16. Flächenfärbungen

Ähnliche Dokumente
Kap. IV: Färbungen von Graphen

4 Färbungen Begriffe Komplexität Greedy-Algorithmus Knotenreihenfolgen Das 4-Farben-Problem...

8: Bipartite Graphen. s 1. bei dem es eine Kante zwischen s i und k gibt, wenn der Schüler s i die Note k für seine Arbeit bekommen hat.

11: Die Euler sche Polyederformel für planare Graphen

Vier-Farbenproblem. (c) Ein etwas schwereres Beispiel...

Alexandra Kuhls Proseminar Das Buch der Beweise

Vier-Farben-Vermutung (1)

Wiederholung aus Diskreter Mathematik I: I: Graphentheorie

Vier Farben reichen! Von farbigen Landkarten und kniffeligen Beweisen. Martin Oellrich. Warum eine Karte? 3. Warum stetige Grenzen?

Der Fünffarbensatz Proseminar: Graphentheorie Sommersemester 2006 Isa Topac, Markus Kunder, Tim Hahn

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie

Der Vier-Farben-Satz

Kapitel 3. Kapitel 3 Graphentheorie

Bernd Döring. Wege, Plätten, Färben. Vom Problem zur Theorie der Graphen

Planare Graphen und Färbungen. Kapitel 7. Peter Becker (H-BRS) Graphentheorie Wintersemester 2018/ / 296

Der Fünffarbensatz. Ausarbeitung des Seminarvortrags vom

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. wer das Problem löste 4

WS 2015/16 Diskrete Strukturen Kapitel 4: Graphen (Planare Graphen, Färbung)

Färbungen auf Graphen

Definition : Diechromatische Zahl eines Graphen G ist die kleinste Anzahl chromatische Zahl von Farben für eine zulässige Färbung.

9: Gewichtete Graphen

Das Vierfarbenproblem und verwandte Fragestellungen

Listenfärbung von Graphen

Fünf-Farben-Satz. Seminar aus reiner Mathematik, WS 13/14. Schweighofer Lukas, November Seite 1

Graphentheorie. Färbungen. Knoten- und Kantenfärbungen. Knoten- und Kantenfärbungen. Rainer Schrader. 28. Januar 2008

1 Pfade in azyklischen Graphen

WS 2013/14. Diskrete Strukturen

Knotenfärbung. Def.: Eine Knotenfärbung eines Graphen G=(V,E) mit k Farben ist eine Abbildung c:v {1,...,k}, so dass c(u) c(v) für alle {u,v} E.

Achilles und die Schildkröte Sommersemester 2008

durch Einfügen von Knoten konstruiert werden kann.

Ein Turnierplan mit fünf Runden

Der Fünf-Farben-Satz. Lukas Schweighofer. Feb.2014

Diskrete Strukturen Kapitel 4: Graphentheorie (Euler-Hamilton)

1. Einleitung wichtige Begriffe

Liegt eine Kante k auf einem Zyklus Z, so liegt k auf dem Rand genau zweier

Übersicht 2. Mathematik als Beruf? Von logischen Strukturen und spannenden Aufgaben. Martin Oellrich. ein Problem vor der Haustür 3

Algorithmische Graphentheorie

Kantengraphen und Planare Graphen. Seminararbeit

5 Graphen. Repräsentationen endlicher Graphen. 5.1 Gerichtete Graphen. 5.2 Ungerichtete Graphen. Ordnung von Graphen

Von den Kanten von Gewicht 4 wird nur noch eine ausgewählt, die zu dem letzten nicht ausgewählten Knoten führt: 1. Juni

Graphen KAPITEL 3. Dieses Problem wird durch folgenden Graph modelliert:

In diesem Skript werden folgende Begriffe anhand von einfachen Beispielen eingeführt:

Hausarbeit aus. Graphentheorie Formale Grundlagen Professor Franz Binder. zum Thema. Herbert Huber k Seite 1 von 21

Chromatosaurier Lösungen

Zweiter Zirkelbrief: Graphentheorie

Gibt es in Königsberg einen Spaziergang, bei dem man jede der. Pregelbrücken. überquert?

Gibt es in Königsberg einen Spaziergang, bei dem man jede der sieben Pregelbrücken genau einmal überquert?

Brückenkurs Mathematik. Jörn Steuding (Uni Würzburg), 13. Januar 2018

WS 2009/10. Diskrete Strukturen

Diskrete Mathematik Graphentheorie (Übersicht)

Graphen und Algorithmen

Die Vermutungen von Hadwiger und

Diskrete Strukturen. wissen leben WWU Münster

Übung zur Vorlesung Diskrete Strukturen I

Graphentheorie: Das Hamiltonische-Kreis-Problem: Definitionen, Resultate und Anwendungen

Graphen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Algorithmische Graphentheorie

Lösungen zu Kapitel 5

WS 2013/14. Diskrete Strukturen

Übung zur Vorlesung Diskrete Mathematik (MAT.107) Blatt Beispiellösungen Abgabefrist:

11a. Der. und erster COMPUTERBEWEIS. Flächenornamente Zwei- und Vierfarbenproblem

1 Beispiele für Graphen

1. Einführung. Grundbegriffe und Bezeichnungen. Beispiele. gerichtete Graphen. 1. Einführung Kapitelübersicht

2. Grundlagen. A) Mengen

2. Graphentheorie, Reinhard Diestel, Springer Verlag, 4. Auflage, 2012

Zusammenfassung zu Graphentheorie

Chr.Nelius: Zahlentheorie (WS 2006/07) ggt und kgv

Ilse Fischer. Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, Austria.

6. Planare Graphen und Färbungen

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Hamiltonsche Graphen

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Übung zur Vorlesung Diskrete Strukturen I

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Graphen. Definitionen

Übungsaufgaben Graphentheorie, Wintersemester 2011/12

Das Art Gallery Problem

Anwendungen von Graphen

Elementare Definitionen. Anwendungen von Graphen. Formalisierung von Graphen. Formalisierung von Digraphen. Strassen- und Verkehrsnetze

Vorlesungen vom 5.Januar 2005

Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).

Graphen. Graphen und ihre Darstellungen

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

EINFÜHRUNG IN DIETHEORIE DER ENDLICHEN GRAPHEN

Was bisher geschah. gerichtete / ungerichtete Graphen G = (V, E) Darstellungen von Graphen

Distanzprobleme in der Ebene

Grundlagen der Graphentheorie. Thomas Kamps 6. Oktober 2008

Grundlagen und Diskrete Strukturen Wiederholungsaufgaben

Grundbegriffe der Informatik

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12. Klausurvorbereitung

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

3 Planare Graphen die Eulersche Polyederformel

= n (n 1) 2 dies beruht auf der Auswahl einer zweielementigen Teilmenge aus V = n. Als Folge ergibt sich, dass ein einfacher Graph maximal ( n E = 2

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Algorithmische Graphentheorie

Transkript:

Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten Vermutungen der Mathematik werden sollte. Ein Mathematik Student vermutete, dass jede Landkarte mit höchstens vier Farben so gefärbt werden kann, dass benachbarte Länder immer unterschiedlich gefärbt sind. Diese Vierfarben Vermutung hat die Entwicklung der Graphentheorie stark beeinflusst und vorangetrieben. Wir werden sehen, dass diese Vermutung äquivalent zum Vierfarben Satz für die Eckenfärbung ist. Wir sehen hier einen planaren Graphen, dessen Flächen mit 6,3 bzw 2 Farben so gefärbt sind, dass benachbarte Flächen immer unterschiedlich gefärbt sind. (16.1) DEF: Sei G ein ein planarer Graph mit einer ebenen Zeichnung Z(G). a) Bei einer Flächenfärbung von G wird jeder Fläche von Z(G) genau eine Farbe zugeordnet (oder anschaulicher: jede Fläche wird mit genau einer Farbe gefärbt). b) Eine Flächenfärbung von G heißt zulässig, wenn benachbarte Flächen (das sind Flächen mit mindestens einer gemeinsamen Randkante) immer mit unterschiedlichen Farben gefärbt sind. c) Sei k 1 eine natürliche Zahl. G heißt k flächenfärbbar, wenn es eine zulässige Flächenfärbung von G mit höchstens k verschiedenen Farben gibt. Man sagt dann auch, dass G eine k Flächenfärbung besitzt.

Chr. Nelius: Graphentheorie (WS 2015/16) 58 (16.2) BEM: a) Ein planarer Graph G besitzt genau dann eine zulässige Flächenfärbung, wenn er keine Brücke besitzt. b) Ein Graph ist genau dann 1 flächenfärbbar, wenn er der Null Graph ist. c) Der Tetraeder Graph hat die chromatische Zahl 4. Er ist 4 flächenfärbbar, aber nicht 3 flächenfärbbar. d) Beispiel für einen Graphen mit chromatischer Zahl 4, der 3 flächenfärbbar ist. e) Ist ein Graph k flächenfärbbar, so muss nicht jeder Untergraph ebenfalls k flächenfärbbar sein. Beispiel: Der Graph G aus d) ist 3 flächenfärbbar. G enthält aber den Tetraeder Graphen als Untergraphen, der nicht 3 flächenfärbbar ist. Wir wollen jetzt festlegen, an welchen Graphen wir Flächenfärbungen vornehmen wollen. Der Graph muss planar sein (sonst hätten wir keine Flächen) und soll zusammenhängend sein (sonst könnte man die Zusammenhangskomponenten flächenfärben), so dass Ecken vom Grade 0 ausgeschlossen sind. Der Graph darf keine Brücken enthalten, somit sind insbesondere Ecken vom Grade 1 ausgeschlossen. Ecken vom Grade 2 sind für die Berandungen unerheblich und sollen daher keine Berücksichtigung finden. Alle diese Eigenschaften findet man in 3 zusammenhängenden Graphen. Wir definieren daher: (16.3) DEF: Eine Landkarte ist ein 3 zusammenhängender planarer Graph. (16.4) BEM: a) Ist G eine Landkarte mit mindestens 2 Ecken, so gilt δ(g) 3 (nach (4.18)). b) Eine Landkarte enthält keine Brücken und besitzt daher eine zulässige Flächenfärbung. c) Ist G ein zusammenhängender planarer Graph, so gilt nach (15.14a): G Landkarte G schlicht.

Chr. Nelius: Graphentheorie (WS 2015/16) 59 (16.5) SATZ: Für eine Landkarte G sind folgende Aussagen äquivalent: a) G ist 2 flächenfärbbar b) G ist ein Euler Graph. (16.6) SATZ: Sei G ein zusammenhängender planarer Graph. Dann sind für k Æ folgende Aussagen äquivalent: a) G ist k eckenfärbbar b) Der duale Graph G ist k flächenfärbbar. Bew: a) = b) Da G keine Schlingen enthält, besitzt G keine Brücken und daher nach (16.2a) eine zulässige Flächenfärbung. In jeder Fläche F von G liegt genau eine Ecke v von G (vgl. (15.9c)). Da eine k Eckenfärbung von G vorgegeben ist, kann man die Fläche F mit der Farbe der Ecke v färben. Sind F 1 und F 2 zwei Flächen mit gemeinsamer Randkante, so müssen die darin liegenden Ecken v 1 bzw. v 2 von G adjazent sein, so dass v 1 und v 2 unterschiedlich gefärbt sind. Damit sind dann auch die Flächen F 1 und F 2 unterschiedlich gefärbt, so dass man insgesamt eine k Flächenfärbung von G erhält. b) = a) DaG keine Brücken enthält, besitzt G keine Schlingen und daher eine zulässige Eckenfärbung. Jede Ecke v von G liegt in genau einer Fläche F von G. Ist eine k Flächenfärbung von G gegeben, so kann man die Ecke v mit der Farbe dieser Fläche F färben. Sind v 1 und v 2 zwei adjazente Ecken von G, so haben die zugehörigen Flächen F 1 und F 2 eine gemeinsame Randkante und sind deshalb unterschiedlich gefärbt. Folglich haben auch v 1 und v 2 unterschiedliche Farben. Insgesamt erhält man eine k Eckenfärbung von G. (16.7) FOLG: Ein zusammenhängender planarer Graph besitzt genau dann eine 4 Eckenfärbung, wenn sein dualer Graph eine 4 Flächenfärbung besitzt. (16.8) SATZ: Der Vierfarben Satz für Landkarten Jede Landkarte ist 4 flächenfärbbar. Bew: Ist G eine Landkarte, so ist G planar und nach (16.4c) auch schlicht. Nach dem Vierfarben Satz (14.14) ist G somit 4 eckenfärbbar, so dass dann G nach (16.7) 4 flächenfärbbar ist. Da G zusammenhängend ist, stimmt aber G nach (15.11) mit dem Graphen G überein, so dass G schließlich auch 4 flächenfärbbar ist. BEM: Der obige Beweis benutzt den Vierfarben Satz (14.14) für die Eckenfärbung und ist daher kein eigenständiger Beweis!!! Es folgen einige Anmerkungen zur Geschichte des Vierfarben Problems.

Chr. Nelius: Graphentheorie (WS 2015/16) 60 Zur Geschichte des Vierfarben Problems Im Jahre 1852 teilte der Mathematik Student Frederick Guthrie seinem Professor Augustus de Morgan in London die Vermutung seines Bruders Francis Guthrie mit, dass jede Landkarte mit vier Farben so gefärbt werden kann, dass benachbarte Länder immer eine unterschiedliche Farbe haben. Francis Guthrie (später Mathematik Professor in Kapstadt) war auf diese Idee beim Färben einer Karte der Grafschaften von England gekommen. Obwohl diese Vermutung recht plausibel erschien, war es nicht klar, wie man sie beweisen könnte. Deshalb fragte de Morgan in einem Brief vom 23.10.1852 an seinen (uns nicht ganz unbekannten) Kollegen William Rowan Hamilton in Dublin nach. (Dieser Brief existiert heute noch.) Hamilton konnte diese Frage nicht beantworten und hatte allerdings auch kein sonderliches Interesse an ihr.

Chr. Nelius: Graphentheorie (WS 2015/16) 61 De Morgan machte nun das Vierfarbenproblem in Mathematikerkreisen publik, und es wurde lange nach einem Beweis gesucht. Auch Arthur Cayley beschäftigte sich mit diesem Problem und legte es 1878 der London Mathematical Society vor. Schließlich veröffentlichte der englische Rechtsanwalt (und Mathematiker) Alfred Bray Kempe, der ein Schüler von Cayley gewesen war, im Jahre 1879 einen Beweis. 11 Jahre später zeigte der englische Mathematiker Percy John Heawood, dass der Beweis von Kempe fehlerhaft war. In derselben Arbeit bewies Heawood den schwächeren Fünffarben Satz.

Chr. Nelius: Graphentheorie (WS 2015/16) 62 Dadurch rückte das Vierfarben Problem wieder in den Mittelpunkt des Interesses und wurde in den folgenden Jahrzehnten zu einer der bekanntesten und berühmtesten Vermutungen in der Mathematik. Viele Mathematiker versuchten sich an einem Beweis, und die Methoden, die Kempe bei seinem fehlerhaften Beweis benutzt hatte, blieben von Bedeutung und wurden weiterentwickelt. Schließlich fanden Kenneth Appel und Wolfgang Haken von der Universität in Illinois im Jahre 1976 einen Beweis, bei dem etwa 2000 Problemfälle mit Hilfe eines Computers überprüft werden mussten. Diese Beweismethode wird jedoch von einigen Mathematikern sehr kritisch betrachtet und auch nicht immer akzeptiert.