Physikalisches Grundpraktikum V3 - Linsen. V3 - Linsen

Ähnliche Dokumente
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe

Versuch 005 / Versuch 403

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.

Teilskript zur LV "Optik 1" Paraxiale Abbildungseigenschaften sphärischer Linsen Seite 1

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Vorkurs Physik des MINT-Kollegs

Versuch GO1 Abbildungen durch Linsen und Abbildungsfehler

4 Optische Linsen. Als optische Achse bezeichnet man die Gerade die senkrecht zur Symmetrieachse der Linse steht und durch deren Mittelpunkt geht.

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Grundkurs IIIa für Studierende der Physik, Wirtschaftsphysik und Physik Lehramt

LS7. Geometrische Optik Version vom 24. Januar 2019

Lösungen zur Geometrischen Optik Martina Stadlmeier f =

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017

Optik. Was ist ein Modell? Strahlenoptik. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl

Dr. Thomas Kirn Vorlesung 12

Versuch 17: Geometrische Optik / Mikroskop

Versuch 12 : Brennweitenbestimmung von Linsen - Aufbau eines Mikroskops

Mehrlinsen- und Mehrspiegelsysteme Mehrlinsensysteme

Klausurtermin: Anmeldung: 2. Chance: voraussichtlich Klausur am

Technische Raytracer

Photonik Technische Nutzung von Licht

Praktikum Optische Technologien Anleitung zum Versuch Dicke Linsen

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres

O10 Linsensysteme. Physikalische Grundlagen. Grundbegriffe Hauptebenen Abbildungsgleichung Abbildungsmaßstab Bildkonstruktion

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Vorbereitung zur geometrischen Optik

Versuch O02: Fernrohr, Mikroskop und Teleobjektiv

Physikalisches Grundlagenpraktikum Versuch Geometrische Optik

7. GV: Geometrische Optik

Versuch D 1: Brennweite von Linsen und Linsensystemen

Physik PHB3/4 (Schwingungen, Wellen, Optik)

HS D. Hochschule Düsseldorf Fachbereich EI. Physikalisches Praktikum. V 501 : Optische Abbildungen (OA)

Geometrische Optik _ optische Linsen und Spiegel

Physikalisches Grundpraktikum Geometrische Optik

Astro Stammtisch Peine

Physik für Mediziner im 1. Fachsemester

V 501 : Optische Abbildung

NTB Druckdatum: MAS. E-/B-Feld sind transversal, stehen senkrecht aufeinander und liegen in Phase. Reflexion Einfallswinkel = Ausfallswinkel

Die Ergebnisse der Kapiteltests werden nicht in die Berechnung der Semesternoten mit einbezogen!

Physik für Mediziner im 1. Fachsemester

Examensaufgaben - STRAHLENOPTIK

Examensaufgaben - STRAHLENOPTIK

Ferienkurs Experimentalphysik 3 - Übungsaufgaben Geometrische Optik

Geometrische Optik. Optische Elemente; Reflexion und Brechung

Institut für Elektrische Meßtechnik und Meßsignalverarbeitung. Übersicht

Abbildung durch Linsen

Bestimmung der Brennweiten von Zerstreuungslinsen und Linsensystemen (Artikelnr.: P )

Spiegelsymmetrie. Tiefeninversion führt zur Spiegelsymmetrie Koordinatensystem wird invertiert

21.Vorlesung. IV Optik. 23. Geometrische Optik Brechung und Totalreflexion Dispersion 24. Farbe 25. Optische Instrumente

Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O10: Linsensysteme Arbeitsplatz Nr.

Gruppe: bzw. D = D1 + D2 (2)

Brennweite und Abbildungsfehler von Linsen

Protokoll zum Grundversuch Geometrische Optik

4. Optische Abbildung durch Linsen

Mehrlinsen- und Mehrspiegelsysteme Mehrspiegelsysteme, Abbildungsfehler

Die hier im pdf-format dargestellten Musterblätter sind geschützt und können weder bearbeitet noch kopiert werden.

Bildentstehung, Spiegel und Linsen Bildentstehung und Bildkonstruktion bei dünnen sphärischen Linsen

Bildkonstruktionen an Sammellinsen

Abbildung durch Linsen und Linsensysteme

Geometrische Optik Versuchsauswertung

Ferienkurs Experimentalphysik III

Physikalisches Grundpraktikum für Physiker/innen Teil II. Geometrische Optik

Praktikum I BL Brennweite von Linsen

Ferienkurs Experimentalphysik 3

Protokoll: Grundpraktikum II O10 - Linsensysteme

Mehrlinsen- und Mehrspiegelsysteme Mehrspiegelsysteme, Abbildungsfehler

Geometrische Optik Die Linsen

Ergänzungs-Set geometrische Optik

Othmar Marti Experimentelle Physik Universität Ulm

Musterprüfung Welche Winkel werden beim Reflexions- und Brechungsgesetz verwendet?


Versuch Nr. 18 BEUGUNG

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /18

Brechung (Refrak/on) von Lichtstrahlen. wahre Posi/on

(21. Vorlesung: III) Elektrizität und Magnetismus 21. Wechselstrom 22. Elektromagnetische Wellen )

Praktikum Optische Technologien Anleitung zum Versuch Brennweitenbestimmung

13.1 Bestimmung der Lichtgeschwindigkeit

NG Brechzahl von Glas

PRISMEN - SPEKTRALAPPARAT

Abriss der Geometrischen Optik

Othmar Marti Experimentelle Physik Universität Ulm

Bildkonstruktion an Konkavlinsen (Artikelnr.: P )

Vorlesung 7: Geometrische Optik

Stiftsschule Engelberg Physik / Modul Optik 1. OG Schuljahr 2016/2017

Ferienkurs Experimentalphysik 3

Das Brechungsgesetz. Brechung und Reflexion: n 1. n 2. Das Snelliussche Brechungsgesetz:

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum B. Versuch og : Optische Geräte. 4. Auflage 2017 Dr. Stephan Giglberger

Tutorium Physik 2. Optik

Stiftsschule Engelberg Physik / Modul Optik 2./3. OG Schuljahr 2016/2017

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Laboranten Labormethodik und Physikalische Grundlagen

Versuch og : Optische Geräte

Transkript:

Aufgabenstellung: 1. Bestimmen Sie die Brennweite einer dünnen Sammellinse durch Messung von Gegenstandsund Bildweite, nach dem Bessel-Verfahren sowie mittels Autokollimation. 2. Bestimmen Sie die Brennweite einer Kombination aus einer Sammel- und einer Zerstreuungslinse durch Messung von Gegenstands- und Bildweite. Berechnen Sie die Brennweite der genutzten Zerstreuungslinse. Stichworte zur Vorbereitung: Brechung, Brechzahl, SNELLIUSsches Brechungsgesetz, Linse, dünne Linse, Abbildungsgleichung, Abbildungsmaßstab, Bildkonstruktion an dünnen Sammel- und Zerstreuungslinsen, Linsenkombination, Bessel-Verfahren, Autokollimation Literatur: H. J. Paus, Physik in Experimenten und Beispielen, Kap. 50.5, 56, 3. Auflage, Hanser Verlag 2007 W. Demtröder, Experimentalphysik, Band 2: Elektrizität und Optik, Kap. 9.5, 2. Auflage, Springer Verlag 1999 W. Schenk,.Kremer (Hrsg.), Physikalisches Praktikum, Kap. O.1.0, O.1.1, 13. Auflage, Vieweg+Teubner 2011 H. J. Eichler, H.-D. Kronfeldt, J. Sahm, Das neue physikalische Grundpraktikum, Kap. 33, 2. Auflage, Springer Verlag 2006 03/03/2016 1/9

1. Theoretische Grundlagen Grundaxiome der geometrischen Optik Gegenstand der geometrischen Optik ist die Beschreibung der Ausbreitung der Lichtwellen im Raum - jedoch nicht die Beschreibung ihrer Intensität. Dazu wird die Ausbreitungsrichtung durch den Normalenvektor auf die lächen gleicher Phasen charakterisiert. In so genannten ebenen Wellen sind diese Phasenflächen Ebenen, und die Normalenvektoren verlaufen parallel zueinander und werden dann als Lichtstrahl, Lichtbündel oder Strahlenbündel bezeichnet. ür die räumliche Ausbreitung der Lichtstrahlen gelten die folgenden Grundsätze: in einem optisch homogenen Medium sind Lichtstrahlen Geraden. an der Grenzfläche zwischen zwei Medien werden Lichtstrahlen nach dem Reflexionsgesetz reflektiert und gemäß dem SNELLIUSschen Brechungsgesetz gebrochen. mehrere Strahlenbündel, die sich durchdringen, beeinflussen sich gegenseitig nicht. Im olgenden ist die optische Abbildung mittels Linsen zu betrachten. Diese beruht auf der Änderung der Ausbreitungsrichtung des Lichtes an Grenzflächen zwischen zwei Stoffen mit unterschiedlicher Lichtausbreitungsgeschwindigkeit, die als Brechung bezeichnet wird. Zur Charakterisierung der unterschiedlichen Ausbreitungsgeschwindigkeit c des Lichtes in den Medien wird deren Brechzahl herangezogen, wobei c & = 2,9979 10. m s n = $ % $ die Lichtgeschwindigkeit im Vakuum ist. Beschreibt man (1) die Ausbreitungsrichtung des Lichtes anhand des Einfallswinkels α zwischen Lichtstrahl und Einfallslot (vgl. Abbildung 1 (a), so kann das Snelliussche Brechungsgesetz angewendet werden: n sin α = const. (2) (a) einfallender Lichtstrahl Einfallslot (b) einfallender Lichtstrahl Einfallswinkel n 1 n 2 > n 1 Grenzfläche n 1 n 2 > n 1 n 1 parallel versetzter Lichtstrahl Abb. 1: Brechung an der Grenzfläche zweier Medien (a) führt zum Parallelversatz von Lichtstrahlen durch eine planparallele Materialschicht (b). 03/03/2016 2/9

Abbildung 1 (b) illustriert den Lichtweg beim Durchlaufen einer planparallelen Materialschicht mit einer von der Umgebung unterschiedlichen Brechzahl. Da die Änderungen der Ausbreitungsrichtung an den beiden Grenzflächen entgegengesetzt gleich ausfallen, wird das Strahlenbündel lediglich um einen von Brechzahl und Schichtdicke abhängige Länge parallel versetzt. Parallel zueinander einfallende Strahlen bleiben jedoch parallel. Dünne Linsen Linsen sind transparente Körper, die von zwei brechenden lächen begrenzt sind. Mindestens eine der beiden Begrenzungsflächen ist dabei gekrümmt. Die Symmetrieachsen der beiden brechenden lächen müssen zusammenfallen und bilden die so genannte optische Achse der Linsen. Im einfachsten all sind die Begrenzungen Ausschnitte aus Kugeloberflächen, die Krümmungsmittelpunkte beider lächen liegen dann auf der optischen Achse und man spricht von einer sphärischen Linse. Der Abstand der Scheitelpunkte beider Linsenflächen ist die Dicke d der Linse. Hier soll im weiteren nur der all, dass die Linse mit Brechzahl n beiderseits vom gleichen Medium mit Brechzahl n & < n umgeben ist, betrachtet werden. Wie in Abb. 1 (b) ersichtlich wird, ist bei einer planparallelen Materialschicht der Winkel zwischen Einfallslot und in die zweite Grenzfläche einfallendem Lichtstrahl unabhängig vom Ort entlang der Ausdehnung der Schicht. Bei einer gekrümmten Grenzfläche ist dies nicht der all: In sphärischen Linsen fällt auf der optischen Achse das Lot mit dieser zusammen, mit wachsender Entfernung zur optischen Achse wächst auch der Winkel zwischen Lot und optischer Achse. In unterschiedlichem Abstand zur optischen Achse parallel zueinander eintreffende Lichtstrahlen verlaufen also nach der Linse nicht länger parallel zueinander weiter. Gegenstandsweite a Bildweite b Richtung des einfallenden Lichtes Brennweite f Brennweite f Gegenstandsgröße A X X optische Achse Bildgröße B Gegenstand gegenstandsseitiger Brennpunkt Linsenebene bildseitiger Brennpunkt Bild Abb. 2: Dünne Linse: Größen und Vorzeichen 03/03/2016 3/9

Linsen, deren Dicke d sehr klein ist gegen die Brennweite f der Linse, heißen dünne Linsen. Näherungsweise kann in diesem all die Brechung an beiden gekrümmten Grenzflächen durch eine Brechung an der Linsenebene beschrieben werden. In Abbildung 2 sind die zur Beschreibung der optischen Abbildung an dünnen Linsen erforderlichen physikalischen Größen eingeführt. Die Pfeile geben die Richtung an, in die die jeweilige Größe positiv gezählt wird. Vom Gegenstandsort X ausgehende achsennahe Strahlen werden im Bildort X ; vereinigt. X ; wird als Bild des Objekt- bzw. Gegenstandspunktes X bezeichnet. Ist der Punkt X unendlich weit von der Linse entfernt, so verlaufen sämtliche von ihm ausgehende Strahlen parallel zur optischen Achse. Diese Strahlen werden durch die Linse im bildseitigen Brennpunkt vereinigt. Steht anders herum das Objekt im gegenstandsseitigen Brennpunkt, so verlaufen die von ihm ausgehenden Strahlen nach der Linse parallel zur optischen Achse. Unter den hier betrachteten Bedingungen ist gegenstands- und bildseitige Brennweite gleich, und für Bild- und Gegenstandsweite gilt die Abbildungsgleichung < = + <? = < @. (3) Das Verhältnis von Bildgröße zu Gegenstandsgröße nennt man Abbildungsmaßstab: M = B C. (4) Häufig sind für spezielle Abbildungen mehr als nur eine Linse im Einsatz. Kombiniert man mehrere Linsen zu einem Linsensystem, so kann für das Gesamtsystem eine Brennweite definiert werden, so dass Gleichung (3) weiterhin genutzt werden kann. Mit den Brennweiten f < und f D der Einzellinsen und deren Abstand D gilt dann < = < + < I. @ @ @ G @ @ G Sind die Linsen im Vergleich zu ihren Brennweiten nahe beieinander angeordnet, so kann der letzte Term vernachlässigt werden und es gilt in guter Näherung < @ = < @ + < @ G. (5a) (5b) Bildkonstruktion an dünnen Linsen Aus den obigen Überlegungen ergeben sich drei Grundsätze, die eine einfache geometrische Konstruktion der Abbildung ermöglichen: achsenparallel einfallende Strahlen werden im bildseitigen Brennpunkt vereinigt. Strahlen durch den Linsenmittelpunkt verlaufen mit unveränderter Ausbreitungsrichtung. der Lichtweg ist umkehrbar. In Abbildung 3 ist die Bildkonstruktion für einen Gegenstand mit zwei verschiedenen Gegenstandsweiten. Zu unterscheiden sind dabei reelle und virtuelle Bildpunkte. In reellen Punkten 03/03/2016 4/9

schneiden sich die Lichtstrahlen, sie sind auf einem Schirm abbildbar. In virtuellen Bildpunkten schneiden sich (ggf. rückwärtige) Verlängerungen von Strahlen. Virtuelle Punkte sind auf einem Beobachtungsschirm nicht darstellbar, sie dienen lediglich als Konstruktionshilfsmittel für die Betrachtung der weiteren Abbildung mit weiteren optischen Systemen. So ergibt die Abbildung eines Gegenstandes in einer Gegenstandsweite zwischen einfacher und doppelter Brennweite ein reelles Bild (vgl. Objektiv eines Mikroskopes), während ein Gegenstand innerhalb der einfachen Brennweite in ein virtuelles Bild abgebildet wird (Lupe, Okular). (a) (b) a b A 2 B 2 B 2 A 2 a b Abb. 3: Bildkonstruktion an einer dünnen Sammellinse. (a) Gegenstände zwischen einfacher und doppelter Brennweite werden in ein reelles Bild abgebildet. (b) Gegenstände innerhalb der Brennweite werden in ein virtuelles Bild abgebildet. Die Strich-Punkt-Linien sind rückwärtige Verlängerungen der Strahlen und dienen ausschließlich der Bildkonstruktion. Abbildungsfehler Die in Abb. 3 illustrierte Bildkonstruktion zeigt, dass jeder Punkt des Gegenstandes in einem Punkt des Bildes abgebildet wird. Tatsächlich ist dies nur für monochromatische achsennahe Strahlen, die mit der optischen Achse kleine Winkel einschließen (so genannte paraxiale Strahlen) der all. Enthält das einfallende Licht dagegen Komponenten verschiedener Wellenlänge (und damit arbe), werden die Randbereiche der Linse mit genutzt oder treffen Strahlenbündel unter großen Winkeln gegen die optische Achse auf die Linse, treten verschiedene Abbildungsfehler auf - Punkte werden dann nicht länger als Punkte abgebildet. Abbildungsfehler treten also auch in ideal sphärisch geschliffenen Linsen auf, sie sind nicht olge der Oberflächenbeschaffenheit oder Materialfehlern. Die wichtigsten Abbildungsfehler sind chromatische Abberation: Die Brechzahl eines Materials ist i.d.r. von der Lichtwellenlänge abhängig. Entsprechend verändert sich die Brennweite und somit auch die Bildweite mit der Wellenlänge des Lichtes. Dies hat zur olge, dass die Brennweite für jede Lichtwellenlänge unterschiedlich ist. Bei Beleuchtung mit polychromatischem Licht kann man ein mit einem 03/03/2016 5/9

arbsaum umgebenes scharfes Bild in einer arbe erhalten, jedoch kein scharfes Bild in der arbüberlagerung. sphärische Abberation: Parallel zur optischen Achse einfallende Strahlen werden in einem Punkt gebündelt, der mit wachsendem Achsabstand näher an der Linsenebene liegt. Bei großen Linsenöffnungen entsteht daher ein unscharfes Bild. Astigmatismus schräger Bündel: Ein Bündel paralleler Lichtstrahlen, dass schräg zur optischen Achse einfällt, wird nicht in einem Punkt, sondern in zwei zueinander senkrechten Brennlinien mit unterschiedlichem Abstand zur Linsenebene abgebildet. Der unsymmetrische Bündelverlauf bewirkt also unterschiedliche Brennpunkte, und zu einem Objektpunkt gehört kein eindeutiger Bildpunkt mehr. Verzeichnung: Bei der Abbildung eines Rasters beobachtet man häufig Verzerrungen im Bild, insbesondere, wenn strahlbegrenzende Blenden in den Strahlengang eingebracht sind. Ist die Blende zwischen Gegenstand und Linse, so beobachtet man eine tonnenförmige Verzeichnung (Kanten werden nach außen gewölbt), eine Blende zwischen Linse und Bild verursacht kissenförmige Verzeichnungen (Kanten werden nach innen gewölbt). 2. Versuchsdurchführung Die optischen Elemente Lichtquelle, Objekthalter, Linse und Schirm bzw. Planspiegel werden auf einer optischen Schiene angeordnet und sind auf gleiche Mittenhöhe zu kontrollieren. Ggf. ist die Höhe einzelner Bauelemente zu justieren, um systematische ehler zu vermeiden. Als Objekt wird eine von hinten beleuchtete L-förmige Lochmaske, die in einem Diahalter befestigt ist, verwendet. Auf der optischen Schiene ist ein Maßstab befestigt, Markierungen an den optischen Reitern, die die Bauelemente tragen, erlauben das einfache Ablesen der Positionen z L der Linse, z O des Objektes und z S des Beobachtungsschirms. Die zu verwendenden Linsen werden vom Versuchsbetreuer vorgegeben. Alle Linsen sind beschriftet - die Bezeichnung der Linsen ist zu dokumentieren. ür eine einfache Bestimmung der Brennweite ist zunächst ein fester Abstand s = z S z O zwischen Beobachtungsschirm und Objekt vorzugeben. Durch Verschieben der Linse ist ein scharfes Bild auf dem Beobachtungsschirm zu erzeugen und die Positionen von Objekt, Linse und Schirm zu erfassen. Die Messung ist für fünf verschiedene Abstände zwischen Schirm und Objekt zu wiederholen. Zur Prüfung der Reproduzierbarkeit ist darüber hinaus die Einstellung des Bildes ( Scharfstellung ) für einen exemplarisch gewählten Wert von s drei Mal zu wiederholen. 03/03/2016 6/9

Das BESSEL-Verfahren erlaubt eine genauere Bestimmung der Linsenbrennweite. Insbesondere ist es bei dieser Methode unerheblich, dass die Lage der Linsenebene bei gefassten und unsymmetrischen Linsen nicht genau bekannt ist. Da Strahlengänge umkehrbar sind, gibt es für einen festen Abstand zwischen Gegenstand und Bild zwei symmetrische Linsenstellungen, die eine scharfe Abbildung ermöglichen. Dabei gilt entsprechend der in Abbildung 4 angegebenen Größenbezeichnung e = b < a < = b D a D s = a < + b < = a D + b D (6a) (6b) und f = =? = R? = = G? G = G R? G = SG TU G VS. (7) ür fünf verschieden gewählte Abstände s sind jeweils beide Linsenpositionen z W< und z WD zu messen, ihre Differenz ergibt ebenso den erforderlichen Abstand e zwischen den beiden Linsenpositionen. s a 1 b 1 e z O z L1 z L2 z S b 2 a 2 Gegenstand Linsenposition 1 Linsenposition 2 Beobachtungsschirm Abb. 4: Bestimmung der Linsenbrennweite nach dem BESSEL-Verfahren. Zur Brennweitenbestimmung im Autokollimationsverfahren bringt man anstelle des Beobachtungsschirms einen ebenen Spiegel in den Strahlengang und orientiert diesen senkrecht zur optischen Achse. Die Lochmaske wird mit einem in den Diahalter einschiebbaren Schirm teilweise abgedeckt (bevorzugt horizontalen Anteil des L abdecken). Die Linse zwischen Gegenstand und Spiegel ist so zu verschieben, bis das Bild des nicht abgedeckten Teils der Lochmaske auf dem eingeschobenen Schirm scharf erscheint. Dann ist die Gegenstandsweite gleich der Brennweite der Linse - alle von einem Punkt des Gegenstands ausgehenden Lichtstrahlen verlassen die Linse parallel 03/03/2016 7/9

zueinander, werden reflektiert und in der Brenneben wieder zu einem Punkt vereinigt. Der Strahlengang ist in Abbildung 5 illustriert. Zur Überprüfung der Reproduzierbarkeit ist auch bei diesem Versuchsteil die bestmögliche Scharfstellung des Bildes fünf Mal zu wiederholen. Gegenstand und Beobachtungsschirm Planspiegel Abb. 5: Brennweitenbestimmung mit dem Autokollimationsverfahren. Zerstreuungslinsen allein können nicht für optische Abbildungen genutzt werden. Zur Bestimmung ihrer Brennweiten mittels der zuvor beschriebenen Verfahren sind sie daher mit Sammellinsen zu kombinieren, so dass die resultierende Linsenkombination als Sammellinse wirkt. Dazu steht ein Linsenhalter zur Verfügung, der anstelle der Einzellinse auf der optischen Schiene zu befestigen ist. Die zuvor untersuchte Sammellinse ist zusammen mit der zur Verfügung gestellten Zerstreuungslinse in den Linsenhalter einzubauen. Die Bestimmung der Brennweite erfolgt dann nach dem Autokollimationsverfahren wie zuvor beschrieben. 3. Hinweise zur Auswertung ür jeden bei der Bestimmung von Gegenstands- und Bildweite gewählten Abstand s ist die Brennweite einzeln zu berechnen, über die Einzelwerte kann anschließend gemittelt werden. Ebenso ist bei der Auswertung der Messungen nach dem BESSEL-Verfahren vorzugehen. Die direkt abgelesenen Brennweiten aus dem Autokollimationsverfahren sind ebenso zu mitteln. Geben Sie einen Größtfehler für die nach dieser Methode bestimmten Brennweite an, wobei die in den Wiederholungsexperimenten auftretende Schwankungsbreite als Maß für den zufälligen Anteil der Messunsicherheit genutzt werden kann. Bedenken Sie bei der Bestimmung des ehlers, dass die sich die Brennweite als Differenz der gemessenen Positionen der optischen Elemente auf der Schiene ergibt. 03/03/2016 8/9

Vergleichen Sie die mit den verschiedenen Methoden gewonnenen Brennweiten miteinander. Diskutieren Sie mögliche Ursachen für Abweichungen. Geben Sie ebenfalls den Mittelwert für die Brennweite der Linsenkombination an. Zur Berechnung der Brennweite der Zerstreuungslinse nutzen Sie Gleichung (5a). Der Abstand der Linsen im Linsenhalter beträgt dabei D = 16,5 ± 0,5 mm. (8) 03/03/2016 9/9