Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Ähnliche Dokumente
Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Vorkurs Mathematik 2016

Elementare Mengenlehre

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Logik I. Symbole, Terme, Formeln

Dr. Regula Krapf Sommersemester Beweismethoden

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Theorie der Informatik

Beweistechniken. Vorkurs Informatik - SoSe April 2014

De Morgan sche Regeln

Klausur zur Vorlesung Mathematische Logik

5. Logik, eine Menge Formalismus, und das Formen von Mengen

Mathematische Grundlagen der Computerlinguistik

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

2.1 Direkter Beweis. Theorie der Informatik. Theorie der Informatik. 2.1 Direkter Beweis. 2.2 Indirekter Beweis

HEUTE. Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch

Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen

Abschnitt 3.2: Der Satz von Ehrenfeucht

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

1.3 Aussagen. Beispiel: Das Bruttosozialprodukt der Bundesrepublik Deutschland ist höher als das der USA ist eine offenbar falsche Aussage.

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Klausur zur Vorlesung Mathematische Logik

Beweistechniken. Vorkurs Informatik - SoSe April 2013

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017

Paare und Kartesische Produkte

Einführung in die Logik

IV Beweise in der Mathematik

Mengen, Funktionen und Logik

Das Pumping Lemma der regulären Sprachen

Elementare Beweistechniken

Mathematische Grundlagen der Computerlinguistik I. Mengen und Mengenoperationen (Teil 1)

Grundbegriffe der Mengenlehre

Mathematik für Ökonomen 1

2 Der Beweis. Themen: Satz und Beweis Indirekter Beweis Kritik des indirekten Beweises

b liegt zwischen a und c.

1.9 Beweis durch Kontraposition

ERRATA. Übungsblatt 4a: Aufgabe 3 : Definition der Teilbarkeit (Skript S.62)

1 Grundlagen. 1.1 Aussagen

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?

Mathematik III. Vorlesung 61. Abzählbare Mengen

Vollständige Induktion

Aussagen. Mathematik und Logik 2011W. Was ist Logik? Elementare Zahlentheorie. Logik. Aussagenlogik. Prädikatenlogik. Datentypen.

8 Summen von Quadraten

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

Rhetorik und Argumentationstheorie.

Analysis I. Vorlesung 10. Mächtigkeiten

Tilman Bauer. 4. September 2007

Mathematik für Anwender I

Nur Aussagesätze, d.h. Deklarativ-, nicht aber Frage- oder Aufforderungs-sätze bringen das Zutreffen einer Aussage (oder Proposition) zum Ausdruck.

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Summen- und Produktzeichen

Mengen und Abbildungen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vorkurs Mathematik Logik und Beweise II

Hinweis: Aus Definition 1 und 2 folgt, dass die Zahl 0 zu den geraden Zahlen zählt.

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Kapitel L:III. III. Prädikatenlogik

2.2.4 Logische Äquivalenz

Mengenlehre und vollständige Induktion

TU8 Beweismethoden. Daniela Andrade

Kapitel 1. Grundlegendes

Das Transferprinzip und Nichtstandardeinbettungen

Die Logik der Sprache PL

Logik (Prof. Dr. Wagner FB AI)

Wie beweise ich etwas? 9. Juli 2012

Vorkurs Mathematik Logik und Beweise II

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Vorkurs: Mathematik für Informatiker

Zusammenfassung: Beweisverfahren

Kapitel 3. Ein adäquater Kalkül der Prädikatenlogik. Teil 2. Deduktionstheorem und Rückführung des Vollständigkeitssatzes auf das Erfüllbarkeitslemma

Universität Heidelberg 12. April 2018 Institut für Informatik Klaus Ambos-Spies Nadine Losert. 2. Klausur zur Vorlesung Mathematische Logik

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

Russell. Provenzano Philipp, Ehre Maximilian und Lang Lukas. 5. November 2014

Vorkurs Mathematik - SoSe 2017

Vorsemesterkurs Informatik

Mathematische Grundlagen I Logik und Algebra

Aufbau der Projektiven Geometrie

Zur Vorbereitung auf die Vorlesung Grundlagen der theoretischen Informatik Mo 4., Mi 6. und Fr. 8. Oktober in H/C 3310 um Uhr.

Der mathematische Beweis

Diskrete Strukturen. Sebastian Thomas RWTH Aachen Mathematische Logik

Grundlegendes der Mathematik

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt

1. Übungsblatt zur Analysis I. Gruppenübungen

23. DIFFERENTIALRECHNUNG VON FUNKTIONEN VON MEHREREN VARIABLEN

Vorkurs Beweisführung

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1

Vorlesung. Logik und Beweise

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

1. Gruppen. 1. Gruppen 7

Grundlagen der Mathematik

Transkript:

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und sich über deren Beziehungen untereinander klar werden will. Dazu führen wir hier informal und vorläufig einige Sprech- und Argumentationsweisen ein, mit denen wir uns später noch genauer befassen werden. 1.1 Objekte und Aussagen Wir nehmen an, wir haben einen Bereich von Objekten, über die wir Aussagen machen wollen. Dazu benutzen wir abkürzende Bezeichnungen: ϕ, ψ,... für Aussagen, s, t,... für Objekte. Man stelle sich die Objekte als Individuen vor, d.h. als Unteilbares 1, Einzelnes, Zählbares, klar Abgegrenztes (wie körperliche Gegenstände), im Unterschied zu Teilbarem, Vielheiten, Nicht Zählbarem, Nicht Abgegrenztem (wie Herden, Flüssigkeiten, Materien, der Natur). Oft faßt man mehrere Objekte im Geist zu Mengen zusammen und stellt sich diese als neue Objekten vor, die die ersteren als Elemente enthalten; dann unterscheidet man z.b. zwischen zwei Arten von Objekten und wählt verschiedene Bezeichnungen: a, b,... für Urelemente x, y,... für Mengen s, t,... für Objekte, d.h. Mengen oder Urelemente Urelemente sind dann die Objekte, die keine Mengen sind und daher auch keine Elemente enthalten, z.b. körperliche Gegenstände oder Zahlen. Bei den Aussagen über die Objekte unterscheiden wir einfache oder Grundaussagen von zusammengesetzten Aussagen. In Grundaussagen wird ein Prädikat von einer Reihe von Objekten ausgesagt, was wie folgt abgekürzt wird: P (x,..., y) für das Prädikat P wird von den Objekten x,..., y ausgesagt. Welche Bezeichnungen für Prädikate mit welcher Bedeutung man verwendet, wird im Einzelfall angegeben, meist in natürlicher Sprache, etwa: P (a) für a ist eine Primzahl a < b für a ist kleiner als b wobei P und < die Prädikate bezeichnen. Wenn man über Urelemente und Mengen spricht, erlaubt man als Grundaussagen mindestens 1 d.h. etwas, was höchstens in Teile anderer Art teilbar ist

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 2 a = b für a ist dasselbe Urelement wie b x = y für x ist dieselbe Menge wie y a x für das Urelement a ist ein Element der Menge x y x für die Menge y ist ein Element der Menge x Hierin sind = und die Prädikate und a, b, x, y die Objekten. Die Objekte im gegenständlichen Sinn fallen hier also mit den Objekten im sprachlichen Sinn zusammen. 2 Streng genommen sollten wir zwischen Objektvariablen x, den Namen für Objekte, und den damit gemeinten Objekten unterscheiden. Aus den Grundaussagen werden zusammengesetzte Aussagen gebildet, und zwar: ϕ : nicht ϕ ϕ ψ : ϕ und ψ ϕ ψ : ϕ oder ψ ϕ ψ : wenn ϕ, so auch ψ ϕ ψ : ϕ genau dann, wenn ψ x ϕ : für jedes Objekt x gilt ϕ x ϕ : es gibt (mindestens) ein Objekt x, sodaß ϕ Wenn in ϕ über die Objekte x, y,... gesprochen wird, schreibt man deutlichkeitshalber oft ϕ(x, y,...). Die abgekürzten Aussagen nennen wir Formeln; bei größeren Formeln wird die Reihenfolge der Zusammensetzung durch Klammern um die Teile verdeutlicht. Spricht man über Mengen und Elemente, so werden weitere Abkürzungen benutzt, z.b.: Kurzform : Normale Schreibweise Bedeutung x / y : x y x ist kein Element von y x y ϕ : x(x y ϕ) für jedes Element x von y gilt ϕ x y ϕ : x(x y ϕ) es gibt ein Element x von y, so daß ϕ Beispiel 1.1 Steht M für das Prädikat ist ein Mensch und L für das Prädikat ist ein Lebewesen, so steht x(m(x) L(x)) für Jeder Mensch ist ein Lebewesen. x(l(x) M(x)) für Einige Lebewesen sind keine Menschen. Wenn man keinen Unterschied zwischen einem Prädikat und seinem Umfang, der Menge der Objekte, auf die es zutrifft, machen will, so steht auch x M x L für Jeder Mensch ist ein Lebewesen. x L x / M für Einige Lebewesen sind keine Menschen. Eine genauere Definition der Formeln folgt später. Sie wird insbesondere zwischen Objekten und Prädikaten und den zu ihrer Bezeichnung verwendeten sprachlichen Mitteln wie Namen und Verben unterscheiden. 2 Das ist aber nicht immer so: dem Objekt niemand im sprachlichen Sinn entspricht kein Objekt im gegenständlichen Sinn.

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 3 1.2 Annahmen und Begründungen Wir werden im Folgenden oft gewisse Aussagen als wahr annehmen und dann nachweisen, d.h. uns dann davon überzeugen, daß auf Grund dieser Annahmen weitere Aussagen wahr sind. Wie man eine behauptete Aussage ϕ aus Annahmen Γ nachweisen kann, hängt von der Form der Aussage ϕ und der Form der Annahmen Γ ab. Vorläufig machen wir das auf folgende Weise: I. Einerseits können wir die Behauptung ϕ analysieren. Je nach der Form von ϕ müssen wir unterschiedlich vorgehen: (a) Wir zeigen ϕ ψ, indem wir ϕ zeigen und ψ zeigen. (b) Wir zeigen ϕ ψ, indem wir ϕ annehmen und ψ zeigen, oder indem wir ψ annehmen und ϕ zeigen. (c) Wir zeigen ϕ ψ, indem wir ϕ annehmen und ψ zeigen. (d) Wir zeigen ϕ ψ, indem wir ϕ ψ und ψ ϕ zeigen. (e) Wir zeigen x ϕ (meistens), indem wir ein geeignetes Objekt x angeben und dafür ϕ(x) zeigen. (f) Wir zeigen x ϕ, indem wir für ein beliebiges Objekt x, über das wir keine weiteren Annahmen machen, ϕ(x) zeigen. (g) Wir zeigen ϕ, indem wir zeigen, daß ϕ unmöglich ist, d.h. indem wir ϕ annehmen und einen Widerspruch, eine Aussage der Form ψ ψ zeigen ( indirekter Beweis ). Mit indem wir ψ zeigen ist hier gemeint, indem wir ψ aus den Annahmen Γ zeigen. Mit indem wir ϕ annehmen ist hier gemeint, daß wir die bisherigen Annahmen Γ um ϕ erweitern. Mit diesen Schritten können wir nur zusammengesetzte Aussagen zeigen. II. Andererseits können wir die Behauptung ϕ zeigen, indem wir eine der Annahmen, etwa ψ, verwenden und je nach deren Form vorgehen. (Es ist im allgemeinen nicht offensichtlich, welche der Annahmen man am besten verwenden sollte.) Manchmal können wir die Annahme direkt benutzen: (a) Um ϕ aus der Annahme ϕ zu zeigen, brauchen wir nichts mehr zu tun. (b) Um ϕ aus der Annahme ψ zu zeigen, brauchen wir nichts mehr zu tun, wenn auch ψ unter den Annahmen vorkommt. (Denn der Fall, daß alle Annahmen gelten, kann nicht auftreten.) Meistens benutzen wir die Annahme, indem wir sie umformen oder weitere Annahmen (die aber nicht mehr besagen) daraus gewinnen:

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 4 (c) Um ϕ aus der Annahme ψ 1 ψ 2 zu zeigen, genügt es, ψ stattdessen aus den beiden Annahmen ψ 1 und ψ 2 zusammen zu zeigen. (d) Um ϕ aus der Annahme ψ 1 ψ 2 zu zeigen, genügt es, ϕ aus der Annahme ψ 1 statt ψ 1 ψ 2 zu zeigen und ϕ aus der Annahme ϕ 2 statt ψ 1 ψ 2 zu zeigen. (Fallunterscheidung: einer der Fälle, ψ 1 oder ψ 2, muß ja eintreten.) (e) Um ϕ aus der Annahme x ψ zu zeigen, genügt es, ϕ aus der Annahme ψ(x), für ein noch nicht benutztes Objekt x, statt x ψ zu zeigen. (f) Um ϕ aus der Annahme x ψ zu zeigen, genügt es, ϕ aus der Annahme ψ(y) x ψ, für ein (evtl. schon benutztes) Objekt y, statt x ψ, zu zeigen. (g) Um ϕ aus der Annahme ψ 1 ψ 2 zu zeigen, genügt es, ϕ aus der Annahme ψ 1 statt ψ 1 ψ 2 zu zeigen und ϕ aus der Annahme ψ 2 statt ψ 1 ψ 2 zu zeigen. (h) Um ϕ aus der Annahme ψ 1 ψ 2 zu zeigen, genügt es, ϕ aus der Annahme ψ 1 ψ 2 statt ψ 1 ψ 2 zu zeigen und ϕ aus der Annahme ψ 2 ψ 2 statt ψ 1 ψ 2 zu zeigen. (i) Um ϕ aus der Annahme ψ zu zeigen, genügt es, umgekehrt ψ aus der Annahme ϕ zu zeigen. Hier und im Folgenden ist mit aus der Annahme ψ stets gemeint: aus der Annahme ψ und den sonstigen Annahmen aus Γ. III. Oft werden Abkürzungen verwendet. Dann wird statt mit dem definierten Ausdruck mit seiner Definition gearbeitet: (a) Um eine Behauptung ϕ zu zeigen, in der ein Abkürzung verwendet wird, genügt es, statt ϕ die Behauptung ϕ zu zeigen, in der statt der Abkürzung deren Definition eingesetzt ist. (b) Um die Behauptung ϕ aus einer Annahme ψ zu zeigen, in der eine Abkürzung verwendet wird, genügt es, ϕ aus der Annahme ψ statt ψ zu zeigen, in der statt der Abkürzung ihre Definition eingesetzt ist. IV. Wenn das Grundprädikat = verwendet wird, brauchen wir auch dafür spezielle Regeln. (a) Um ϕ(b) aus der Annahme a = b zu zeigen, genügt es, ϕ(a) aus der Annahme a = b zu zeigen. (b) Um ϕ zu zeigen, dürfen wir zusätzlich folgende Annahmen machen: x(x = x), x y(x = y y = x), x y z((x = y y = z) x = z). Ob diese Vorgehensweise korrekt ist und ob wir damit alles, was wahr ist, zeigen können, ist natürlich nicht gesagt. Aber zumindest sollte es plausibel scheinen,

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 5 daß durch diese Schritte keine falschen Aussagen gezeigt werden können. Das soll aber später genauer betrachtet werden. Wir können damit zwei ganz grundlegende Eigenschaften zeigen: Einmal, daß für jede Aussage ϕ sie selbst, also ϕ, oder ihr Gegenteil, ϕ, wahr ist ( tertium non datur ). Zum anderen, daß nicht sowohl die Aussage ϕ als auch ihr Gegenteil, ϕ, wahr sind ( ausgeschlossener Widerspruch ): Beispiel 1.2 Für jede Aussage ϕ können wir ϕ ϕ ohne Annahmen zeigen. Beweis: Denn um ϕ ϕ zu zeigen, brauchen wir nach I. b) nur den zweiten Teil, ϕ, unter der Annahme, der erste Teil sei falsch, also unter der Annahme ϕ, zu zeigen. Nach II. a) ist dazu aber nichts mehr zu zeigen, da die neue Behauptung ϕ unter den neuen Annahmen schon vorkommt. Beispiel 1.3 Für jede Aussage ϕ können wir (ϕ ϕ) ohne Annahmen zeigen. Beweis: Um (ϕ ϕ) zu zeigen, ist nach I. g) zu zeigen, daß (ϕ ϕ) unmöglich ist, d.h. daß wir aus der Annahme von (ϕ ϕ) einen Widerspruch, eine Aussage der Form ψ ψ, zeigen können. Wir wählen natürlich ψ := ϕ und müssen dann die Behauptung ϕ ϕ aus der Annahme ϕ ϕ zeigen. Dafür wiederum brauchen wir nach II. a) gar nichts mehr zu tun.