigenvektor und λ der Eigenwert von A ist. Man erhält das charakteristische Polynom. Die Nullstellen bzw. Eigenwerte des Polynoms werden gesucht, um Informationen über das Verhalten der Lösung zu erhalten. 9

Beispiel eines homogenen linearen autonomen Systems von zwei Differentialgleichungen: u! = 2u w mit den Anfangsbedingungen u() = 3 w! = u 2w w() = 4 Mit dem Ansatz u(t) t = ue λ und w(t) t = we λ erhält man u 2 1 u λ = w 1 2 w 1 1 bzw.. 1 1 Es gibt 2 Lösungen u 3t 1 = e oder w 1 Die Eigenwerte sind somit 3 bzw. 1 zu den Eigenvektoren u 1t 1 = e w 1 Da die 2 Lösungen linear unabhängig sind, ist eine Linearkombination der beiden Lösungen auch eine Lösung u(t) 3t 1 1t 1 3 1 1 = C1e + C2e = C1 + C2 w(t) 1 1 4 1 1 C 1 und C 2 werden noch mit den Anfangsbedingungen bestimmt => C 1 = 7/2 und C 2 = 1/2 Die einzelnen Lösungen können graphisch in der (u, w) Ebene dargestellt werden. Eine parametrisierte Kurve t! (u(t), w(t)) in der Ebene beschreibt bei einer gegebenen Anfangsbedingung genau eine mögliche Lösung. Es ist dadurch für jedes t ein Wert in der Ebene definiert. Die Kurve wird Phasenbahn genannt. Die Menge aller Phasenbahnen wird als Phasenportrait bezeichnet d.h. Das Phasenportrait wird durch alle möglichen u(t) 3t 1 1t 1 Linearkombinationen von = C1e + C2e beschrieben. w(t) 1 1 Stabilitätsbetrachtung: Definition: Eine Gleichgewichtslage (Punkt in der Ebene, welcher unabhängig von t ist) heisst stabil, wenn jede Lösung zu einer Anfangsbedingung, welche nahe bei der Gleichgewichtslage ist, für alle t > in Nähe der Gleichgewichtslage bleibt, attraktiv, wenn bei t jede Lösung die Gleichgewichtslage erreicht asymptotisch stabil, wenn sie stabil und attraktiv ist, instabil, wenn sie nicht stabil ist. 1

Stabilitätssatz für lineare Systeme: Die Art einer Gleichgewichtslösung des linearen Gleichungssystems x! = A x ist durch die Eigenwerte λ 1, λ 2,, λ n von A IR n n bestimmt Haben alle Eigenwerte negative Realteile, dann ist die Gleichgewichtslage asymptotisch stabil. Jede Phasenkurve läuft zur Gleichgewichtslage hin. Hat aber ein Eigenwert einen positiven Realteil, dann ist die Gleichgewichtslage instabil. Es entstehen somit Phasenkurven, die von der Gleichgewichtslage weg zeigen. Haben alle Eigenwerte einen Realteil und ausserdem für diejenigen Eigenwerte mit = gilt, dass die algebraische und die geometrische Vielfachheit gleich ist, dann ist die Gleichgewichtslage stabil. Unser Beispiel ist instabil, da die Eigenwerte positive Realteile haben. Man kann also auch ohne explizite Berechung der Lösung qualitative Aussagen über das Verhalten der Lösung machen. Je nach Eigenschaft der Eigenwerte ist die Durchlaufrichtung und Stabilität anders. Bei einem System von 2 Differenzialgleichungen ergeben sich 14 verschiedene Fälle, welche in drei Gruppen eingeteilt werden. 1. Zwei reelle Eigenwerte λ 1, λ 2, λ 1 λ 2 Eigenschaften der Stabilität Phasenportrait λ s λ1 instabil Sattelpunkt λ2 λ 1 < < λ 2 λ1 λ2 λ 1 < λ 2 < asymptotisch stabil Konten 2. Art λ1 λ2 < λ 1 < λ 2 instabil Konten 2. Art 11

λ1 λ2 λ 1 =, λ 2 < stabil Gerade von Ruhelagen λ1 λ2 λ 1 =, λ 2 > instabil Gerade von Ruhelagen 2. Ein doppelter Eigenwert λ 1 = λ 2 =λ Eigenschaften der Stabilität λ s λ asymptotisch λ stabil λ < Phasenportrait Knoten 1. Art λ λ λ = λ λ λ > λ 1 λ λ < stabil instabil asymptotisch stabil Ebene in Ruhelagen Knoten 1. Art Knoten 3. Art λ 1 λ λ = instabil Geraden von Ruhelagen λ 1 λ λ > instabil Knoten 3. Art 12

3. Zwei nicht-reelle Eigenwerte: mit Realteil von λ = α, Imaginärteil von λ = ±β Eigenschaften der Stabilität Phasenportrait λ s α β asymptotisch Strudelpunkt β α stabil α < β α β β α β < α α β β α β, α= instabil stabil Strudelpunkt Zentrum Quellen Meyberg Vachenauer, Höhere Mathematik 2, Springer, Berlin, 2.Auflage, 1997 13

Hauptachsentransformation 1. Problemstellung Die Hauptachsentransformation ist ein nützliches Hilfsmittel, wenn es darum geht Kurven anhand einer Gleichung mit zwei (Flächen) resp. drei (Volumen) Variabeln zu bestimmen. Betrachten wir folgende Quadrik: Anhand dieser Gleichung ist es sehr schwierig festzustellen, um welche Art von Kurven es sich handelt. 2. Umformung der Gleichung Um mit der Quadrik besser arbeiten zu können, muss sie zuerst in Matrizenform gebracht werden. Die Allgemeine Form lautet folgendermassen: Da es sich um ein zweidimensionales Problem handelt und die Matrix per Definition symmetrisch ist, sehen die Vektoren folgendermassen aus: Als erstes berechnet man x T Ax: 14

Vergleicht man die Koeffizienten dieser Gleichung mit den entsprechenden Koeffizienten der Angabe erhält man a = c = 2, b = 3. Die Matrix der Quadrik hat also folgende Gestalt: Die Komponenten von u lassen sich aus dem zweiten Teil der Gleichung leicht bestimmen: Ein erneuter Koeffizientenvergleich liefert folgenden Werte für u: Nun kann man die ursprüngliche Kurvengleichung auch schreiben als: Der zweite Summand beschreibt offenbar nur eine Verschiebung der Kurve. Das echte Problem ist der erste Summand. 15

3. Koordinatentransformation 1. Teil Um die Matrix A in eine Diagonalform zu bringen, wird eine Koordinatentransfor-mation vorgenommen. Dazu führen wir die neue Koordinate y ein. Für diese gilt x = By wobei die Matrix B noch genauer bestimmt werden muss. Substituiert man nun das x in der Gleichung so ergibt sich die neue Gleichung: Unser Ziel ist es also nun, die Matrix B so zu bestimmen, dass der Ausdruck A T BA eine Matrix in Diagonalform ergibt. Unter der Annahme, dass B eine orthogonale Matrix ist gilt B T = B -1. Das bedeutet, dass A einer Diagonalmatrix ähnlich sein muss, mit anderen Worten dass A = BDB -1 gilt, wobei D eine Diagonalmatrix ist. 3.1 Bestimmung der Matrizen B und D Bekanntermassen kann man die Matrizen D und B mit Hilfe von Eigenwerten und Eigenvektoren bestimmen. Die Diagonalelemente von D sind dann genau die Eigenwerte und die Spalten von B sind die dazugehörigen Eigenvektoren. In unserem Beispiel sieht das wie folgt aus: Die Nullstellen dieses charakteristischen Polynoms sind λ 1 = -1, λ 2 = 5. Die Diagonalmatrix D hat also folgende Gestalt: 16

Bleiben noch die Eigenvektoren zu bestimmen: Aufgelöst ergeben die Gleichungssysteme folgende Lösungen: Nun stellt sich die Frage, welchen Eigenvektor resp. welche Werte für v 1 und v 2 man wählen muss, damit die Matrix B eine Orthogonalmatrix wird. Da die Spaltenvektoren in ihrer Lage bereits orthogonal zueinander sind (Normalvektoren stehen immer senkrecht aufeinander) müssen wir uns lediglich noch um die Längen kümmern. Wir wählen die Konstanten a, b so, dass die Vektoren v 1 und v 2 beide die Länge 1 haben. Das bedeutet, dass sowohl a als auch b gleich 1/ 2 sind. Die Matrix unseres Beispiels lautet also: Da B T = B -1 und somit B T B = I ist, gilt auch BAB -1 = D. Damit lautet die neue Kurvengleichung: Des weiteren bleibt noch u T = u T B zu berechnen, was allerdings keine grosse Sache mehr ist. 17

Damit lässt sich die Gleichung der Kurve nach der Koordinatentransformation schreiben als: oder Graphisch war diese Koordinatentransformation eine Drehung um den Ursprung : 4. Translation in x-richtung Im wesentlichen ist das Beispiel gelöst. Schöner währe es jedoch noch, diese Hyperbel würde im Ursprung liegen. Um diese Translaiton vorzunehmen wird die Gleichung folgendermassen umgeschrieben: 18

ersetzt man nun die Klammern durch zwei Variabeln z 1 und z 2, was der Verschiebung in x- Richtung entspricht, so erhält man die Gleichung: Geometrisch sieht die Hyperbel nun folgendermassen aus: Die Hauptachsen-Abschnitte dieser Hyperbel sind: a= (139/1) b= (139/5) Quelle: http://stud3.tuwien.ac.at/~e325258/files/linalg.pdf 19

2